Covid-19 Vaccine Development: an Example of Prototype Pathogen Preparedness

Total Page:16

File Type:pdf, Size:1020Kb

Covid-19 Vaccine Development: an Example of Prototype Pathogen Preparedness RAPID (AND PRECISE) COVID-19 VACCINE DEVELOPMENT: AN EXAMPLE OF PROTOTYPE PATHOGEN PREPAREDNESS “Humanity has but three great enemies: fever, famine, and war; of these by far the greatest, by far the most terrible, is fever.” Sir William Osler, M.D. 21st Annual Well Characterized Biological Products (WCBP) Conference January 25, 2021 Barney S. Graham, MD, PhD Deputy Director Vaccine Research Center, NIAID, NIH Zoonotic and Vector-borne Viral Threats • Hanta virus • Nipah/Hendra • West Nile virus • SARS • Influenza • Chikungunya • Ebola • MERS • Zika • EV-D68 • SARS-CoV-2 Public health burden of re-emerging & emerging viruses Traditional Approaches • Licensed vaccines/antibiotics Vaccine • Passive surveillance Challenges • Contact tracing • Quarantine • Vaccines for unmet needs • Emerging viruses • Improving licensed vaccines 3 Technology Advances Make New Vaccines Possible Viral Vaccines Major Conceptual and Technological Advances Structural analysis of Cell Molecular New technical antigenic sites on viral Discovery of immunity culture biology advances surface glycoproteins RSV? Structural biology SARS-CoV-216 Gene-based antigen delivery Isolation of human monoclonal HPV antibodies from single B cells Rotavirus 14 Rapid gene synthesis Varicella X Manufacturing Japanese 12 encephalitis Human mAb isolation Hepatitis A 10 High throughput Hepatitis B sequencing Rubella Single cell analysis 8 Mumps including B cell lineages Adenovirus Nanoparticle display Epitope-specific phenotyping Measles 6 Poliovirus Custom animal models Sequencing for viral diversity and escape mutations Influenza 4 …omics & glycobiology Yellow fever Cell Biology Rabies 2 Smallpox Imaging 0 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 Sequencing B cells to define clonal lineages; TCR & BCR-specific transcriptome 4 New Technologies Facilitate an Engineering Approach Vaccine New Challenges Technologies • Vaccines for • Structural biology unmet needs • Protein engineering • Emerging viruses • Single cell sorting and analysis • Improving • High throughput sequencing licensed vaccines • Rapid isolation of human mAbs • Antibody lineage analysis • Rapid diagnostic tools • Systems biology • Gene-based delivery • Rapid gene synthesis • Platform manufacturing 5 New Technologies are Transforming Vaccinology • Structure-based vaccine design Structural analysis of antigenic sites on viral • Single-cell sorting, sequencing, and bioinformatics surface glycoproteins – Rapid isolation of human mAbs Isolation of human monoclonal – Definition of antibody lineages antibodies from single B cells – Analysis of immune responses • Protein engineering of self-assembling nanoparticles • Rapid DNA synthesis • Recombinant DNA and genetic engineering technology Epitope-specific phenotyping – Rapid cell line development Sequencing for viral diversity and escape mutations – Animal model development • Nucleic acid and vector-based delivery of vaccine antigen Sequencing B cells to define clonal lineages; TCR & BCR-specific transcriptome 6 Viral Families that Infect Humans (with licensed vaccine) Family Prototype(s) Other Viruses of Concern Paramyxo Measles, Mumps Hendra virus, Cedar virus, PIV1–PIV3 Western equine encephalitis virus, Eastern equine encephalitis virus, Venezuelan equine Toga/alpha Rubella, Chikungunya encephalitis virus, Mayaro virus, Ross River virus, Barmah Forest virus, O’nyong’nyong virus, Semliki Forest virus, Getah virus, Sindbis virus Reo Rotavirus New rotaviruses, Banna virus, Nelson Bay orthoreoviruses Orthomyxo Influenza A, B Multiple subtypes of influenza A virus, Dhori virus, Thogoto virus, Bourbon virus Adeno Adenovirus 4, 7 Adenovirus 14 or 81 or other serotypes Rhabdo Rabies VSV Picorna Polio 1,2,3, Hepatitis A EV71, EV-D68, rhinoviruses, Ljungan virus Papilloma HPV 6, 11, 16, 18 Other HPV serotypes Pox Variola Monkeypox virus Hepadna Hepatitis B Herpes Varicella CMV, EBV, HSV-1, HSV-2, HHV-6, HHV-7, HHV-8 HCV, Zika virus, St. Louis encephalitis virus, West Nile virus, Powassan virus, Omsk hemorrhagic fever virus, Murray Valley encephalitis virus, Rocio encephalitis virus, Kyasanur forest virus, Yellow Fever, TBE, JEV, Flavi Alkhurma virus, Russian spring and summer encephalitis virus, Central European tick-borne Dengue encephalitis virus, Wesselsbron virus, Bussuquara virus, Cacipacore virus, Ilheus virus, Iguape virus, Usutu virus Hepe Hepatitis E Graham & Sullivan. Nature Immunology 2018 Viral Families that Infect Humans (no licensed vaccine) Family Prototype(s) Other Viruses of Concern Pneumo RSV, MPV Filo Ebola, Marburg Retro HIV-1 HTLV-1 Corona SARS, MERS SARS-like viruses in bats Parvo B19, Bocavirus Calici Norovirus Polyoma JC, BK SV40, Merkel cell virus Junin virus, Guanarito virus, Chapare virus, Sabia virus, Flexal virus, lymphocytic choriomeningitis virus, Arena Lassa, Machupo Lujo virus Crimean Congo hemorrhagic fever virus, California encephalitis virus, Batai virus, Bhanja virus, Bunyavirales Dobrava-Belgrade virus, Erve virus, Puumala virus, Seoul virus, Tahyna virus, severe fever with Hanta, Rift Valley Order thrombocytopenia syndrome virus, La Crosse encephalitis virus, Cache Valley virus, Jamestown Canyon virus, snowshoe hare virus, Heartland virus, Oropouche virus, Andes Astro Astrovirus Arteri Simian hemorrhagic fever virus (Not yet reported to infect humans) Graham & Sullivan. Nature Immunology 2018 Defining and prioritizing the tasks ~120 known viruses known to infect humans with potential for increasing human-to-human transmission and virulence ~30 distinct viral families and subfamilies known to infect humans 12 virus families without a representative vaccine WHO priorities – Lassa, Nipah, MERS/SARS CoV, Rift Valley fever, Crimean Congo Hemorrhagic fever, Zika, Ebola and Marburg, Pathogen X CEPI priorities – Lassa, Nipah, MERS-CoV Pandemic Preparedness Scientific Organization Class I Paramyxo Core Functions Class II Pneumo Core functions: Intramural Sequencing/synthesis Toga/Alpha Corona programs and extramural Protein production Flavi/hepatitis C Astro Structure/Antigen design Bunyavirales order contracts connected to Arena Antigen display/delivery intramural and extramural Retro Animal modeling Orthomyxo basic research laboratories Pathogenesis and organ- Filo specific immunology B cell biology/serology Viral Research Groups: T cell biology/flow cytometry Organized by viral fusion Single cell analysis Non-enveloped protein type; combined Class III and others Computational biology Picorna (EV-D68) resources of intramural and Herpes Bioinformatics Polyoma extramural investigators Pox Process development Papilloma Rhabdo Pilot manufacturing Calici Hepadna Phase I clinical trials Adeno (Arterivirus) Parvo Reo Hepe NIAID Vaccine Research Center Basic Research Process Development Nucleic acid Vectors VLPs • AIDS/HIV • Influenza Proteins and cGMP Manufacturing nanoparticles • Ebola/Marburg • RSV • Malaria Monoclonal antibodies • Tuberculosis • EID GLP Analysis • West Nile virus, Zika • Chikungunya • W/E/V equine encephalitis viruses • MERS-CoV, SARS, and other CoV • Nipah and other paramyxoviruses • EV-D68 and other picornaviruses Clinical Trials • Smallpox AS Fauci/NIAID Vaccine Development Strategies for Pandemic Preparedness • Platform Novel Vaccine Technologies Essential Components of an Adequate Response • Plug-and-play to Emerging Viral Diseases BS Graham, JR Mascola, AS Fauci • Priority-pathogen • Selected pathogens of concern • Prototype-pathogen • Systematic preparedness • All virus families of concern Structure of Prefusion RSV F Glycoprotein Prefusion Postfusion 15 Preserving Apical Epitopes Improves Immunogenicity ~2-fold ~14-fold Host Cell Post-F Vaccine Clinical Trial Pre-F Vaccine Clinical Trial (Hum Vacc & Immuno June 2019) (Science August 2019) Virus Class I Fusion Glycoproteins • Functional homology • Distinct shapes and topography • Shared motifs and domains Graham, Gilman, McLellan, Annual Review of Medicine 2019 17 Paramyxoviridae Phylogenetic Tree Paramyxovirus Surface Proteins Fusion Protein (F) Attachment Protein (G/HN/H) • Mediates viral entry • Viral tropism and host restriction • Trimeric type 1 transmembrane • Tetrameric structure – dimer of dimers • Transition from pre-F to post-F • Type 2 TM and may be shed “stalk” Post-F Pre-F Chang A., et al. Viruses. 2012. Stabilizing Paramyxovirus Pre-F Preserves NT- sensitive Epitopes and Improves Protein Expression S191P Measles L172F Proline (Pro) Cavity-filling (Cav) L104C I114C 488 Disulfide (DS) GCN4 (TD) Pre-F Hexameric G Pre-F/G Nipah Pre-F Mumps G head TD TD G3 G1 G2 Pre-F TD G TD G Pre-F TD G Guillaume Stewart-Jones, Rebecca Loomis et al. Frontiers Immunology 2020 Jun 11;11:842. doi: 10.3389/fimmu.2020.00842. 20 Coronavirus Origins and Phylogeny and Origins Coronavirus MERS-CoV Structure-guided Stabilization of HKU1 CoV Spike 2017 2016 PP Stabilized CoV Spike Protein Improve Expression Pallesen, J.*, Wang, N.*, Corbett, K.*, et. al. PNAS. 2017. 2P mutations effectively stabilize multiple CoV prefusion S Potentially Endemic Human CoVs Porcine CoV Emerging CoV EM ReconstructionPallesen, J.*, Wang, by Robert N.*, KirchdoerferCorbett, K.*, (Wardet. al. PNAS.lab | Scripps) 2017. MERS S-2P protects against mouse-adapted MERS CoV challenge in hDPP4 transgenic mice Week 0 1 2 3 4 5 6 7 25 Deadliest Pandemics in History COVID-19 caused by SARS-CoV-2 declared a pandemic by WHO on March 11, 2020 >2.1M Week of Jan 18, 2021 (Ongoing) SARS-CoV-2 Identified as cause of COVID-19 80 nm Camille Ehre. NEJM 2020; 383:969 Global COVID-19 Vaccine Landscape
Recommended publications
  • A Multicenter, Multi-Outbreak, Randomized, Controlled Safety And
    2018 Ebola MCM RCT Protocol Page 1 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 A Multicenter, Multi-Outbreak, Randomized, Controlled Safety and Efficacy Study of Investigational Therapeutics for the Treatment of Patients with Ebola Virus Disease Short Title: 2018 Ebola MCM RCT Protocol Sponsored by: Office of Clinical Research Policy and Regulatory Operations (OCRPRO) National Institute of Allergy and Infectious Diseases 5601 Fishers Lane Bethesda, MD 20892 NIH Protocol Number: 19-I-0003 Protocol IND #: 125530 ClinicalTrials.gov Number: NCT03719586 Date: 4 October 2019 Version: 7.0 CONFIDENTIAL This document is confidential. No part of it may be transmitted, reproduced, published, or used by other persons without prior written authorization from the study sponsor and principal investigator. 2018 Ebola MCM RCT Protocol Page 2 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 KEY ROLES DRC Principal Investigator: Jean-Jacques Muyembe-Tamfum, MD, PhD Director-General, DRC National Institute for Biomedical Research Professor of Microbiology, Kinshasa University Medical School Kinshasa Gombe Democratic Republic of the Congo Phone: +243 898949289 Email: [email protected] Other International Investigators: see Appendix E Statistical Lead: Lori Dodd, PhD Biostatistics Research Branch, DCR, NIAID 5601 Fishers Lane, Room 4C31 Rockville, MD 20852 Phone: 240-669-5247 Email: [email protected] U.S. Principal Investigator: Richard T. Davey, Jr., MD Clinical Research Section, LIR, NIAID, NIH Building 10, Room 4-1479, Bethesda,
    [Show full text]
  • Mosquitoes in DENGUE MOSQUITOES the World? ARE MOST ACTIVE DURING BO the DAY AROUND a U S T YOUR YARD T SALTMARSH MOSQUITOES C ARE MOST a ACTIVE at DUSK
    Mosquito awareness Did you know... Mosquito species there are 3500 vary in their species of biting behaviour mosquitoes in DENGUE MOSQUITOES the world? ARE MOST ACTIVE DURING BO THE DAY AROUND A U S T YOUR YARD T SALTMARSH MOSQUITOES C ARE MOST A ACTIVE AT DUSK AND DAWN F Council conducts 300 SPECIES IN AUSTRALIA mosquito control 40 SPECIES IN TOWNSVILLE World's COUNCIL CONDUCTS deadliest MOSQUITO CONTROL ON MOSQUITOES PUBLIC LAND, USING BOTH animals GROUND AND AERIAL TREATMENTS TO TARGET NUMBER OF PEOPLE MOSQUITO LARVAE. KILLED BY ANIMALS PER YEAR Mosquitoes wings beat 300-600 times per second Mosquitoes Mosquitoes can carry are attracted many diseases. to humans FROM THE ODOURS AND CARBON DIOXIDE WE EXPIRE FROM BREATHING Protect yourself OR SWEATING. townsville.qld.gov.au and your family Mosquitoes distance of travel 13 48 10 from mosquito bites from breeding point by using personal DENGUE MOSQUITO SALTMARSH MOSQUITO protection. 200M 50KM BREEDING PLACE Mosquito Mosquito Mosquito life cycle disease prevention A mosquito is an insect characterised by Protect yourself Did you know... Dengue. 1. Three body parts against disease-carrying Townsville City Do your weekly a. Head mosquitoes Council undertakes yard check. b. Thorax c. Abdomen reactive inspection ARE YOU MAKING DENGUE Mosquito borne How do of properties within MOSSIES WELCOME 2. A proboscis (for AROUND YOUR HOME? piercing and sucking) diseases found in mosquitoes the Townsville local TAKE RESPONSIBILITY TO 3. One pair of antennae Townsville include transmit government area PROTECT YOURSELF AND 4. One pair of wings YOUR FAMILY BY CHECKING Ross River virus diseases? based on customer YOUR YARD FOR ANYTHING 5.
    [Show full text]
  • California Encephalitis Orthobunyaviruses in Northern Europe
    California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available
    [Show full text]
  • Chorioméningite Lymphocytaire, Tuberculose, Échinococcose…
    LES ZOONOSES INFECTIEUSES Juin 2021 Ce document vous est offert par Boehringer Ingelheim Ce fascicule fait partie de l’ensemble des documents polycopiés rédigés de manière concertée par des enseignants de maladies contagieuses des quatre Ecoles nationales vétérinaires françaises, à l’usage des étudiants vétérinaires. Sa rédaction et sa mise à jour régulière ont été sous la responsabilité de B. Toma jusqu’en 2006, avec la contribution, pour les mises à jour, de : G. André-Fontaine, M. Artois, J.C. Augustin, S. Bastian, J.J. Bénet, O. Cerf, B. Dufour, M. Eloit, N. Haddad, A. Lacheretz, D.P. Picavet, M. Prave La mise à jour est réalisée depuis 2007 par N. Haddad La citation bibliographique de ce fascicule doit être faite de la manière suivante : Haddad N. et al. Les zoonoses infectieuses, Polycopié des Unités de maladies réglementées des Ecoles vétérinaires françaises, Boehringer Ingelheim (Lyon), juin 2021, 217 p. Nous remercions Boehringer Ingelheim qui, depuis de nombreuses années, finance et assure la réalisation de ce polycopié. * 1 2 OBJECTIFS D’APPRENTISSAGE Rang A (libellé souligné) et rang B A l’issue de cet enseignement, les étudiants devront être capables : • de répondre à des questions posées par une personne (propriétaire d'animaux, médecin...) relatives à la nature des principales maladies bactériennes et virales transmissibles à l'Homme lors de morsure par un carnivore . • de répondre à des questions posées par une personne (propriétaire d'animaux, médecin...) relatives à l'évolution de la maladie chez l'Homme, les modalités de la transmission et de la prévention des principales maladies bactériennes et virales transmissibles à l'Homme à partir des carnivores domestiques et les grandes lignes de leur prophylaxie.
    [Show full text]
  • Heartland and Bourbon Virus Testing Guideance for Healthcare Providers
    Heartland and Bourbon Virus Testing Guidance for Healthcare Providers Heartland virus is an RNA virus believed to be transmitted by the Lone Star tick (Amblyomma americanum). Most patients reported tick exposure in the two weeks prior to illness onset. While no cases have been reported in Louisiana, this tick is found in Louisiana. First discovered as a cause of human illness in 2009 in Missouri, more than 40 cases have been reported from states in Midwestern and southern U.S. to date. Initial symptoms of Heartland virus disease are very similar to those of ehrlichiosis or anaplasmosis, which include fever, fatigue, anorexia, nausea and diarrhea. Cases have also had leukopenia, thrombocytopenia, and mild to moderate elevation of liver transaminases. Heartland virus disease should be considered in patients being treated for ehrlichiosis who do not respond to treatment with doxycycline. For several years, CDC has been working under IRB-approved protocols to identify additional cases and validate diagnostic test for several novel pathogens. Now the CDC Arboviral Diseases Branch offers routine diagnostic testing for Heartland and Bourbon viruses (RT-PCR, IgM and IgG MIA, PRNT). There is no commercial testing available. Treatment of Heartland virus disease is supportive only. Many patients diagnosed with the disease have required hospitalization. With supportive care, most people have fully recovered; however, a few older individuals with medical comorbidities have died. The best way to prevent Heartland virus infection is to avoid exposure
    [Show full text]
  • A Zika Virus Envelope Mutation Preceding the 2015 Epidemic Enhances Virulence and Fitness for Transmission
    A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission Chao Shana,b,1,2, Hongjie Xiaa,1, Sherry L. Hallerc,d,e, Sasha R. Azarc,d,e, Yang Liua, Jianying Liuc,d, Antonio E. Muruatoc, Rubing Chenc,d,e,f, Shannan L. Rossic,d,f, Maki Wakamiyaa, Nikos Vasilakisd,f,g,h,i, Rongjuan Peib, Camila R. Fontes-Garfiasa, Sanjay Kumar Singhj, Xuping Xiea, Scott C. Weaverc,d,e,k,l,2, and Pei-Yong Shia,d,e,k,l,2 aDepartment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555; bState Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; cDepartment of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; dInstitute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555; eInstitute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555; fDepartment of Pathology, University of Texas Medical Branch, Galveston, TX 77555; gWorld Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555; hCenter for Biodefence and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555; iCenter for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555; jDepartment of Neurosurgery-Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; kSealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555; and lSealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved July 2, 2020 (received for review March 26, 2020) Arboviruses maintain high mutation rates due to lack of proof- recently been shown to orchestrate flavivirus assembly through reading ability of their viral polymerases, in some cases facilitating recruiting structural proteins and viral RNA (8, 9).
    [Show full text]
  • T. Franklin Williams Scholars Program
    Developing a New Generation of Medical Subspecialists with Expertise in Aging and Care of the Elderly T. Franklin Williams Scholars Program Report to T. Franklin Williams Scholars Program Evaluation Team ASP Geriatrics Steering Committee Integrating Geriatrics Project Evaluation Team May 2011 Submitted by: Erika D. Tarver Project Administrator Association of Specialty Professors 330 John Carlyle Road Suite 610 Alexandria, VA 22314 T: (703) 341-4540 F: (703) 519-1890 [email protected] Kevin P. High, MD Principal Investigator William R. Hazzard, MD Co-Principal Investigator Table of Contents Narrative Progress Report Application and Award Progress Summary of Success of T. Williams Scholars Program Appendices A. 2008 Scholars 24-Month Progress Reports Neena S. Abraham, MD (Note: This is Dr. Abraham’s final report) Steven G. Coca, DO Jeffrey G. Horowitz, MD Danelle F. James, MD Heidi Klepin, MD George C. Wang, MD 2009 Williams Scholars Progress Reports and Summary of 18-Month Questionnaire B. Peter Abadir, MD 12-month Progress Report C. Kathleen M. Akgun, MD 12-Month Progress Report Publication D. Alison Huang, MD 12-Month Progress Report Publication E. Eswar Krishnan, MD 12-Month Progress Report Publication F. Rohit Loomba, MD Publication G. Sharmilee Nyenhuis, MD 12-Month Progress Report Publication H. Peter P. Reese, MD 12-Month Progress Report Publication I. Erik B. Schelbert, MD 12-Month Progress Report Publication J. Helen Keipp Talbot, MD 12-Month Progress Report Publication K. Summary of 18-Month Questionnaire 2010 Williams Scholars Mentor Interviews and Summary of Six-Month Questionnaire L. Kellie Hunter-Campbell, MD Six-Month Mentor Interview M.
    [Show full text]
  • Diapositiva 1
    Simultaneous outbreak of Dengue and Chikungunya in Al Hodayda, Yemen (epidemiological and phylogenetic findings) Giovanni Rezza1, Gamal El-Sawaf2, Giovanni Faggioni3, Fenicia Vescio1, Ranya Al Ameri4, Riccardo De Santis3, Ghada Helaly2, Alice Pomponi3, Alessandra Lo Presti1, Dalia Metwally2, Massimo Fantini5, FV, Hussein Qadi4, Massimo Ciccozzi1, Florigio Lista3 1Department of lnfectious, Parasitic and lmmunomediated Diseases, Istituto Superiore di Sanità, Roma, Italy; 2 Medical Research lnstitute- Alexandria University, Egypt; 3Histology and Molecular Biology Section, Army Medical an d Veterinary Research Center, Roma, ltaly; 4 University of Sana’a, Republic of Yemen; 5Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Roma, ltaly * * Background Fig.1 * * Yemen, which is located in the southwestern end of the Arabian Peninsula, is one of the * countries most affected by recurrent epidemics of dengue. * I We conducted a study on individuals hospitalized with dengue-like syndrome in Al Hodayda, with the aim of identifying viral agents responsible of febrile illness (i.e., dengue [DENV], chikungunya [CHIKV], Rift Valley [RVFV] and hemorrhagic fever virus Alkhurma). * * * Methods * The study site was represented by five hospital centers located in Al-Hodayda, United Republic * of Yemen. Patients were recruited in 2011 and 2012. Serum samples were analysed by ELISA * for the presence of IgM antibody against DENV and CHIKV by using commercial assays. Nucleic * acids were extracted by automated method and analyzed by using specific PCR for the Fig. 2 presence of sequences of DENV, RVF virus, Alkhurma virus and CHIKV. To confirm the results, 15 DENV positive sera underwent specific NS1 gene amplification and sequencing reaction. Similarly, CHIKV positive sera were thoroughly investigated by amplification and sequencing Conclusions the gene encoding the E1 protein.
    [Show full text]
  • Generic Amplification and Next Generation Sequencing Reveal
    Dinçer et al. Parasites & Vectors (2017) 10:335 DOI 10.1186/s13071-017-2279-1 RESEARCH Open Access Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey Ender Dinçer1†, Annika Brinkmann2†, Olcay Hekimoğlu3, Sabri Hacıoğlu4, Katalin Földes4, Zeynep Karapınar5, Pelin Fatoş Polat6, Bekir Oğuz5, Özlem Orunç Kılınç7, Peter Hagedorn2, Nurdan Özer3, Aykut Özkul4, Andreas Nitsche2 and Koray Ergünay2,8* Abstract Background: Ticks are involved with the transmission of several viruses with significant health impact. As incidences of tick-borne viral infections are rising, several novel and divergent tick- associated viruses have recently been documented to exist and circulate worldwide. This study was performed as a cross-sectional screening for all major tick-borne viruses in several regions in Turkey. Next generation sequencing (NGS) was employed for virus genome characterization. Ticks were collected at 43 locations in 14 provinces across the Aegean, Thrace, Mediterranean, Black Sea, central, southern and eastern regions of Anatolia during 2014–2016. Following morphological identification, ticks were pooled and analysed via generic nucleic acid amplification of the viruses belonging to the genera Flavivirus, Nairovirus and Phlebovirus of the families Flaviviridae and Bunyaviridae, followed by sequencing and NGS in selected specimens. Results: A total of 814 specimens, comprising 13 tick species, were collected and evaluated in 187 pools. Nairovirus and phlebovirus assays were positive in 6 (3.2%) and 48 (25.6%) pools. All nairovirus sequences were closely-related to the Crimean-Congo hemorrhagic fever virus (CCHFV) strain AP92 and formed a phylogenetically distinct cluster among related strains.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Following Acute Encephalitis, Semliki Forest Virus Is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA C
    viruses Article Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life Rennos Fragkoudis 1,2, Catherine M. Dixon-Ballany 1, Adrian K. Zagrajek 1, Lukasz Kedzierski 3 and John K. Fazakerley 1,3,* ID 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK; [email protected] (R.F.); [email protected] (C.M.D.-B.); [email protected] (A.K.Z.) 2 The School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK 3 Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences at The Peter Doherty Institute for Infection and Immunity and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, 792 Elizabeth Street, Melbourne 3000, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-3-9731-2281 Received: 25 April 2018; Accepted: 17 May 2018; Published: 18 May 2018 Abstract: Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain.
    [Show full text]
  • Journal Pre-Proof
    Journal Pre-proof Neutralizing monoclonal antibodies for COVID-19 treatment and prevention Juan P. Jaworski PII: S2319-4170(20)30209-2 DOI: https://doi.org/10.1016/j.bj.2020.11.011 Reference: BJ 374 To appear in: Biomedical Journal Received Date: 2 September 2020 Revised Date: 6 November 2020 Accepted Date: 22 November 2020 Please cite this article as: Jaworski JP, Neutralizing monoclonal antibodies for COVID-19 treatment and prevention, Biomedical Journal, https://doi.org/10.1016/j.bj.2020.11.011. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Chang Gung University. Publishing services by Elsevier B.V. TITLE: Neutralizing monoclonal antibodies for COVID-19 treatment and prevention Juan P. JAWORSKI Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina KEYWORDS: SARS-CoV-2, Coronavirus, Monoclonal Antibody, mAb, Prophylaxis, Treatment CORRESPONDING AUTHOR: Dr. Juan Pablo Jaworski, DVM, MSc, PhD. Consejo Nacional de Investigaciones Científicas y Técnicas Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria Las Cabañas y de los Reseros (S/N), Hurlingham (1686), Buenos Aires, Argentina Tel / Fax: 054-11-4621-1447 (int:3400) [email protected] ABSTRACT The SARS-CoV-2 pandemic has caused unprecedented global health and economic crises.
    [Show full text]