HIMALAYAN JOURNAL of SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 73 the 19Th Himalaya-Karakoram-Tibet Workshop

Total Page:16

File Type:pdf, Size:1020Kb

HIMALAYAN JOURNAL of SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 73 the 19Th Himalaya-Karakoram-Tibet Workshop Volume 2 Issue 4 (special issue) July 2004 ISSN 1727 5210 EXTENDED ABSTRACTS The 19th Himalaya-Karakoram-Tibet Workshop 10-12 July, 2004 Niseko Higashiyama Prince Hotel Niseko, Hokkaido, Japan Guest Editors Kazunori ARITA Pitambar GAUTAM Lalu Prasad PAUDEL Youichiro TAKADA Teiji WATANABE HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 73 The 19th Himalaya-Karakoram-Tibet Workshop including a special session on Uplift of Himalaya-Tibet Region and Asian Monsoon: Interactions among Tectonic Events, Climatic Changes and Biotic Responses during Late Tertiary to Recent Times Co-hosted by The Organizing Committee of The 19th HIMALAYA-KARAKORAM-TIBET WORKSHOP The 21st Century Center of Excellence (COE) Program on “Neo-Science of Natural History – Origin and Evolution of Natural Diversity” Hokkaido University The 21st Century Center of Excellence (COE) Program on “Dynamics of the Sun-Earth-Life Interactive System” Nagoya University Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University Sponsored by International Lithosphere Program (ILP) Hokkaido Prefecture, Japan Niseko Town, Japan Tokyo Geographical Society Geological Society of Japan Japan Association for Quaternary Research Tectonic Research Group of Japan Kajima Foundation, Tokyo Hokkaido Geotechnical Consultants Association, Sapporo Hakusan Corporation, Fuchu, Tokyo Kao Foundation for Arts and Sciences, Tokyo Tethys Society, Sapporo Confectionary Kinotoya, Sapporo Shugakuso Outdoor Equipment, Sapporo JEOL Ltd, Akishima, Tokyo HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 75 Preface The Himalaya-Karakoram-Tibet (HKT) region, well known as “the roof of the world,” embraces the highest elevations and the greatest relief on earth. The formation and uplift of the HKT region during the Cenozoic was a crucial event in the geological evolution of our planet and its major rivers support more than two-thirds of the world’s human population. In geoscientific terms, the HKT region is important in two ways. First, it serves as a natural laboratory for study of the composition, structure and formational process of the continental crust. The area today occupied by the Tibetan Plateau was the focus of subduction-related magmatism before the collision of India with Eurasia. After the collision, continental deformation led to the formation of the earth’s thickest crust beneath Tibet. Early in this process the Karakoram-Kohistan area was at the island-arc stage of formation and now is the site of ultra- high-pressure rocks. The Himalaya, a foreland fold-thrust belt with metamorphic core, formed along the northern margin of the Indian continent after the collision. It exhibits the effects of thrust tectonics resulting in rapid uplift – most dramatically, an unrivalled array of the eight-thousand-meter giants. The highest section extends more than halfway into the troposphere and exerts a major influence on the global atmospheric circulation. In order to develop future global climatic scenarios it is necessary to understand: (i) the timing, underlying causes, and mechanism of the uplift; (ii) the monsoon climate, its time of initiation and manner of evolution; and (iii) the relationship between the two. The HKT region is a natural laboratory where one can observe the diversity of both geological and biological phenomena, a thorough understanding of which is vital for the development of rational resource-use policies. The HKT Workshops, since their inception in 1985, have become an important forum for sharing scientific knowledge and experience. The present workshop, held in Japan, will include a special session on “Uplift of the Himalaya-Tibet region and the Asian Monsoon: Interactions among Tectonic Events, Climatic Change and Biotic Responses during Late Tertiary to Recent Times”. Despite its distance from the HKT region, Japan is an appropriate venue for the workshops. The northern side of Japan, facing the Japan Sea, experiences some of the world’s highest annual snowfall. The Japanese monsoon (tsuyu) occurs in June. Thanks to the water derived from snowmelt, together with the accompanying rainfall during the tsuyu, Japan has evolved a remarkable form of rice cultivation. It was the uplift of the HKT region that was essential to this development, which in the old days was called a toyo-ashihara-no-mizuho-no- kuni (literally, “beautiful country of rice”). If the HKT region in its present form did not exist, Japan probably would have no monsoon and conditions would be very different from those of today. This special issue of the Himalayan Journal of Sciences contains one hundred and thirty-six abstracts. One hundred and fifty scholars from fourteen countries have pre-registered for the Workshop. It is our hope that all the participants will take advantage of this meeting to express their views, listen to the opinions of others, and exchange scientific knowledge. The Organizing Committee would like to express its sincere thanks to the many organizations and enterprises that provided financial support and facilitated the participation of many scholars from the HKT region (China, India, Nepal, Pakistan) and Japan (especially graduate students from abroad). Twenty-one participants received registration grants and sixteen received grants covering registration and full or partial travel expenses. Furthermore, special gratitude is expressed to Prof. Arvind K. Jain for his assistance in evaluating the abstracts, to Prof. Mitsuhiro Nakagawa for his generous offer to lead an excursion to the active volcanic area of Mt. Usu, and to Mr. Takahiro Tajima for managing the HKT19 homepage. Members of the Organizing Committee of the 19th Himalaya-Karakoram-Tibet Workshop: Kazunori ARITA (Hokkaido University) Kazuhisa CHIKITA (Hokkaido University) Pitambar GAUTAM (Hokkaido University) Shuji IIWATA (Tokyo Metropolitan University) Takashi NAKATA (Hiroshima University) Hiroshi NISHI (Hokkaido University) Harutaka SAKAI (Kyushu University) Tetsuya SAKAI (Shimane University) Teiji WATANABE (Hokkaido University) HIMALAYAN JOURNAL OF SCIENCES VOL 2 ISSUE 4 (SPECIAL ISSUE) JULY 2004 77 Editorial Policy Himalayan Journal of Sciences (ISSN 1727 5210) is a peer-reviewed multi-disciplinary journal published twice yearly. HJS focuses on biodiversity, natural resource management, ecology and environment, and other fields related to Himalayan conservation, and develop- ment. HJS invites authors to communicate their knowledge and uncertainties from all the sciences. HJS publishes works in the following genres: i)i)i) Research papers:papers report on original research ii)ii)ii) Review papers: thorough account of current developments and trajectories in any field covered in the journal iii)iii)iii) ArticlesArticlesArticles: narrowly-focused account of a current development in any field covered in the journal iv)iv)iv) EditorialEditorialEditorial: opinionated essay on an issue of public interest v)v)v) EssayEssayEssay: similar to editorial but longer and more comprehensive; may include tables and figures vi)vi)vi) Commentary and Correspondence:Correspondence persuasive and informed commentary on any topical issues or on articles published in prior issues of the journal vii)vii)vii) PolicyPolicyPolicy: critical review of some topic of high public interest, hybrid of essay and review article, with the basis of highly valid facts and figures viii)viii)viii) Resource review:review evaluation of books, websites, CDs, etc. pertinent to the scope of HJS ix)ix)ix) Publication preview:preview description/epitome of the forthcoming important books x)x)x) CalenderCalenderCalender: notice of forthcoming conferences, seminars, workshops, and other events related to science and the Himalayas. Permission Permission to make digital or hard copies of part or all of any article published in HJS for personal use or educational use within one’s home institution is hereby granted without fee, provided that the first page or initial screen of a display includes the notice “Copyright © 2004 by the Himalayan Association for the Advancement of Science,” along with the full citation, including name of author(s). We assert the authors’ moral right to post their papers on their personal or home institution’s Web pages and to make and distribute unlimited photocopies of their papers. In all of the above cases, HimAAS expects to be informed of such use, in advance or as soon as possible. To copy or transmit otherwise, to republish, to post on the public servers, to use any component of a paper in other works, or to use such an article for commercial or promotional purposes requires prior specific permission. HimAAS does not grant permission to copy articles (or parts of articles) that are owned by others. Acknowledgments We would like to acknowledge the logistic support (office space, computers, furniture) of International Center for Integrated Mountain Development (ICIMOD); and we are especially grateful to Dr J Gabriel Campbell and Mrs Greta Rana. We are thankful to Mr Kamal Thapa for providing us with computer facility for page set up and printing and to Manpur Chaudhary for assistance. The generous help of Dr Megh Raj Dhital in proof-reading the manuscripts is highly appreciated. Special Acknowledgments In the business of dissemination of new knowledge relevant to Himalaya, we are assisted in our publication and pre-publication work by certain commercial collaborators. By offering HJS generous discounts (and in some cases waiving all fees), they have significantly reduced
Recommended publications
  • New Insight Into the Phylogeographic Pattern Of
    New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east–west lineage split and genetic mixture within western subtropical China Aihong Yang, Yongda Zhong, Shujuan Liu, Lipan Liu, Tengyun Liu, Yanqiang Li and Faxin Yu The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China ABSTRACT Background: Subtropical China is a global center of biodiversity and one of the most important refugia worldwide. Mountains play an important role in conserving the genetic resources of species. Liriodendron chinense is a Tertiary relict tree largely endemic to subtropical China. In this study, we aimed to achieve a better understanding of the phylogeographical pattern of L. chinense andtoexploretheroleofmountainsintheconservationofL. chinense genetic resources. Methods: Three chloroplast regions (psbJ-petA, rpl32-ndhF, and trnK5’-matK) were sequenced in 40 populations of L. chinense for phylogeographical analyses. Relationships among chloroplast DNA (cpDNA) haplotypes were determined using median-joining networks, and genetic structure was examined by spatial analysis of molecular variance (SAMOVA). The ancestral area of the species was reconstructed using the Bayesian binary Markov Chain Monte Carlo (BBM) method according to its geographic distribution and a maximum parsimony (MP) tree based on Bayesian methods. Results: Obvious phylogeographic structure was found in L. chinense. SAMOVA Submitted 13 September 2018 revealed seven groups matching the major landscape features of the L. chinense Accepted 26 December 2018 Published 1 February 2019 distribution area. The haplotype network showed three clades distributed in the eastern, southwestern, and northwestern regions. Separate northern and southern Corresponding author Faxin Yu, [email protected] refugia were found in the Wu Mountains and Yungui Plateau, with genetic admixture in the Dalou Mountains and Wuling Mountains.
    [Show full text]
  • A Statistical Analysis of Mountaineering in the Nepal Himalaya
    The Himalaya by the Numbers A Statistical Analysis of Mountaineering in the Nepal Himalaya Richard Salisbury Elizabeth Hawley September 2007 Cover Photo: Annapurna South Face at sunrise (Richard Salisbury) © Copyright 2007 by Richard Salisbury and Elizabeth Hawley No portion of this book may be reproduced and/or redistributed without the written permission of the authors. 2 Contents Introduction . .5 Analysis of Climbing Activity . 9 Yearly Activity . 9 Regional Activity . .18 Seasonal Activity . .25 Activity by Age and Gender . 33 Activity by Citizenship . 33 Team Composition . 34 Expedition Results . 36 Ascent Analysis . 41 Ascents by Altitude Range . .41 Popular Peaks by Altitude Range . .43 Ascents by Climbing Season . .46 Ascents by Expedition Years . .50 Ascents by Age Groups . 55 Ascents by Citizenship . 60 Ascents by Gender . 62 Ascents by Team Composition . 66 Average Expedition Duration and Days to Summit . .70 Oxygen and the 8000ers . .76 Death Analysis . 81 Deaths by Peak Altitude Ranges . 81 Deaths on Popular Peaks . 84 Deadliest Peaks for Members . 86 Deadliest Peaks for Hired Personnel . 89 Deaths by Geographical Regions . .92 Deaths by Climbing Season . 93 Altitudes of Death . 96 Causes of Death . 97 Avalanche Deaths . 102 Deaths by Falling . 110 Deaths by Physiological Causes . .116 Deaths by Age Groups . 118 Deaths by Expedition Years . .120 Deaths by Citizenship . 121 Deaths by Gender . 123 Deaths by Team Composition . .125 Major Accidents . .129 Appendix A: Peak Summary . .135 Appendix B: Supplemental Charts and Tables . .147 3 4 Introduction The Himalayan Database, published by the American Alpine Club in 2004, is a compilation of records for all expeditions that have climbed in the Nepal Himalaya.
    [Show full text]
  • Variability in the Location. of the Antarctic Polar Front (90 °
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. C13, PAGES 27,825-27,833, DECEMBER 15, !997 Variability in the location.of the Antarctic Polar Front (90ø- 20øW) from satellite sea surface temperature data J. Keith Moore, Mark R. Abbott, and James G. Richman Collegeof Oceanicand AtmosphericSciences, Oregon State University, Corvallis Abstract. The path of the AntarcticPolar Front (PF) is mappedusing satellite sea surfacetemperature data from the NOAA/NASA Pathfinderprogram. The mean path and variabilityof the PF are stronglyinfluenced by bathymetry.Meandering intensity is weaker where the bathymetryis steeplysloped and increasesin areaswhere the bottom is relativelyflat. There is an inverserelationship between meandering intensity and both the width of the front and the changein temperatureacross it. There is a persistent,large separationbetween the surfaceand subsurfaceexpressions of the PF at Ewing Bank on the Falkland Plateau. 1. Introduction of meanderingjets and fronts hasbeen done previouslyfor the PF [Legeckis,1977] and other strongfrontal systems[Hansen TheAntarctic Polar Front (PF) is a strongjet within t•e and Maul, 1970; Olsonet al., 1983; Cornilion, 1986]. Antarctic CircumpolarCurrent (ACG), which flowseastward Satellite altimeter data has shown that there is little zonal continuouslyaround Antarctica [Nowlin and Klinck, 1986].The coherencein the variabilityof the ACC [Fu and Chelton,1984; PF, also known as the Antarctic Convergence,is the location Sandwelland Zhang, 1989; Chelton et al., 1990; Gille, 1994; where Antarctic surfacewaters movingto the north sink rap- Gille and Kelly,1996]. These studies emphasize the importance idly belowSubantarctic waters [Deacon, 1933, 1937].Thus the of local and regionalinstabilities [Chelton et al., 1990;Gille and PF is a regionof elevatedcurrent speeds and stronghorizontal Kelly,1996].
    [Show full text]
  • China's Special Poor Areas and Their Geographical Conditions
    sustainability Article China’s Special Poor Areas and Their Geographical Conditions Xin Xu 1,2, Chengjin Wang 1,2,*, Shiping Ma 1,2 and Wenzhong Zhang 1,2 1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (X.X.); [email protected] (S.M.); [email protected] (W.Z.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Abstract: Special functional areas and poor areas tend to spatially overlap, and poverty is a common feature of both. Special poor areas, taken as a kind of “policy space,” have attracted the interest of researchers and policymakers around the world. This study proposes a basic concept of special poor areas and uses this concept to develop a method to identify them. Poor counties in China are taken as the basic research unit and overlaps in spatial attributes including old revolutionary bases, borders, ecological degradation, and ethnic minorities, are used to identify special poor areas. The authors then analyze their basic quantitative structure and pattern of distribution to determine the geographical bases’ formation and development. The results show that 304 counties in China, covering a vast territory of 12 contiguous areas that contain a small population, are lagging behind the rest of the country. These areas are characterized by rich energy and resource endowments, important ecological functions, special historical status, and concentrated poverty. They are considered “special poor” for geographical reasons such as a relatively harsh natural geographical environment, remote location, deteriorating ecological environment, and an inadequate infrastructure network and public service system.
    [Show full text]
  • (Leech, 1890) (Lepidoptera: Hesperiidae) with Description of Female Genitalia and Taxonomic Notes
    © Entomologica Fennica. 31 August 2016 Distribution of Onryza maga (Leech, 1890) (Lepidoptera: Hesperiidae) with description of female genitalia and taxonomic notes Guoxi Xue, Yufei Li, Zihao Liu, Meng Li & Yingdang Ren Xue, G. X., Li, Y.F., Liu, Z. H., Li, M. & Ren, Y.D. 2016: Distribution of Onryza maga (Leech, 1890) (Lepidoptera: Hesperiidae) with description of female geni- talia and taxonomic notes. — Entomol. Fennica 27: 70–76. For more than twenty years, Hainan, Vietnam, Myanmar, Thailand, Malaysia, Singapore and Indonesia have been erroneously reported in Chinese literature as belonging to the distribution range of Onryza maga (Leech 1890). Based upon a careful survey of specimens and relevant literature, these regions are omitted from the known range of this species. Onryza maga maga is found from northeast Guizhou, south Henan and Qinling-Daba Mountains in Shaanxi of China, its oc- currence in Hunan is confirmed. The adults are redescribed and the variability of wing patterns is discussed. Female genitalia are illustrated and described for the first time. Some biological information and an updated distribution map of the species are provided. G. X. Xue & M. Li, School of Food and Bioengineering, Zhengzhou University of Light Industry, No. 5 Dongfeng Road, Zhengzhou, Henan, 450002, P. R. China; Corresponding author’s e-mail: [email protected] Y. F. Li, School of Medicine, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an, Shaanxi, 710061, P. R. China Z. H. Liu, School of Physics, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China Y. D.
    [Show full text]
  • Modification and Pathways of Southern Ocean Deep Waters in the Scotia
    Deep-Sea Research I 49 (2002) 681–705 Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea Alberto C. Naveira Garabatoa,*, Karen J. Heywooda, David P. Stevensb a School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK b School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK Received 11 September 2000; received in revised form 11 June 2001; accepted 23 October 2001 Abstract An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance. Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia.
    [Show full text]
  • Chapter 4 Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage
    123 Chapter 4 Tectonic reconstructions of the Southernmost Andes and the Scotia Sea during the opening of the Drake Passage Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bre- merhaven, Germany e-mail: [email protected] Abstract Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To 19th and early 20th cen- tury geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subse- quent increases in detailed knowledge about the fragmentary outcrop ge- ology from islands distributed around the margins of the Scotia Sea, and later their interpretation in light of the plate tectonic paradigm, led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses be- tween Jurassic—Cretaceous basin floor and fill sequences in South Geor- gia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those re- gions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98% of the Scotia 124 Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long- used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period.
    [Show full text]
  • Study on the Coniferous Characters of Pinus Yunnanensis and Its Clustering Analysis
    Journal of Polymer Science and Engineering (2017) Original Research Article Study on the Coniferous Characters of Pinus yunnanensis and Its Clustering Analysis Zongwei Zhou,Mingyu Wang,Haikun Zhao Huangshan Institute of Botany, Anhui Province, China ABSTRACT Pine is a relatively easy genus for intermediate hybridization. It has been widely believed that there should be a natural hybrid population in the distribution of Pinus massoniona Lamb. and Pinus hangshuanensis Hsia, that is, the excessive type of external form between Pinus massoniana and Pinus taiwanensis exist. This paper mainly discusses the traits and clustering analysis of coniferous lozeng in Huangshan scenic area. This study will provide a theoretical basis for the classification of long and outstanding Huangshan Song and so on. At the same time, it will provide reference for the phenomenon of gene seepage between the two species. KEYWORDS: Pinus taiwanensis Pinus massoniana coniferous seepage clustering Citation: Zhou ZW, Wang MY, ZhaoHK, et al. Study on the Coniferous Characters of Pinus yunnanensis and Its Clustering Analysis, Gene Science and Engineering (2017); 1(1): 19–27. *Correspondence to: Haikun Zhao, Huangshan Institute of Botany, Anhui Province, China, [email protected]. 1. Introduction 1.1. Research background Huangshan Song distribution in eastern China’s subtropical high mountains, more than 700m above sea level. Masson pine is widely distributed in the subtropical regions of China, at the lower reaches of the Yangtze River, vertically distributed below 700m above sea level, the upper reaches of the Yangtze River area, the vertical height of up to 1200 - 1500m or so. In the area of Huangshan Song and Pinus massoniana, an overlapping area of Huangshan Song and Pinus massoniana was formed between 700 - 1000m above sea level.
    [Show full text]
  • Article Size, 12 Nm Pore Size; YMC Collision Energy 15, 22.5, and 30; Isolation Window 1.0 M/Z)
    Biogeosciences, 18, 3485–3504, 2021 https://doi.org/10.5194/bg-18-3485-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas Charlotte L. Spencer-Jones1, Erin L. McClymont1, Nicole J. Bale2, Ellen C. Hopmans2, Stefan Schouten2,3, Juliane Müller4, E. Povl Abrahamsen5, Claire Allen5, Torsten Bickert6, Claus-Dieter Hillenbrand5, Elaine Mawbey5, Victoria Peck5, Aleksandra Svalova7, and James A. Smith5 1Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 2NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 3Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands 4Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany 5British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 6MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany 7School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK Correspondence: Charlotte L. Spencer-Jones ([email protected]) Received: 7 September 2020 – Discussion started: 5 November 2020 Revised: 3 March 2021 – Accepted: 23 March 2021 – Published: 11 June 2021 Abstract. The West Antarctic Ice Sheet (WAIS) is one of compassing the sub-Antarctic front through to the southern the largest potential sources of future sea-level rise, with boundary of the Antarctic Circumpolar Current. IPL-GDGTs glaciers draining the WAIS thinning at an accelerating rate with low cyclic diversity were detected throughout the water over the past 40 years.
    [Show full text]
  • Herefore of the Emphasis of the Entomology Division Is on Crop Pests, Most the Insects in the Museum Belong to This Particular Category
    Odonatologica 4 (2): 89-93 June I, 1975 SHORT COMMUNICATION A note on the odonatecollectionin the Entomology Division of the Departmentof Agriculture, Nepal K.C. Sharma EntomologyDivision, Department of Agriculture, Kumaltar, Lalitpur, Nepal Received and Accepted February 19, 1975 A brief outline is given of the aims ofthe Nepalese Museum of Entomolo- with annotated list of 11 odonate harboured in its gy, Lalitpur, an species collections. Among these, Nannophyapygmaea Ramb. is new to the Nepalese fauna, while Rhinocypha bifasciata Sel, had been recorded only once pre- of the viously from the Nepalese territory. A bibliography papers on Nepalese odonate fauna, published after World War II, is added. INTRODUCTION In view of the ever increasing interest of odonatologists in the faunaof Nepal and the Himalayan region, we have gladly accepted the invitation by the Editor of Odonatologica to prepare a brief note on the odonate collection harboured in the below lines will induce the our institution. The author sincerely hopes that to also to Museum. He is that odonatologists visiting Nepal pay a visit our sure contacts established in this way will be greatly profitable for the advancement of Nepalese entomology. For the sake of convenience we have considered useful to append a biblio- graphy of papers on Nepalese Odonatathat have appeared after World War II. 89 THE INSECT MUSEUM OF THE ENTOMOLOGY DIVISION Ever since the inception of the Entomology Division in 1955, in the frame- work of the Department of Agriculture of H.M.G. of Nepal, reference collections of insects are being steadily brought together. However, the Insect Museum got its special identity within the Division only in 1963, with the attachment of a taxonomist to its staff.
    [Show full text]
  • In Shackleton's Footsteps
    In Shackleton’s Footsteps 20 March – 06 April 2019 | Polar Pioneer About Us Aurora Expeditions embodies the spirit of adventure, travelling to some of the most wild and adventure and discovery. Our highly experienced expedition team of naturalists, historians and remote places on our planet. With over 27 years’ experience, our small group voyages allow for destination specialists are passionate and knowledgeable – they are the secret to a fulfilling a truly intimate experience with nature. and successful voyage. Our expeditions push the boundaries with flexible and innovative itineraries, exciting wildlife Whilst we are dedicated to providing a ‘trip of a lifetime’, we are also deeply committed to experiences and fascinating lectures. You’ll share your adventure with a group of like-minded education and preservation of the environment. Our aim is to travel respectfully, creating souls in a relaxed, casual atmosphere while making the most of every opportunity for lifelong ambassadors for the protection of our destinations. DAY 1 | Wednesday 20 March 2019 Ushuaia, Beagle Channel Position: 21:50 hours Course: 84° Wind Speed: 5 knots Barometer: 1007.9 hPa & falling Latitude: 54°55’ S Speed: 9.4 knots Wind Direction: E Air Temp: 11°C Longitude: 67°26’ W Sea Temp: 9°C Finally, we were here, in Ushuaia aboard a sturdy ice-strengthened vessel. At the wharf Gary Our Argentinian pilot climbed aboard and at 1900 we cast off lines and eased away from the and Robyn ticked off names, nabbed our passports and sent us off to Kathrine and Scott for a wharf. What a feeling! The thriving city of Ushuaia receded as we motored eastward down the quick photo before boarding Polar Pioneer.
    [Show full text]
  • Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
    Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility
    [Show full text]