Electronic Supplementary Material (ESI) for Natural Product Reports. This journal is © The Royal Society of Chemistry 2020

SUPPLEMENTARY INFORMATION

Figure S1 Figure S2 Figure S3 Figure S4 Table S1 Table S2

Legends of the figures

Figure S1: Biosynthetic pathways to aromatic amino acids and malonyl-CoA from glucose. Abbreviations used: DAHP, 2-keto-3-deoxy-D-arabino-heptulosonate-7-phosphate; ACC, acetyl-CoA carboxylase complex, CM1, chorismate mutase 1; PPA-AT, prephenate aminotransferase; ADT, arogenate dehydratase; ADH, arogenate dehydrogenase Figure S2: Putative relationships between 8-8’ dimeric naturally-occurring stilbenes (according to Stephenson’s group29) Figure S3: Examples of stilbene tetramers resulting from the 3-8’ condensation of e-viniferin. The two tetramers, and isolated from grapevine root extracts result from the 3-8’ coupling of two oxidized molecules of (-)--viniferin (according to Stephenson’s group29) Figure S4: Hypothetical mechanism for the formation of a stilbene heptamer. The stilbene heptamer pauciflorol D is formed by condensation between the 8-10’ tetramer, vaticaphenol A, and an 8-8’ quinone trimer formed by the coupling of three resveratrol hydroxyphenyl radicals C (according to Stephenson’s group29) Pentose Phosphate GLUCOSE Glycolysis Pathway Pathway

Erythrose-4-phosphate Phosphoenolpyruvate

DAHP synthase Shikimate Pathway Pyruvate DAHP Pyruvate Dehydrogenase Complex Acetyl-CoA COOH ACC CO2

O O

HO OH HO SCoA OH Malonyl CoA Shikimate

COOH

O COOH OH Chorismate

Chorismate mutase 1 CM1

COOH COOH

O HO Prephenate

Arogenate Pathway Prephenate aminotransferase PPA-AT

COOH COOH

NH2 HO Arogenate Arogenate dehydratase Arogenate dehydrogenase ADT ADH

COOH COOH

NH2 NH2 HO

Tyrosine Phenylalanine Figure S1 HO OH HO Phenanthrenic ring OH HO H OH OH HO H HO H h -2H+

H OH OH H H OH OH OH OH

OH (-)- OH OH (-)-Parthenocissin A (+)-Laetevirenol A

HO HO

H H

O H O H H HO -2H+ HO

H H OH -H2O H OH

OH OH O HO OH Vitisinol A Restrytisol A Figure S2 HO HO H H 3-8' COUPLING HO O O

HO HO

H OH H OH OH HRP / H2O2 A OH OH OH OH OH OH H B HO H OH HO H OH O OH O A H H HO H H H H O O 2 x -Viniferin

HO HO O HO

Hypothetical Intermediate Vitisin B (Tetramer)

B

HO H O

HO

H OH

OH OH

HO H H OH HO H

O OH H

OH Vitisin A (Tetramer)

Figure S3 HEPTAMER FORMATION OH HO HO

OH B1 C2

OH HO H H HO HO [O] B2 OH HO D HO H 2 OH O H OH H H H HO C2 H H HO H OH A1 A2 O D1 H H O OH H OH O HO H Vaticaphenol A HO H -Viniferin HO H OH HO H O OH OH HO O HO H OH E1 OH OH G2 HO H G1 H OH OH [O] H HO H H H E 2 H O OH H HO F2 H OH H

F1 OH H HO OH O 102 OH 3 x Resveratrol HO OH Hypothetical Intermediate Pauciflorol D (Stilbene heptamer)

Figure S4 Table S1 Antifungal activity of stilbene monomers and oligomers towards various microorganisms

Tested stilbenes Microorganisms/structures Inhibiting activity References

Cladosporium cuccumerinum (spores) Botrytis cinerea (spores) Resveratrol ED > 870 M 17 Pyricularia oryzae (spores) 50 Plasmopara viticola (zoospore motility)

B. cinerea (mycelium) ED50 : 438 M

Resveratrol P. oryzae (mycelium) ED50 : 276 M 17

Fusarium oxysporum (mycelium) ED50 : 88 M

Resveratrol B. cinerea (spores) ED50 : 390 M 117

Fungal growth Stereum hirsutum inhibition at 490 M Fomitiporia punctata

Resveratrol Ineffective or 283 Libertella blepharis stimulator on fungal Phaeomoniella chlamydospora growth at 490 M Phaeoacremonium aleophilum

57.2% growth decrease at 48 M Yeast 16.1% growth Resveratrol Penicillium expansum decrease at 48 M 284 Aspergillus niger 36.4% growth decrease at 48 M Table S1 Antifungal activity of stilbene monomers and oligomers towards various microorganisms (continued)

P. viticola ED50 : 192 M (zoospore motility) Resveratrol 282 P. viticola ED50 : 145 M (disease development)

Resveratrol B. cinerea (spores) ED50 : 438 M 280

P. viticola Resveratrol ED : 500 M 286 (zoospore motility) 100

P. viticola Resveratrol ED : 484 M 287 (sporulation) 50

Resveratrol B. cinerea (spores) ED50 : 1153 M 281

B. cinerea (spores) ED50 : 70 M

Pterostilbene P. oryzae (spores) ED50 : 35 M 112

P. viticola

(sporangia release) ED50 : 17.6 M

Pterostilbene P. viticola ED50 : 9 M 288 (zoospore motility)

Pterostilbene B. cinerea (spores) ED50 : 70 M 289

Pterostilbene B. cinerea (spores) ED50 : 78 M 117

Pterostilbene Esca disease-associated fungi Inhibition of fungal 283 growth (39 to 390 M) Table S1 Antifungal activity of stilbene monomers and oligomers towards various microorganisms (continued)

P. viticola Pterostilbene ED : 14.6 M 282 (zoospore motility) 50

Piceatannol ED50 : 254 M ED : 116 M Development of downy mildew 50 290 ED50 : 705 M

Isorhapontin ED50 : 272 M

-viniferin B. cinerea (spores) ED : 220 M 50 288 -viniferin B. cinerea (mycelium growth) ED50 : 230 M

-viniferin P. viticola (sporulation) ED : 12.7 M 50 282,287 -viniferin P. viticola (sporulation) ED50 : 70 M

Glucosylateddimers

Piceasides I-L ED50 : 96-147 M Development of downy mildew 290

Ampelopsin A ED50 : 934 M

Stilbene tetramers

Hopeaphenol ED50 : 18 M ED : 40 M Development of downy mildew 50 287 Vitisin A ED50 : 20 M

Vitisin B ED50 : 12 M Table S2 Metabolic engineering of stilbene pathways in yeast

Strain used for Incorporated genes Substrate Stilbenes produced References transformation 4CL from Populus Saccharomyces trichocarpa X Populus p-coumarate Resveratrol (1.45 μg/L) 394 cerevisiae FY23 deltoides, STS from Vitis vinifera 4CL from Nicotiana S.cerevisiae tabacum, STS from V. p-coumarate Resveratrol (5.8 mg/L) 395 CEN.PK113-3b vinifera TAL from Rhodobacter sphaeroides, 4CL::STS- S.cerevisiae 4CL from Arabidopsis p-coumarate Resveratrol (5.25 mg/L) 398 WAT11 thaliana and STS from V. vinifera TAL from Rhodotorula Yarrowia glutinis, 4CL from Tyrosine Resveratrol (1.46 mg/L) 408 lipolytica Streptomyces coelicolor, STS from V. vinifera PAL and CPR from P. S. cerevisiae trichocarpia x P. YPH499 deltoides, C4H and 4CL Phenylalanine Resveratrol (0.31 mg/L) 403 from Glycine max, STS from V. vinifera S. cerevisiae 4CL from A. thaliana, STS p-coumarate Resveratrol (391 mg/L) CEN.PK2–1 from V. vinifera 397 4CL from A. thaliana, STS S. cerevisiae from A. hypogea, ∆PAD1 p-coumarate Resveratrol (3.1 mg/L) 396 W303-1A in S. cerevisiae TAL from R. sphaeroides, S. cerevisiae 4CL::STS, 4CL from A. Tyrosine Resveratrol (3.1 mg/L) 406 WAT11 thaliana and STS from V. vinifera, araE from E. coli Table S2 Metabolic engineering of stilbene pathways in yeast (continued) 4CL::STS, 4CL from A. S. cerevisiae thaliana and STS from V. Tyrosine Resveratrol (14.4 mg/L) 402 WAT11 vinifera PAL from Rhodosporidium S. cerevisiae toruloides, C4H and 4CL Tyrosine Resveratrol (5.8 mg/L) 407 W303-1A from A. thaliana, STS from A. hypogea, ACC1 from S. cerevisiae TAL from Herpetosiphon aurianticus, 4CL from S. cerevisiae Arabidopsis thaliana and Glucose/ Resveratrol (415.65 with 386 CEN.PK102-5B STS from V. vinifera, Ethanol glucose/531.41 mg/L ScARO4K229L, ScARO7G141S, with ethanol) ACCS659A, S1157A PAL, C4H, ATR2 and 4CL from A. thaliana, STS from V. vinifera, ACS S. cerevisiae from Salmonella enterica, CEN.PK102-5B Resveratrol (800 mg/L) 387 AroL from E. coli, CYB5 Glucose (5.5 mg/L) from S. cerevisiae Pterostilbene SbROMT from Sorghum (34.93 mg/L) bicolor/VvROMT from V. vinifera, ∆ARO10 in S. cerevisiae Abbreviations used: PAL, phenylalanine ammonia lyase, TAL, tyrosine ammonia lyase, C4H, cinnamate-4-hydroxylase; 4CL, p-coumaroyl-CoA ligase; STS, stilbene synthase; ACC, acetyl-CoA carboxylase complex; ROMT, resveratrol-O- methyltransferase; ARO10, gene encoding the phenylpyruvate decarboxylase; ScARO4K229L and ScARO7G141S genes encoding feedback-inhibition resistant versions of DAHP synthase and chorismate mutase, respectively; araE, arabinose- H+-transporter; PAD1 gene encoding the phenyl acrylic acid decarboxylase; CPR, cytochrome P450 reductases; aroL, shikimate kinase 2.