Adaptive Hypothesis Testing

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Hypothesis Testing I N Max-Information, Differential Privacy, S R and Post-Selection Hypothesis Testing Ryan Rogers, Aaron Roth, Adam Smith, and Om Thakkar Adaptive Data Analysis refers to the reuse of data to perform analyses suggested by the outcomes of previously computed statistics on the same data. In this work, we initiate a principled study of how the generalization properties of approximate differential privacy can be used to perform Approximate Post-selection adaptive hypothesis testing. This substantially extends the existing Differential Max-Information Hypothesis connection between differential privacy and max-information, which Privacy Testing previously was only known to hold for pure differential privacy. It also extends our understanding of max-information as a partially unifying measure controlling the generalization properties of adaptive data analyses. Differential Privacy [DMNS06] ➢ A lot of existing theory assumes tests ➢ A randomized algorithm 퐴: 퐷푛 → 푇 is 휀, 훿 -differentially are selected independently of the data. private if for all neighboring data sets 푥, 푦 ∈ 퐷푛, i.e., ➢ In practice, data analysis is inherently 푑푖푠푡 푥, 푦 = 1, and for all sets of outcomes 푆 ⊆ 푇, we have interactive, where experiments may 푃 퐴 푥 ∈ 푆 ≤ 푒휀푃 퐴 푦 ∈ 푆 + 훿 depend on previous outcomes from the ➢ If 훿=0, we say pure DP. If 훿>0, we say approximate DP. same dataset. ➢ Question: How can we provide statistically valid answers to adaptively chosen analyses? ➢ Answer: Limit the information learned about the dataset. [DFH+15a] ➢ Part of a line of work initiated by [DFH+15a, DFH+15b,HU14]. Post-Selection Hypothesis Testing ➢ Hypothesis test: Defined by a null hypothesis 퐻0 and a test statistic 푡. Technical Contributions ➢ Purpose: Reject 퐻0 if the data 푋 is not likely to have been generated from 푛 푛 [DFH+15a] some distribution 푄 such that 푄 ∈ 퐻0. ➢ Previous results : If 퐴: 퐷 → 푇 is 휖, 0 -DP, 훽훽 ෨ 2 ➢ Significance. level of 푡 = 훼 ⟹ Pr 푡 푋 = 푅푒푗푒푐푡 ≤ 훼. ➢ For 훽 > 0, we have 퐼∞퐼,Π 퐴퐴, ,푛푛 ≤≤푂푂෨ 휖휖 푛 푋∼푄푛 ∞,Π 00 ➢ 퐼퐼∞∞ 퐴퐴, 푛 ≤≤휖푛휖푛 ➢ Assumes choice of 푡 is independent of the data 푋. ➢ Goal: For an adaptively chosen test 푡 , we want to bound 퐴(푋) ➢ Positive Result: If 퐴: 퐷푛 → 푇 is 휖, 훿 -DP, for 훽 ≈ 푂 푛 훿/휖 , Pr 푡퐴(푋) 푋 = 푅푒푗푒푐푡 for 푄 ∈ 퐻0. 푋∼푄푛 훽훽 2 ➢ we have 퐼∞퐼∞,Π,Π퐴퐴, ,푛푛 == 푂푂 휖 푛푛 ++푛푛 훿훿//휖휖 ➢ Problem: 푡퐴(푋) can be tailored specifically to 푋. Approx. DP Max-Information [DFH+15b] Max-Information ➢ Consequences: ➢ 푘 rounds of adaptivity: max-information ~ 푘 rather than 푘2 ➢ An algorithm 퐴 with bounded max-info allows the analyst to treat the ➢ Generalizes and unifies previous work output 퐴(푋) as if it is independent of data 푋 up to a factor. ➢ Negative Result: ∃ an 휖, 훿 -DP algorithm 퐴 s.t. 훽 1 훽 Pr (푋 = 푥, 퐴 푋 = 푎) ➢ 훽퐼 퐴, 푛 ≈ for any 훽 ≤ − 훿. 퐼 푋; 퐴(푋) ≤ 푘 ⟺ Pr log > 푘 ≤ 훽 퐼∞ ∞퐴, 푛 ≈ 푛 2 ∞ 푥,푎 Pr 푋′ = 푥 Pr 퐴 푋 = 푎 ➢ Differentiate between general and product distributions: 훽 훽 퐼∞ 퐴, 푛 = sup 퐼∞ 푋; 퐴(푋) Related Publications 푆:푋∼푆 훽 훽 퐼∞,Π 퐴, 푛 = sup 퐼∞ 푋; 퐴(푋) + 푃:푋∼푃푛 • [BNS 16] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas 훽 훼 −훽 Steinke, Uri Stemmer, and Jonathan Ullman. In STOC, 2016. ➢ [RRST.16]: If 퐼 퐴, 푛 ≤ 푘, then for 훾 훼 = , ∞,Π 2푘 • [DFH+15a] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, and Aaron Roth. In NIPS. 2015. Significance level of 푡퐴 푋 = 훾 훼 ⟹ Pr 푡퐴(푋) 푋 = 푅푒푗푒푐푡 ≤ 훼. 푋∼푄푛 • [DFH+15b] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon Roth. In STOC, 2015. • [DMNS06] Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, Adam Max-Information Post-selection Hypothesis Testing Smith. In TCC, 2006. • [HU14] Moritz Hardt and Jonathan Ullman.In FOCS, 2014. • [RZ16] Daniel Russo and James Zou. In AISTATS, 2016. Supported in part by grants from the Sloan foundation and NSF grants: CNS-1253345, CNS-1513694, IIS-1447700..
Recommended publications
  • Reproducibility and Pseudo-Determinism in Log-Space
    Reproducibility and Pseudo-determinism in Log-Space by Ofer Grossman S.B., Massachusetts Institute of Technology (2017) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 c Massachusetts Institute of Technology 2020. All rights reserved. Author...................................................................... Department of Electrical Engineering and Computer Science May 15, 2020 Certified by.................................................................. Shafi Goldwasser RSA Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by................................................................. Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Reproducibility and Pseudo-determinism in Log-Space by Ofer Grossman Submitted to the Department of Electrical Engineering and Computer Science on May 15, 2020, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Acuriouspropertyofrandomizedlog-spacesearchalgorithmsisthattheiroutputsareoften longer than their workspace. This leads to the question: how can we reproduce the results of a randomized log space computation without storing the output or randomness verbatim? Running the algorithm again with new
    [Show full text]
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • Privacy Loss in Apple's Implementation of Differential
    Privacy Loss in Apple’s Implementation of Differential Privacy on MacOS 10.12 Jun Tang Aleksandra Korolova Xiaolong Bai University of Southern California University of Southern California Tsinghua University [email protected] [email protected] [email protected] Xueqiang Wang Xiaofeng Wang Indiana University Indiana University [email protected] [email protected] ABSTRACT 1 INTRODUCTION In June 2016, Apple made a bold announcement that it will deploy Differential privacy [7] has been widely recognized as the lead- local differential privacy for some of their user data collection in ing statistical data privacy definition by the academic commu- order to ensure privacy of user data, even from Apple [21, 23]. nity [6, 11]. Thus, as one of the first large-scale commercial de- The details of Apple’s approach remained sparse. Although several ployments of differential privacy (preceded only by Google’s RAP- patents [17–19] have since appeared hinting at the algorithms that POR [10]), Apple’s deployment is of significant interest to privacy may be used to achieve differential privacy, they did not include theoreticians and practitioners alike. Furthermore, since Apple may a precise explanation of the approach taken to privacy parameter be perceived as competing on privacy with other consumer com- choice. Such choice and the overall approach to privacy budget use panies, understanding the actual privacy protections afforded by and management are key questions for understanding the privacy the deployment of differential privacy in its desktop and mobile protections provided by any deployment of differential privacy. OSes may be of interest to consumers and consumer advocate In this work, through a combination of experiments, static and groups [16].
    [Show full text]
  • Secure Multi-Party Computation in Practice
    SECURE MULTI-PARTY COMPUTATION IN PRACTICE Marcella Christine Hastings A DISSERTATION in Computer and Information Science Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2021 Supervisor of Dissertation Nadia Heninger Adjunct Associate Professor, University of Pennsylvania Associate Professor, University of California, San Diego Graduate Group Chairperson Mayur Naik Professor and Computer and Information Science Graduate Group Chair Dissertation Committee Brett Hemenway Falk, Research Assistant Professor Stephan A. Zdancewic, Professor Sebastian Angel, Raj and Neera Singh Term Assistant Professor abhi shelat, Associate Professor at Khoury College of Computer Sciences, Northeastern University ACKNOWLEDGMENT This dissertation would have been much less pleasant to produce without the presence of many people in my life. I would like to thank my advisor and my dissertation committee for their helpful advice, direction, and long-distance phone calls over the past six years. I would like to thank my fellow PhD students at the University of Pennsylvania, especially the ever-changing but consistently lovely office mates in the Distributed Systems Laboratory and my cohort. Our shared tea-time, cookies, disappointments, and achievements provided an essential community that brought me great joy during my time at Penn. I would like to thank the mentors and colleagues who hosted me at the Security and Privacy Lab at the University of Washington in 2018, the Software & Application Innovation Lab at Boston University in 2019, and the Cryptography and Privacy Research group at Microsoft Research in 2020. My career and happiness greatly benefited from spending these summers exploring fresh research directions and rediscovering the world outside my own work.
    [Show full text]
  • A Decade of Lattice Cryptography
    Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • Hard Communication Channels for Steganography
    Hard Communication Channels for Steganography Sebastian Berndt1 and Maciej Liśkiewicz2 1 University of Lübeck, Lübeck, Germany [email protected] 2 University of Lübeck, Lübeck, Germany [email protected] Abstract This paper considers steganography – the concept of hiding the presence of secret messages in legal communications – in the computational setting and its relation to cryptography. Very re- cently the first (non-polynomial time) steganographic protocol has been shown which, for any communication channel, is provably secure, reliable, and has nearly optimal bandwidth. The security is unconditional, i.e. it does not rely on any unproven complexity-theoretic assumption. This disproves the claim that the existence of one-way functions and access to a communication channel oracle are both necessary and sufficient conditions for the existence of secure steganogra- phy in the sense that secure and reliable steganography exists independently of the existence of one-way functions. In this paper, we prove that this equivalence also does not hold in the more realistic setting, where the stegosystem is polynomial time bounded. We prove this by construct- ing (a) a channel for which secure steganography exists if and only if one-way functions exist and (b) another channel such that secure steganography implies that no one-way functions exist. We therefore show that security-preserving reductions between cryptography and steganography need to be treated very carefully. 1998 ACM Subject Classification E.3 Data Encryption Keywords and phrases provable secure steganography, cryptographic assumptions, pseudoran- dom functions, one-way functions, signature schemes Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.16 1 Introduction Digital steganography has recently received substantial interest in modern computer science since it allows secret communication without revealing its presence.
    [Show full text]
  • Algebraic Pseudorandom Functions with Improved Efficiency from the Augmented Cascade*
    Algebraic Pseudorandom Functions with Improved Efficiency from the Augmented Cascade* DAN BONEH† HART MONTGOMERY‡ ANANTH RAGHUNATHAN§ Department of Computer Science, Stanford University fdabo,hartm,[email protected] September 8, 2020 Abstract We construct an algebraic pseudorandom function (PRF) that is more efficient than the classic Naor- Reingold algebraic PRF. Our PRF is the result of adapting the cascade construction, which is the basis of HMAC, to the algebraic settings. To do so we define an augmented cascade and prove it secure when the underlying PRF satisfies a property called parallel security. We then use the augmented cascade to build new algebraic PRFs. The algebraic structure of our PRF leads to an efficient large-domain Verifiable Random Function (VRF) and a large-domain simulatable VRF. 1 Introduction Pseudorandom functions (PRFs), first defined by Goldreich, Goldwasser, and Micali [GGM86], are a fun- damental building block in cryptography and have numerous applications. They are used for encryption, message integrity, signatures, key derivation, user authentication, and many other cryptographic mecha- nisms. Beyond cryptography, PRFs are used to defend against denial of service attacks [Ber96, CW03] and even to prove lower bounds in learning theory. In a nutshell, a PRF is indistinguishable from a truly random function. We give precise definitions in the next section. The fastest PRFs are built from block ciphers like AES and security is based on ad-hoc inter- active assumptions. In 1996, Naor and Reingold [NR97] presented an elegant PRF whose security can be deduced from the hardness of the Decision Diffie-Hellman problem (DDH) defined in the next section.
    [Show full text]
  • Omer Reingold, June 2017
    Omer Reingold, June 2017 My research is focused on a wide range of topics within the Foundations of Computer Science. In particular, my core areas, which include my most significant contributions, are Computational Complexity and the Foundations of Cryptography, with an emphasis on Randomness, Derandomization and Explicit Combinatorial Constructions. However, I am interested in a much broader range of topics (some closer and some further away from my core areas). Examples include Differential Privacy and Fairness, Game Theory, Hashing and Data Structures, Resource Allocation and Data Analysis. Current Academic Employment: Professor of Computer Science, Stanford University, Since Feb. 2015. Education: • 1994-1998 Weizmann Institute of Science, Rehovot, Israel. Ph.D. in Computer Science. Thesis title: Pseudo-random synthesizers, functions and permutations. Advisor: Prof. Moni Naor. • 1991-1994 Tel-Aviv University, Tel-Aviv, Israel. B.Sc in Mathematics and Computer Science - Summa Cum Laude. Selected Awards and distinctions (additional awards below): • The 2009 Gödel Prize for outstanding papers in the area of theoretical computer science (jointly with Salil Vadhan and Avi Wigderson). • 2005 ACM Grace Murray Hopper Award. Awarded by the Association for Computing Machinery (ACM) to “the outstanding young computer professional of the year.” • ACM Fellow (2014) Previous Academic Employment and Short Term Visits: • Feb 2015 – September 2016 Principal Research Engineer, Samsung Research America (SRA) • Nov 2014 – Feb 2015 (while on leave from
    [Show full text]
  • Immunizing Encryption Schemes from Decryption Errors
    Immunizing Encryption Schemes from Decryption Errors Cynthia Dwork1, Moni Naor2, and Omer Reingold2 1 Microsoft Research, SVC 1065 L’Avenida Mountain View, CA 94043 [email protected] 2 Weizmann Institute of Science Rehovot 76100, Israel {moni.naor,omer.reingold}@weizmann.ac.il Abstract. We provide methods for transforming an encryption scheme susceptible to decryption errors into one that is immune to these errors. Immunity to decryption errors is vital when constructing non-malleable and chosen ciphertext secure encryption schemes via current techniques; in addition, it may help defend against certain cryptanalytic techniques, such as the attack of Proos [33] on the NTRU scheme. When decryption errors are very infrequent, our transformation is ex- tremely simple and efficient, almost free. To deal with significant error probabilities, we apply amplification techniques translated from a re- lated information theoretic setting. These techniques allow us to correct even very weak encryption schemes where in addition to decryption er- rors, an adversary has substantial probability of breaking the scheme by decrypting random messages (without knowledge of the secret key). In other words, under these weak encryption schemes, the only guaranteed difference between the legitimate recipient and the adversary is in the frequency of decryption errors. All the above transformations work in a standard cryptographic model; specifically, they do not rely on a random oracle. We also consider the random oracle model, where we give a simple trans- formation from a one-way encryption scheme which is error-prone into one that is immune to errors. We conclude that error-prone cryptosystems can be used in order to create more secure cryptosystems.
    [Show full text]
  • Computational Hardness of Optimal Fair Computation: Beyond Minicrypt
    Computational Hardness of Optimal Fair Computation: Beyond Minicrypt Hemanta K. Maji Department of Computer Science, Purdue University, USA [email protected] Mingyuan Wang Department of Computer Science, Purdue University, USA [email protected] Abstract Secure multi-party computation allows mutually distrusting parties to compute securely over their private data. However, guaranteeing output delivery to honest parties when the adversarial parties may abort the protocol has been a challenging objective. As a representative task, this work considers two-party coin-tossing protocols with guaranteed output delivery, a.k.a., fair coin- tossing. In the information-theoretic plain model, as in two-party zero-sum games, one of the parties can force an output with certainty. In the commitment-hybrid, any r-message coin-tossing proto- √ √ col is 1/ r-unfair, i.e., the adversary can change the honest party’s output distribution by 1/ r in the statistical distance. Moran, Naor, and Segev (TCC–2009) constructed the first 1/r-unfair protocol in the oblivious transfer-hybrid. No further security improvement is possible because Cleve (STOC–1986) proved that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and Segev’s coin-tossing protocol is optimal. However, is oblivious transfer necessary for optimal fair coin-tossing? Maji and Wang (CRYPTO–2020) proved that any coin-tossing protocol using one-way func- √ tions in a black-box manner is at least 1/ r-unfair. That is, optimal fair coin-tossing is impossible in Minicrypt. Our work focuses on tightly characterizing the hardness of computation assump- tion necessary and sufficient for optimal fair coin-tossing within Cryptomania, outside Minicrypt.
    [Show full text]
  • Fall 2016 Dear Computer Science Alumni and Friends, These Are
    Alex Aiken Alcatel-Lucent Professor Tencent Chair, Department of Computer Science Fall 2016 Dear Computer Science Alumni and Friends, These are exciting times in computer science, with research, education, and the industry continuing to evolve at a rapid and seemingly increasing rate. The role of computer science is also changing, shifting from being a dynamic, exciting intellectual field driving technological change to becoming a dynamic, exciting intellectual field that is a significant component of many other fields of inquiry as well as a major social and cultural force. The effects of these changes on academic computer science departments, at least in the United States, are well known: soaring enrollments at all levels; a major expansion of research efforts, particularly in collaborations with other fields; and the stresses associated with trying to adapt and grow to meet these challenges and opportunities. The CS department at Stanford has been riding this wave with excitement and enthusiasm—and sometimes exhaustion! In this newsletter, I’ll talk about some of the changes that are taking place. A key part of this process has been discussions with the alumni and friends of the department; many of you have helped by sharing your thoughts with me and other faculty, for which we are sincerely grateful. Faculty Hiring The School of Engineering and the department have agreed that the CS department will grow by a net of 10 full-time faculty positions, from about 40 full-time positions today to about 50. Many of you will no doubt recognize that this won’t change our hiring rate (we’ve been hiring as fast as we can for several years), but it will allow us to take a step back and think about the future composition of the department.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Complexity Theory
    Mathematisches Forschungsinstitut Oberwolfach Report No. 54/2015 DOI: 10.4171/OWR/2015/54 Complexity Theory Organised by Peter B¨urgisser, Berlin Oded Goldreich, Rehovot Madhu Sudan, Cambridge MA Salil Vadhan, Cambridge MA 15 November – 21 November 2015 Abstract. Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseu- dorandomness and randomness extraction. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinato- rial number theory, probability theory, representation theory, and the theory of error-correcting codes. Mathematics Subject Classification (2010): 68-06, 68Q01, 68Q10, 68Q15, 68Q17, 68Q25, 94B05, 94B35. Introduction by the Organisers The workshop Complexity Theory was organized by Peter B¨urgisser (TU Berlin), Oded Goldreich (Weizmann Institute), Madhu Sudan (Harvard), and Salil Vadhan (Harvard). The workshop was held on November 15th–21st 2015, and attended by approximately 50 participants spanning a wide range of interests within the field of Computational Complexity. The plenary program, attended by all participants, featured fifteen long lectures and five short (8-minute) reports by students and postdocs. In addition, intensive interaction took place in smaller groups. The Oberwolfach Meeting on Complexity Theory is marked by a long tradition and a continuous transformation. Originally starting with a focus on algebraic and Boolean complexity, the meeting has continuously evolved to cover a wide variety 3050 Oberwolfach Report 54/2015 of areas, most of which were not even in existence at the time of the first meeting (in 1972).
    [Show full text]