Rare Earth Frontiers

Total Page:16

File Type:pdf, Size:1020Kb

Rare Earth Frontiers RARE EARTH FRONTIERS RARE EARTH FRONTIERS From Terrestrial Subsoils to Lunar Landscapes Julie Michelle Klinger CORNELL UNIVERSITY PRESS ITHACA AND LONDON Copyright © 2017 by Cornell University All rights reserved. Except for brief quotations in a review, this book, or parts thereof, must not be reproduced in any form without permission in writing from the publisher. For information, address Cornell University Press, Sage House, 512 East State Street, Ithaca, New York 14850. First published 2017 by Cornell University Press Printed in the United States of Amer i ca Library of Congress Cataloging- in- Publication Data Names: Klinger, Julie Michelle, 1983– author. Title: Rare earth frontiers : from terrestrial subsoils to lunar landscapes / Julie Michelle Klinger. Description: Ithaca : Cornell University Press, 2017. | Includes bibliographical references and index. Identifiers: LCCN 2017012446 (print) | LCCN 2017014409 (ebook) | ISBN 9781501714603 (epub/mobi) | ISBN 9781501714610 (pdf) | ISBN 9781501714580 (cloth : alk. paper) | ISBN 9781501714597 (pbk. : alk. paper) Subjects: LCSH: Rare earth metals— Social aspects. | Rare earth metals— Political aspects. | Rare earth metals— China— Inner Mongolia. | Rare earth metals— Brazil— Amazonas. | Lunar mining. Classification: LCC TN490.A2 (ebook) | LCC TN490.A2 K56 2017 (print) | DDC 553.4/94— dc23 LC rec ord available at https : // lccn . loc . gov / 2017012446 Cornell University Press strives to use environmentally responsible suppliers and materials to the fullest extent pos si ble in the publishing of its books. Such materials include vegetable- based, low- VOC inks and acid- free papers that are recycled, totally chlorine- free, or partly composed of nonwood fibers. For further informa- tion, visit our website at cornellpress . cornell . edu. To the people of Bayan Obo, and Baotou, whose waters, soils, and bodies have borne a burden few outside of rare earth mining regions can imagine; to the people of São Gabriel da Cachoeira; to those devoting their lives to more just and sustainable regimes of rare earth production and consumption; this work is humbly dedicated to you. Contents List of Illustrations ix Acknowl edgments xi Introduction: Welcome to the Rare Earth Frontier 1 1. ​What Are Rare Earth Ele ments? 41 2. ​Placing China in the World History of Discovery, Production, and Use 67 3. ​“Welcome to the Hometown of Rare Earths”: 1980–2010 103 4. ​Rude Awakenings 137 5. ​From the Heartland to the Head of the Dog 165 6. ​Extraglobal Extraction 199 Conclusion 229 Appendix: Methodologies and Approaches 243 Notes 251 References 265 Index 309 Illustrations Figure 1. Global rare earth oxide production 2 Figure 2. Research sites examined in the pres ent work, 2010–2015 2 Figure 3. Price index for selected rare earth oxides compared to copper and gold, 2003–2013 3 Figure 4. Vari ous frequently referenced periodic tables with highlighted rare earth ele ments 42–43 Figure 5. Map of global rare earth deposits identified by the United States Geo- logical Survey, 2015 64 Figure 6. Location of Baotou in Inner Mongolia Autonomous Region, People’s Republic of China 68 Figure 7. Location of Baotou City and Bayan Obo Mining District within Baotou Municipality 69 Figure 8. Photo from an Inner Mongolia Daily front page article on women’s committee pro gress, June 12, 1952 89 Figure 9. An editorial comic on the back page of the Inner Mongolia Daily, March 5, 1952 90 Figure 10. Photos from a special to the Inner Mongolia Daily, titled “Young Women Build Socialism!,” June 12, 1953 91 Figure 11. A life- size diorama at the Inner Mongolia Autonomous Region Mu- seum in Hohhot, Inner Mongolia 94 Figure 12. Satellite image of industrial geography of Baotou City and vicinity 116 Figure 13. Rare earth export quotas in tonnes, 2000–2014 131 Figure 14. Location of Araxá and Cabeça do Cachorro 167 Figure 15. Detailed map of land demarcation and princi ple ethnicities in Cabeça do Cachorro 171 Figure 16. Adaptation of two slides showing mineral deposits, key mineral reserves, and indigenous territories 174–175 Figure 17. Location of lunar KREEP, lunar landing sites, and deeded plots 203 ix Acknowl edgments The creative and often surprising ways that people get involved in a proj ect of this scope would, I suspect, be worthy of its own novel, but with these few words I wish to acknowledge those principal characters without whose support this book would not be. To Michael Watts, Nathan Sayre, Harley Shaiken, Paola Bacchetta, Richard Walker, and You- tien Hsing at the University of California, Berkeley, and to Kenneth Pomeranz, at the University of Chicago. Thank you for your kind mentorship. To those who hosted me at vari ous research institutions throughout the dura- tion of this proj ect, a special thank you to Alexandre Barbosa at the University of São Paulo Institute of Brazil Studies; to Wu Baiyi at the China Academy of Social Science Institute of Latin American Studies; to Liu Weidong at China Academy of Science Institute of Geographic Sciences and Natu ral Resources Research; to Bi Aonan at the China Acad emy of Social Science Research Center for Chinese Borderland History and Geography; to Yang Tengyuan at the Inner Mongolia Autonomous Region University; to Ingo Richter, Sabine Berking, and Stefanie Schafer of the Irmgard Coninx Stiftung at the Wissenschaftszentrum Berlin. With- out the ‘home away from home’ that you provided, this work could not have been accomplished. For funding, it has been an honor to have this research supported by the East Asian Career Development Professorship Award at Boston University, the Na- tional Science Foundation Gradu ate Research Fellowship Program, the Univer- sity of California, Berkeley Department of Geography, and the Irmgard Coninx Stiftung in Berlin. To those who provided the critical administrative support to keep this enter- prise running, thank you to Elaine Bidianos, Christian Estrella, and Noorjehan Khan at Boston University, and thank you to Marjorie Ensor and Natalia Von- negut at University of California, Berkeley. To my excellent research assistants, thank you to Tara Moore at Boston Uni- versity and Wang Xingchen in Inner Mongolia and Beijing for helping me track down all manner of archival sources. For typing support while I recovered from an injury to both of my arms, thanks to Jenna Hornbuckle and Nick Scheepers. For excellent graphic design work, thank you to Molly Roy. For all manner of technical support, thank you to Nick Bojda. xi xii ACKNOWL EDGMENTS To my circle of writers, thank you for your companionship and solidarity, especially Noora Lori, Jessica Stern, Manjari Miller, Saida Grundy, Ashley Farmer, Cornel Ban, Kaija Schilde, and Renata Keller. To my dear friends and fellow ge- ographers, for your camaraderie and companionship over the years, especially Shaina Potts, Zoë Friedman- Cohen, Meleiza Figueroa, Annie Shattuck, Mary Whelan, Aharon de Grassi, Anne Bitsch, and Danny Bednar. To those whose love and hospitality provided a warm respite amid the more intense periods of fieldwork, thank you. To Ward Lynds and Zhang Yazhou, my dear friends of fifteen years in Changchun. To Brendan and Angela Acord in Bei- jing, my beloved bon vivants. To Jeffrey Warner, Yang Weina, and Zhao Qiuwan in Shanghai. To Gustavo Oliveira in Brasília, and to my dear Brazilian family, whom I had the good fortune of encountering in both Brazil and China. our long con- versations, cele brations, and laughter sustain me. Renato, Dulcinea, Daniela, Guilherme, Kika, Manuela, Anahi, and most of all, José Renato Peneluppi Jr. To my intellectual godparents, mentors, and dear friends, Joshua Muldavin and Monica Varsanyi. Thank you for lighting my way and sharing so much of your lives with me, from Beijing to New York City. To my family, thank you for your love, encouragement, and zest for adven- ture. As long as I can remember, you’ve told me to go far, be brave, have fun, and do the right thing. I will always do my best to make you proud. To my dear spouse, life partner, and best friend, Nick Bojda. Thank you for every single conversation, for circling the globe with me, and for not only endur- ing long absences but cheering me through them. Your love and support mean the world to me. Portions of chapters 1 and 2 appeared in earlier form in “Historical Geogra- phy of Rare Earth Ele ments. From Discovery to the Atomic Age,” The Extractive Industries and Society 2, no. 3 (2015): 572–80. Portions of chapters 1 and 3 are reprinted from “The Environment- Security Nexus in Con temporary Rare Earth Politics,” in The Po liti cal Economy of Rare Earth Ele ments. Rising Powers and Tech- nological Change, edited by Ryan David Kiggins (New York: Macmillan, 2015), 133–55. Thank you for supporting my scholarly work. Fi nally, I am im mensely grateful for the support provided by my editor, Jim Lance, and the publishing team at Cornell University Press. Thank you for your stewardship over this proj ect. All translations in the text are my own, as are any remaining errors or short- comings. Except where indicated in the text, this book uses metric mea sure- ments. Large volumes are mea sured in tonnes, the singular of which is a unit of mass equal to 1,000 kilograms. These are not to be confused with the American ton, which is a unit of mass equal to 907.2 kilograms, or 2,000 pounds. RARE EARTH FRONTIERS Introduction WELCOME TO THE RARE EARTH FRONTIER Non- availability means that resource conflict is an immediate threat with negative short- and long- term geostrategic consequences. — Rare Earth Ele ments World Report (June 21, 2012) The prob lem we face on earth is that beyond their scarcity, these ele ments are not evenly distributed throughout the world. We need to disrupt this market.
Recommended publications
  • 2019 LCC Brochure.Pdf
    Scholarships Facts & Figures Shanghai 2018 Rankings QS World University Rankings 62 Jiao Tong University US News & World Report 156 Times Higher Education (THE) 188 Types of Scholarships Founded in 1896, Shanghai Jiao Tong Students University (SJTU) is the second oldest International degree students 2,401 university in China and is one of the Type Duration Support (RMB) Coverage (RMB) Sponsor Undergraduate students 16,195 most prestigious universities in China. Graduate students 21,093 SJTU is very strong in engineering, Monthly stipend (3,000/Month) which listed top 0.01% in ESI ranking. Tuition (28,900/Year) Faculty With a full range of academic disciplines A: CSC 2-3 Years 80,100/Year Health insurance CSC Academicians 48 in power & energy engineering, Accommodation allowance Chair Professors 148 environmental science and engineering, (1,200/Month) Fellows 160 finance and management related to International Faculties 222 low-carbon technology, SJTU has a solid Monthly stipend (1,700/Month) Professors 891 foundation and extraordinary advantag- Tuition (28,900/Year) es in establishing the China-UK Low B 2-3 Years 64,500/Year SJTU Full-time Faculties 2,835 Health insurance Carbon College. Accommodation allowance (1,200/Month) Tuition (28,900/Year) Health insurance C 2-3 Years 44,100/Year SJTU Accommodation allowance (1,200/Month) Prominent Alumni D 2-3 Years 29,700/Year Tuition (28,900/Year) SJTU Health insurance Jiang Ze Min Former President of China Note: In general, the support duration cannot be extended. All scholarship recipients are obliged to attend the annual China-UK comprehensive scholarship assessment during April and May of each year to confirm their qualification of the scholarship for the next year.
    [Show full text]
  • TABELA PERIÓDICA DOS ELEMENTOS Α Lu Β Lr Ε Ζ
    1 2 1 2 1766 Cavendish 1868 Ramsay/Cleve H TABELA PERIÓDICA DOS ELEMENTOS He Hidrogênio Hélio Hidrogenium Helium Unium/U Bium/B 3 4 5 6 7 8 9 10 [He] 1 [He] 2 [He] 2-1 [He] 2-2 [He] 2-3 [He] 2-4 [He] 2-5 [He] 2-6 1817 Arfvedson 1798 Vauquelin 1808 Davy/Gay-Lussac 3750 aC Desconhecido 1772 Rutherford 1771 Priestley/Scheele 1810 Moissan 1898 Ramsay/Travers Li Be B C N O F Ne Lítio Berílio Boro Carbono Nitrogênio Oxigênio Flúor Neônio Lithium Beryllium Borium Carbonium Nitrogenium Oxygenium Fluorum Neon Trium/T Quadium/Q Pentium/P Hexium/H Septium/S Octium/O Ennium/E Unilium/Un 11 12 13 14 15 16 17 18 [Ne] 1 [Ne] 2 [Ne] 2-1 [Ne] 2-2 [Ne] 2-3 [Ne] 2-4 [Ne] 2-5 [Ne] 2-6 1807 Davy 1755 Black 1825 Oersted 1824 Berzelius 1669 Brandt 2000 aC Desconhecido 1774 Scheele 1894 Ramsay/Rayleigh Na Mg Al Si P S Cl Ar Sódio Magnésio Alumínio Silício Fósforo Enxofre Cloro Argônio Natrium Magnesium Aluminium Silicium Phosphorum Sulphur Chlorum Argon Ununium/Uu Unbium/Ub Untrium/Ut Unquadium/Uq Unpentium/Up Unhexium/Uh Unseptium/Us Unoctium/Uo 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [Ar] 1 [Ar] 2 [Ar] 2-1 [Ar] 2-2 [Ar] 2-3 [Ar] 2-4 [Ar] 2-5 [Ar] 2-6 [Ar] 2-7 [Ar] 2-8 [Ar] 2-9 [Ar] 2-10 [Ar] 2-10-1 [Ar] 2-10-2 [Ar] 2-10-3 [Ar] 2-10-4 [Ar] 2-10-5 [Ar] 2-10-6 1807 Davy 1808 Davy 1879 Nilson 1791 Gregor/Klaproth 1801 del Rio 1797 Vauquelin 1774 Gahn 5000 aC Desconhecido 1732 Brandt 1751 Cronstedt 9000 aC Desconhecido 1000 aC Desconhecido 1875 Boiskaudran 1886 Winkler 2500 aC Alb.
    [Show full text]
  • Acoustic Properties of Solids
    Acoustic Properties of Solids Ref Material Vendor VL VS D ZL F Loss mm/:s mm/:s g/cm3 MRayl dB/cm AS Alumina Mason 10.52 3.86 40.6 CRC Aluminum - rolled 6.42 3.04 2.70 17.33 0.355 RLB Aluminum - 6262-T9 6.38 2.73 17.41 AMD Res-in-all - 502/118, 5:1 AMD 2.67 1.35 3.61 AMD Res-in-all - 502/118, 9:1 AMD 2.73 1.35 3.68 JA Araldite - 502/956 Ciba 2.62 1.16 3.04 JA Araldite - 502/956, 10phe C5W Ciba,Li 2.60 1.23 3.19 JA Araldite - 502/956, 20phe C5W Ciba,Li 2.54 1.39 3.52 JA Araldite - 502/956, 30phe C5W Ciba,Li 2.41 1.50 3.62 JA Araldite - 502/956, 40phe C5W Ciba,Li 2.31 1.67 3.86 JA Araldite - 502/956, 50phe C5W Ciba,Li 2.13 1.95 4.14 JA Araldite - 502/956, 60phe C5W Ciba,Li 2.10 2.24 4.70 JA Araldite - 502/956, 70phe C5W Ciba,Li 1.88 3.17 5.95 JA Araldite - 502/956, 80phe C5W Ciba,Li 1.72 4.71 8.11 JA Araldite - 502/956, 50phe 325mesh W Ciba,Li 2.16 2.86 6.17 JA Araldite - 502/956, 60phe 325mesh W Ciba,Li 1.91 2.78 5.33 JA Araldite - 502/956, 70phe 325mesh W Ciba.Li 1.82 3.21 5.84 JA Araldite - 502/956, 80phe 325mesh W Ciba,Li 1.64 4.55 7.45 JA Araldite - 502/956, 90phe 325mesh W Ciba,Li 1.52 8.40 12.81 AS Arsenic tri sulphide As2 S3 Ch 2.58 1.40 3.20 8.25 0.29 Bacon P38 Bacon 4.00 2.17 1.90 7.60 0.29 13.5 @ 5 M Bearing babbit 2.30 10.1 23.2 CRC Beryllium 12.89 8.88 1.87 24.10 0.046 Bismuth 2.2 1.1 9.8 21.5 0.33 Boron carbide 11.0 2.4 26.4 PK Boron nitride 5.03 3.86 1.965 9.88 Brass - yellow, 70% Cu, 30% Zn 4.70 2.10 8.64 40.6 0.38 Brick 4.3 1.7 7.4 Cadmium 2.8 1.5 8.6 24.0 0.30 AS Carbon -pyrolytic, soft, variable properties 3.31 2.21 7.31 AS Carbon - vitreous, very hard material Fl 4.26 2.68 1.47 6.26 0.17 Updated April 11, 2003 Page 1 of 7 Acoustic Properties of Solids Ref Material Vendor VL VS D ZL F Loss mm/:s mm/:s g/cm3 MRayl dB/cm AS Carbon - vitreous, Sigradur K Si 4.63 1.59 7.38 Columbium (same as Niobium) m.p.
    [Show full text]
  • A Glimpse of Materials Research in China a Report from an Interagency Study Team on Materials Visiting China from June 19, 1995 to June 30, 1995
    NATL INST. OF STAND ^JECH Rrf^ I PUBLICATIONS mill nil nil I II A111Q4 7T2m3 United States Department of Commerce Technology Administration National Institute of Standards and Technology NIST Special Publication 893 A Glimpse of Materials Research in China A Report From an Interagency Study Team on Materials Visiting China From June 19, 1995 to June 30, 1995 Stephen M. Hsu and Lyle H. Schwartz^ Editors QC 100 ,U57 NO. 893 1995 Jhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below.
    [Show full text]
  • Completion and Evaluation of NSFC Projects
    PART Completion and Evaluation of NSFC Projects 6.1 Completion of General Program Projects Table 6-1 Projects completed 5,713 International conferences 11,167 Invited speakers Domestic conferences 8,900 Papers and publications International journals 22,447 Papers and books Domestic journals 36,180 Books 3,271 Achievements Evaluated 241 Research results Patents 1,475 Results disseminated 435 International awards 95 Awards National awards 585 Ministerial or provincial awards 73 Post-doc 1,312 Talents fostered Ph.D. 16,158 Masters 29,040 2008 ANNUAL REPORT 67 6.2 Completion of Young Scientists Fund Projects Table 6-2 Projects completed 1,602 International conferences 2,645 Invited speakers Domestic conferences 1,750 Papers and publications International journals 5,097 Papers and books Domestic journals 7,030 Books 978 Achievements Evaluated 28 Research results Patents 277 Results disseminated 44 International awards 22 Awards National awards 131 Ministerial or provincial awards 31 Post-doc 215 Talents fostered Ph.D. 2,296 Masters 4,723 6.3 Completion of Projects of the Fund for Less Developed Regions Table 6-3 Projects completed 279 International conferences 250 Invited speakers Domestic conferences 309 Papers and publications International journals 644 Papers and books Domestic journals 2,110 Books 184 Achievements Evaluated 18 Research results Patents 33 Results disseminated 5 International awards 0 Awards National awards 34 Ministerial or provincial awards 3 Post-doc 14 Talents fostered Ph.D. 263 Masters 1,725 68 2008 ANNUAL REPORT Completion and Evaluation of NSFC Projects NSFC 6.4 Completion of Key Program Projects Table 6-4 Projects completed 239 International conferences 2,361 Invited speakers Domestic conferences 1,767 Papers and publications International journals 6,936 Papers and books Domestic journals 5,919 Books 324 Achievements Evaluated 21 Research results Patents 376 Results disseminated 59 International awards 34 Awards National awards 119 Ministerial or provincial awards 23 Post-doc 367 Talents fostered Ph.D.
    [Show full text]
  • Other Publications in the CECD Series
    Other Publications in the CECD Series Energetics Science and Technology in Central Europe Invited Editor: Ronald W. Armstrong Series Editors: James M. Short, Robert A. Kavetsky, and Davinder K. Anand ISBN 978-0-9846274-3-1 Simulation -Based Innovation and Discovery. Energetics Applications Edited by Davinder K. Anand, Satyandra K. Gupta, and Robert A. Kavetsky ISBN 978-0-9846274-2-4 Energetics Science and Technology in China James M. Short, Robert A. Kavetsky, Michael G. Pecht, and Davinder K. Anand ISBN 978-0-9846274-0-0 Other Publications in the CECD Series From Science to Seapower. A Roadmap for S&T Revitalization. Postscript 2010 Robert A. Kavetsky, Michael L. Marshall, and Davinder K. Anand ISBN 978-0-9846274-1-7 Training in Virtual Environments. A Safe, Cost-Effective, and Engaging Approach to Training Satyandra K. Gupta, Davinder K. Anand, John E. Brough, Maxim Schwartz, and Robert A. Kavetsky ISBN 978-0-9777295-2-4 From Science to Seapower. A Roadmap for S&T Revitalization Robert A. Kavetsky, Michael L. Marshall, and Davinder K. Anand ISBN 978-0-9846274-1-7 Rare Earth Materials Insights and Concerns CENTER FOR ENERGETIC CONCEPTS DEVELOPMENT SERIES Editorial Board Davinder K. Anand, CECD, University of Maryland, College Park, MD James M. Short, CECD, University of Maryland, College Park, MD Don DeVoe, CECD, University of Maryland, College Park, MD Bryan Eichhorn, University of Maryland, College Park, MD Satyandra K. Gupta, CECD, University of Maryland, College Park, MD Michael G. Pecht, CALCE, University of Maryland, College Park, MD Michael R. Zachariah, CECD, University of Maryland, College Park, MD ENERGETICS SCIENCE AND TECHNOLOGY SERIES Editorial Board James M.
    [Show full text]
  • A Historical Geography of Rare Earth Elements: from Discovery to the Atomic Age
    The Extractive Industries and Society 2 (2015) 572–580 Contents lists available at ScienceDirect The Extractive Industries and Society journal homepage: www.elsevier.com/locate/exis Review article A historical geography of rare earth elements: From discovery to the atomic age Julie Michelle Klinger* Frederick S. Pardee School of Global Studies, Boston University, United States ARTICLE INFO ABSTRACT Article history: This article presents a historical geography of rare earth elements from their discovery to the atomic age Received 16 January 2015 with a focus on the period between 1880 and 1960 in order to lend greater depth to the growing body of Received in revised form 19 May 2015 scholarship on the relationship between rare earth elements and global political change. Drawing on Available online 7 July 2015 archival and field research undertaken in the United States, China, Brazil, and Germany between 2011 and 2014, this article advances the following argument. Rare earth elements, and the production of geological Keywords: knowledge about them, have entangled with contentious politics since their first industrial applications Rare earth elements in the late 19th century. The historical geography of rare earth exploration and extraction is defined by a Historical geography fundamental tension between the military-industrial necessity of these elements and the hazards Geology fi Politics associated with their production. This tension played a de nitive role in international colonial, Cold War, Cold war and atomic politics. ã 2015 Elsevier Ltd. All rights reserved. Contents 1. Introduction . ................................................................................................... 572 2. Discovery and classification .......................................................................................... 573 3. Geology, territory, and power . ..................................................................................... 573 4. The political life of rare earth elements ...............................................................................
    [Show full text]
  • Prof. Andrei A. Seryi John Adams Institute Lecture 1: Basics Of
    Prof. Andrei A. Seryi John Adams Institute Lecture 1: Basics of accelerators and the art of inventiveness USPAS 2016 LHC sketches by Sergio Cittolin (CERN) – used with permission June 2016 Accelerators can study art This painting “Patch of grass” by Vincent van Gogh was the first one analysed by a particle accelerator It showed a portrait of a woman underneath http://photon-science.desy.de/news__events/research_highlights/archive/visualizing_a_lost_painting_by_vincent_van_gogh/index_eng.html USPAS Course 2016, A. Seryi, JAI 2 Accelerators in archaeology The interior of samples can be studied using accelerators without destroying them Pottery from Armenia, dating back to 1300 BC, is set up for a synchrotron experiment Image: Argonne National Laboratory USPAS Course 2016, A. Seryi, JAI 3 Particle accelerators can read hidden text Accelerators can detect the X-ray ‘signature’ of iron in ancient pigments A written message can be revealed even on a folded manuscript which is too brittle to open This method has also been used to analyse Photo: Graham Davis & Tim Wess manuscripts and paintings that have layers of information from different authors USPAS Course 2016, A. Seryi, JAI 4 Accelerators can make food taste better Cadbury used X-rays from a particle accelerator to study how cocoa crystallises Of the six possible crystal forms, the fifth (form V) produces the best quality chocolate USPAS Course 2016, A. Seryi, JAI 5 Accelerators can help spot art forgeries Ion Beam Analysis shows us the chemical composition of pigments used in paint This allows art historians to compare them with paints available to artists like Leonardo da Vinci USPAS Course 2016, A.
    [Show full text]
  • Download Our Special Issue of Science & Technology Review
    SPECIAL ISSUE DESIGNER MATERIALS Also in this issue: Materials for National Security Materials Theory and Simulation Materials for Laser Systems SPECIAL ISSUE Contents Welcome from Bob Maxwell MATERIALS FOR NATIONAL SECURITY DESIGNER 2 Piecing Together a Nuclear Fireball By studying how different elements react inside a nuclear fireball, MATERIALS researchers gain valuable insight into predetonation conditions. 6 Detonation Science Blasts into a New Frontier Also in this issue: Using an advanced experimental facility, scientists gain insight Materials for National Security Materials Theory and Simulation into the nanoscale processes of high-explosive detonations. Materials for Laser Systems 10 Agent Defeat Efforts Strike Gold MATERIALS SCIENCE RESEARCH The cover image shows a three-dimensionally A highly effective payload material can destroy chemical printed carbon fiber part created using a Livermore- and biological weapons facilities. developed direct ink writing process. Laboratory SUPPORTS NATIONAL SECURITY researchers use and refine a range of advanced DESIGNER MATERIALS manufacturing techniques and technologies to create tailor-made, high-performance materials. 14 A New Composite-Manufacturing Approach Takes Shape Livermore researchers leverage chemistry, engineering, and computational expertise to develop a new manufacturing technique for high-performance composites. 18 Mimicking Mother Nature to Mitigate Climate Change Bioengineering and additive manufacturing come together ATERIALS are central to our national security missions
    [Show full text]
  • Thinking About America's Defense
    THE ARTS This PDF document was made available CHILD POLICY from www.rand.org as a public service of CIVIL JUSTICE the RAND Corporation. EDUCATION ENERGY AND ENVIRONMENT Jump down to document6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS The RAND Corporation is a nonprofit NATIONAL SECURITY research organization providing POPULATION AND AGING PUBLIC SAFETY objective analysis and effective SCIENCE AND TECHNOLOGY solutions that address the challenges SUBSTANCE ABUSE facing the public and private sectors TERRORISM AND HOMELAND SECURITY around the world. TRANSPORTATION AND INFRASTRUCTURE Support RAND WORKFORCE AND WORKPLACE Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND PDFs to a non-RAND Web site is prohibited. RAND PDFs are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This product is part of the RAND Corporation occasional paper series. RAND occasional papers may include an informed perspective on a timely policy issue, a discussion of new research methodologies, essays, a paper presented at a conference, a conference summary, or a summa- ry of work in progress. All RAND occasional papers undergo rigorous peer review to ensure that they meet high standards for research quality and objectivity.
    [Show full text]
  • China's S&T Intellectuals in the Post-Mao
    HD28 .M414 AD. ibtH-'o^ WORKING PAPER ALFRED P. SLOAN SCHOOL OF MANAGEMENT China's S&T Intellectuals in the Post-Mao Era; A Retrospective and Prospective Glimp se^ by Denis Fred Simon June 14, 1985 166 4 -85 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSACHUSETTS 02139 (/ DRAFT China's S&T Intellectuals in the Post- Mao Era: A Retrospective and Prospective Glimpse by Denis Fred Simon June 14, 1985 166 4 -85 DRAFT China's S&T Intellectuals in the Post-Mao Era;/ " 7 A Retrospective and Prospective Glimpse Professor Denis Fred Sj. men Sloan School of Management Massachusetts Institute of Technology May 15, 1985 Paper prepared for volune edited by Merle Goldman, Chinese Intellectuals and the State: The Search for a New Relationship (Harvard U Press, forthconung) w "The most pressing problem confronting us is the unified arrangement and proper use of scientific and technical personnel." (Premier Zhao Ziyang, "Speech on the Work of the Government" to the 6th National People's Congress. June 6, 1983.)! The training and effective deployment of high caliber human resources is considered to be essential to the process of economic development. A pool of qualified individuals is needed to staff administrative offices, to provide advice to government officials, to educate the next generation, and to support industrial and agricultural development through efficient management and advances in science and technology. Harbison and Myers, in their seminal study of manpower and education in developing countries, refer to high quality manpower as a strategic resource. 2 They note, however, that most LDCs face severe human resource problems that seriously constrain their prospects for rapid development.
    [Show full text]
  • Emerging Real Estate Markets in Urban China
    Emerging Real Estate Markets in Urban China by Tung-Pi Chent I. INTRODUCTION The law governing the ownership of land in China has recently begun another fundamental transformation in urban areas. Where only forty years ago feudalism prevailed, and where a decade ago all land was communally owned, the land reforms now under way are part of the general transforma- tion of the centrally planned economy into - "socialist commodity economy," relying increasingly on market mechanisms for the efficient allocation of re- sources. In 1987, the Thirteenth National Congress of the Communist Party of China (CPC) called for the establishment of a socialist market system that would include markets for such essential factors of production as funds, la- bor, and real estate.' Indeed, the foundation of a real estate market has be- gun to develop in urban China, with the introduction of payment for the use of land and the legitimation of trade in land use rights. These reforms, how- ever, are far from complete, and commodity interests in land are still rela- tively rare in the country as a whole. The reforms are most advanced in the Special Economic Zones (SEZs) and coastal cities where foreign investment is concentrated. 2 Nevertheless, trends clearly point toward their expansion 3 throughout the country. t Professor of Law, Queen's University, Kingston, Canada. LL.B. National Taiwan Univ., 1959; M.C.L. Columbia, 1963, LL.M. Yale, 1965; J.S.D. Yale, 1968. The author wishes to acknowledge and thank the Social Sciences and Humanities Research Council of Canada for financial assistance, and his assistant, Casper Sinnege.
    [Show full text]