Proceedings of Spie

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of Spie FIREBall-2: advancing TRL while doing proof- of-concept astrophysics on a suborbital platform Item Type Article Authors Hamden, Erika T.; Hoadley, Keri; Martin, Christopher; Schiminovich, David; Milliard, Bruno; Nikzad, Shouleh; Augustin, Ramona; Balard, Philippe; Blanchard, Patrick; Bray, Nicolas; Crabill, Marty; Evrard, Jean; Gomes, Albert; Grange, Robert; Gross, Julia; Jewell, April D.; Kyne, Gillian; Lemon, Michele; Lingner, Nicole; Matuszewski, Matt; Melso, Nicole; Mirc, Frédéri; Montel, Johan; Ong, Hwei Ru; O'Sullivan, Donal; Pascal, Sandrine; Pérot, Etienne; Picouet, Vincent; Saccoccio, Muriel; Smiley, Brian; Soors, Xavier; Tapie, Pierre; Vibert, Didier; Zenone, Isabelle; Zorilla, Jose Citation Hamden, E. T., Hoadley, K., Martin, D. C., Schiminovich, D., Milliard, B., Nikzad, S., ... & Crabill, M. (2019, May). FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform. In Micro-and Nanotechnology Sensors, Systems, and Applications XI (Vol. 10982, p. 1098220). International Society for Optics and Photonics. DOI 10.1117/12.2518711 Publisher SPIE-INT SOC OPTICAL ENGINEERING Journal MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS XI Rights © 2019 SPIE. Download date 26/09/2021 12:47:53 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/634782 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform Erika T. Hamden, Keri Hoadley, D. Christopher Martin, David Schiminovich, Bruno Milliard, et al. Erika T. Hamden, Keri Hoadley, D. Christopher Martin, David Schiminovich, Bruno Milliard, Shouleh Nikzad, Ramona Augustin, Philippe Balard, Patrick Blanchard, Nicolas Bray, Marty Crabill, Jean Evrard, Albert Gomes, Robert Grange, Julia Gross, April Jewell, Gillian Kyne, Michele Limon, Nicole Lingner, Mateusz Matuszewski, Nicole Melso, Frédéri Mirc, Johan Montel, Hwei Ru Ong, Donal O'Sullivan, Sandrine Pascal, Etienne Perot, Vincent Picouet, Muriel Saccoccio, Brian Smiley, Xavier Soors, Pierre Tapie, Didier Vibert, Isabelle Zenone, Jose Zorrilla, "FIREBall-2: advancing TRL while doing proof- of-concept astrophysics on a suborbital platform," Proc. SPIE 10982, Micro- and Nanotechnology Sensors, Systems, and Applications XI, 1098220 (13 May 2019); doi: 10.1117/12.2518711 Event: SPIE Defense + Commercial Sensing, 2019, Baltimore, Maryland, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Oct 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Invited Paper FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform a b b c Erika T. Hamden , Keri Hoadley , D. Christopher Martin , David Schiminovich , Bruno d e d d d Milliard , Shouleh Nikzad , Ramona Augustin , Philippe Balard , Patrick Blanchard , Nicolas f b f f d c Bray , Marty Crabill , Jean Evrard , Albert Gomes , Robert Grange , Julia Gross , April e b,e c b b Jewell , Gillian Kyne , Michele Limon , Nicole Lingner , Mateusz Matuszewski , Nicole c f f c b d Melso , Frederi Mirc , Johan Montel , Hwei Ru Ong , Donal O'Sullivan , Sandrine Pascal , f d f c f Etienne Perot , Vincent Picouet , Muriel Saccoccio , Brian Smiley , Xavier Soors , Pierre f d f c Tapie , Didier Vibert , Isabelle Zenone , and Jose Zorrilla a University of Arizona, Steward Observatory, 933 N Cherry Ave, Tucson, AZ 85721, USA b California Institute of Technology, Division of Physics, Math, and Astronomy, 1200 E California Blvd, MC 278-17, Pasadena, CA 91105, USA c Columbia University, 550 W 120th St, New York, NY 10027, USA d Laboratoire d'Astrophysique de Marseille, 38 Rue Frdric Joliot Curie, 13013 Marseille, France e NASA's Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA f Centre national d'´etudes spatiales, 18 Avenue Edouard Belin, 31400 Toulouse, France ABSTRACT Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi- object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas. Keywords: UV detectors, CGM, Galaxy Evolution, TRL Advancement, Scientific Ballooning 1. INTRODUCTION The development of new detector technology is a key component of NASA's mission to advance our understanding of the universe around us. New advances in technology are always the precursors to discovery. Typically, NASA funds astrophysics technology development through the Astrophysics Research and Analysis (APRA) and Strategic Astrophysics Technology (SAT) programs, which are designed to take technology concepts from a low technology readiness level (TRL), up to a TRL of 6, at which point the technology can be included in proposals for space missions and are considered relatively low risk. In addition to funding technology development, NASA funds sub-orbital science investigations under APRA, either using sounding rockets or balloon flights to provide access to a near-space environment. These sub-orbital science investigations are typically seen as both interesting in their own right, but also as pathfinders for future space missions. The ability to increase a technology's TRL is just as important as the science goals of the missions. Because of the low cost of the sub-orbital program, riskier science can also be tested out. Additionally, Further author information: (Send correspondence to E.T.Hamden) E.T.Hamden: E-mail: [email protected] Micro- and Nanotechnology Sensors, Systems, and Applications XI, edited by Thomas George, M. Saif Islam, Proc. of SPIE Vol. 10982, 1098220 · © 2019 SPIE CCC code: 0277-786X/19/$18 · doi: 10.1117/12.2518711 Proc. of SPIE Vol. 10982 1098220-1 Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Oct 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use these programs are not required to follow the more standard NASA management/risk mitigation program of a higher cost/profile mission, and so offer an opportunity for student and post-doc training that is not possible for Class-D or higher mission profiles. The ability to try out risky, interesting science, to test new technology, and to train future PIs is unique in NASA's portfolio. The sub-orbital program is a crucial, but under-appreciated, gem of NASA. Funded via the APRA program, the Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall), is a perfect example of the benefits of building a sub-orbital program. The science is at the forefront of modern extra-galactic astronomy. The experiment has provided one for the first test flights of an important UV detector technology. The program as a whole has trained over 10 graduate students, with several becoming PIs in their own right. FIREBall is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3<z<1.0). This payload is a upgrade of FIREBall-11 (FB-1), a path-finding mission built by our team with two successful flights (2007 Engineering, 2009 Science). FB-1 provided the strongest constrains on intergalactic and circumgalactic (IGM, CGM) emission available from any instrument at the time.2 FIREBall-2 significantly upgraded the spectrograph to increase the field of view, the number of targets observed, and most importantly, the overall system efficiency. The key component of FIREBall-2 was the use of a UV optimized, delta-doped, anti-reflection coated, electron multiplying CCD detector (EMCCDs), which has eight times better throughput that the FB-1 detector (a GALEX spare near-UV microchannel plate). FIREBall-2 had its first flight in the fall of 2018 from Fort Sumner, NM and acted as a pathfinder and test-bed for this new UV detector technology. 1.1 FIREBall Science Goals The IGM is a fundamental element of our universe, as essential to our conception of the cosmos as stars and galaxies. The IGM delineates the large-scale structure of the universe and the majority of baryons at both high and low redshift reside here. It is the original source of fuel for star formation and is, in turn, altered by feedback from supernovae and galactic activity. Observing and understanding the IGM and its many parts are essential to our understanding of the universe as a whole. Yet for such a key part of galactic evolution, we know surprisingly little about the IGM, either within galactic halos as the CGM or part of the large-scale cosmic web. Historically, observations of any parts of the IGM, even the brighter CGM material in-flowing into galaxies, were impossible to conduct given the low luminosity. Absorption line studies of the Ly-α forest are the only way we are certain it even exists in the low-redshift universe.3{5 Observations of the brightest components of the IGM are at the very forefront of modern astronomy, requiring better technology, better analysis, and better observing techniques. Improved detectors, higher throughput optics, and state of the art instruments are right now opening a new field of IGM astronomy at high redshifts, where Ly-α is observable at visible wavelengths, as recent results from the Palomar and Keck Cosmic Web Imagers (PCWI & KCWI6{9) and Multi Unit Spectroscopic Explorer (MUSE10{12) attest. 1.2 UV detector technology The history of UV astrophysics has been one of technology limitations.
Recommended publications
  • NASA Program & Budget Update
    NASA Update AAAC Meeting | June 15, 2020 Paul Hertz Director, Astrophysics Division Science Mission Directorate @PHertzNASA Outline • Celebrate Accomplishments § Science Highlights § Mission Milestones • Committed to Improving § Inspiring Future Leaders, Fellowships § R&A Initiative: Dual Anonymous Peer Review • Research Program Update § Research & Analysis § ROSES-2020 Updates, including COVID-19 impacts • Missions Program Update § COVID-19 impact § Operating Missions § Webb, Roman, Explorers • Planning for the Future § FY21 Budget Request § Project Artemis § Creating the Future 2 NASA Astrophysics Celebrate Accomplishments 3 SCIENCE Exoplanet Apparently Disappears HIGHLIGHT in the Latest Hubble Observations Released: April 20, 2020 • What do astronomers do when a planet they are studying suddenly seems to disappear from sight? o A team of researchers believe a full-grown planet never existed in the first place. o The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. • Instead, researchers concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. • Hubble came along too late to witness the suspected collision, but may have captured its aftermath. o This happened in 2008, when astronomers announced that Hubble took its first image of a planet orbiting another star. Caption o The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. • Unlike other directly imaged exoplanets, however, nagging Credit: NASA, ESA, and A. Gáspár and G. Rieke (University of Arizona) puzzles arose with Fomalhaut b early on. Caption: This diagram simulates what astronomers, studying Hubble Space o The object was unusually bright in visible light, but did not Telescope observations, taken over several years, consider evidence for the have any detectable infrared heat signature.
    [Show full text]
  • Fireball-2: Advancing TRL While Doing Proof-Of-Concept Astrophysics on a Suborbital Platform
    FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform Erika T. Hamdena, Keri Hoadleyb, D. Christopher Martinb, David Schiminovichc, Bruno Milliardd, Shouleh Nikzade, Ramona Augustind, Philippe Balardd, Patrick Blanchardd, Nicolas Brayf, Marty Crabillb, Jean Evrardf, Albert Gomesf, Robert Granged, Julia Grossc, April Jewelle, Gillian Kyneb,e, Michele Limong, Nicole Lingnerb, Mateusz Matuszewskib, Nicole Melsoc, Frederi Mircf, Johan Montelf, Hwei Ru Ongc, Donal O'Sullivanb, Sandrine Pascald, Etienne Perotf, Vincent Picouetd, Muriel Saccocciof, Brian Smileyc, Xavier Soorsf, Pierre Tapief, Didier Vibertd, Isabelle Zenonef, and Jose Zorillac aUniversity of Arizona, Steward Observatory, 933 N Cherry Ave, Tucson, AZ 85721, USA bCalifornia Institute of Technology, Division of Physics, Math, and Astronomy, 1200 E California Blvd, MC 278-17, Pasadena, CA 91105, USA cColumbia University, 550 W 120th St, New York, NY 10027, USA dLaboratoire d'Astrophysique de Marseille, 38 Rue Frdric Joliot Curie, 13013 Marseille, France eNASA's Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA fCentre national d'´etudesspatiales, 18 Avenue Edouard Belin, 31400 Toulouse, France gDepartment of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA ABSTRACT Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo.
    [Show full text]
  • Extracting Cosmological Information from Small Scales in Weak Gravitational Lensing Data
    Extracting cosmological information from small scales in weak gravitational lensing data José Manuel Zorrilla Matilla Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 José Manuel Zorrilla Matilla All Rights Reserved Abstract Extracting cosmological information from small scales in weak gravitational lensing data José Manuel Zorrilla Matilla This work is concerned with how to extract information encoded in small scales of non-Gaussian fields, with the purpose of learning about cosmology using weak gravitational lensing. We do so by comparing different methods on simulated data sets. The topic is relevant, for upcoming galaxy surveys will map the late evolution of the matter density field, which is non-Gaussian, with an unprecedented level of detail, and any improvement on the analysis techniques will increase the experiments’ scientific return. First, we investigate some non-Gaussian observables used in the weak lensing community. We analyze to what extent they are sensitive to the background expansion of the universe, and to what extent to the evolution of the structures responsible for the lensing. We then focus our attention on one such statistic, lensing peaks, and assess the performance of a simple halo-based model that has been proposed to forecast their abundance. We find some shortcomings of that semi-analytic approach, and proceed to review some minimal requirements for numerical simulations used to forecast non-Gaussian statistics, to reduce their computational cost while fulfilling the accuracy and precision required by future experiments. Second, we propose a novel measurement, that of the temperature dipole induced on the cosmic microwave background induced by the rotation of ionized gas around galaxies, as an additional observation to help constrain the distribution of baryonic matter on the smallest scales probed by WL experiments.
    [Show full text]
  • 100 Mm) Photon-Counting UV Detectors”
    This year’s cover celebrates the Hubble Space Telescope, showing its 25th-anniversary deep-sky image reflected in a conceptual large-aperture segmented telescope primary mirror. Nine Cosmic Origins Strategic Astrophysics Technology (SAT) project images are set on the faces of three cubes, symbolizing how technological developments serve as building blocks for future missions that will continue to expand our understanding of how the universe came to be. Cosmic Origins Program Annual Technology Report Table of Contents Executive Summary . 4 1 . Science Overview . 6 2 . Strategic Technology Development Process and Portfolio . 9 3 . Technology Gaps . 14 4 . Technology Priorities and Recommendations . 41 5 . Benefits and Successes Enabled by the COR SAT Program . 44 6 . Closing Remarks . 48 References . 49 Appendix A – Technology Development Quad Charts. 50 Appendix B – Technology Development Status . 59 Appendix C – Training the Future Astrophysics Workforce . 140 Appendix D – Acronyms . 146 http://cor.gsfc.nasa.gov 3 Cosmic Origins Program Annual Technology Report COR 2015 PATR Executive Summary What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question . Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time . COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life – starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars .
    [Show full text]
  • Astro2020 Science White Paper Understanding Exoplanet
    Astro2020 Science White Paper Understanding Exoplanet Atmospheres with UV Observations I: NUV and Blue/Optical Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Jessie Christiansen Institution: Caltech/IPAC-NExScI Email: [email protected] Phone: (626) 720-9649 Co-authors: Thomas Barclay (GSFC/U. Maryland), Luca Fossati (OeAW), Kevin France (U. Colorado), Eric Lopez (GSFC), Jason Rowe (Bishop’s University), Joshua Schlieder (GSFC), Hannah Wakeford (STScI), Allison Youngblood (GSFC) Co-signers: Karan Molaverdikhani (MPIA/Heidelberg Univ.), Diana Dragomir (MIT/UNM), Vincent Bourrier (Observatory of Geneva, U. Geneva), Kerri Cahoy (MIT), Chuanfei Dong (Princeton University), Shawn Domagal-Goldman (NASA GSFC), Giada Arney (NASA GSFC), David Ardila (Jet Propulsion Laboratory), Evgenya Shkolnik (Arizona State University), Erika Hamden (University of Arizona), Roxana Lupu (BAER Institute / NASA Ames), Kevin Hardegree-Ullman (Caltech/IPAC-NExScI), Douglas Caldwell (SETI Institute), Knicole D. Colon´ (NASA GSFC), Courtney D. Dressing (University of California, Berkeley), Jasmina Blecic (New York University Abu Dhabi), Henry Ngo (National Research Council Canada), Daniel Angerhausen (Bern Unisersity), Alain Lecavelier des Etangs (Institut d’astrophysique de Paris, CNRS, France), Kathleen Mandt (Johns Hopkins University Applied Physics Laboratory), Seth Redfield (Wesleyan University), Jonathan Fortney (USCS), Dawn Gelino (Caltech/IPAC-NExScI), David R. Ciardi (Caltech/IPAC-NExScI), Jake D. Turner (Cornell University) Abstract: Much of the focus of exoplanet atmosphere analysis in the coming decade will be at infrared wavelengths, with the planned launches of the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope (WFIRST).
    [Show full text]
  • Using Hydrodynamic Simulations to Understand the Structure and Composition of the Circumgalactic Medium of Milky Way-Sized Galaxies
    Using Hydrodynamic Simulations to Understand the Structure and Composition of the Circumgalactic Medium of Milky Way-sized Galaxies Munier Azzam Salem Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 c 2015 Munier Salem All rights reserved ABSTRACT Using Hydrodynamic Simulations to Understand the Structure and Composition of the Circumgalactic Medium of Milky Way-sized Galaxies Munier Salem We explore the structure and evolution of baryons within Milky Way-sized halos (M 1012M ) via hydrodynamic simulations. First, we employ a two-fluid model to ∼ study the dynamics of a relativistic, diffusive cosmic ray proton (CR) fluid interacting with the thermal interstellar medium (ISM). This model was implemented into the eulerian hydrodynamics code enzo, used throughout this dissertation. After testing this model on analytically tractable scenarios in one dimension, it is unleashed upon an idealized disk simulation in a rapidly-star forming setting, where we find evidence for robust, mass-loaded winds driven by the diffusive CR fluid. These winds reduce the galaxy’s star formation rate (SFR) and circulate on order as much mass into winds as into forming stars. We then extend this model to a cosmological setting where the diffuse CR fluid proves capable of redistributing star formation within the forming disk, reducing the overly-peaked rotation curves in non-CR runs and producing thin, extended disks with visible spiral structure. From these same runs, we then explore the effect of CRs on the circumgalactic medium (CGM) within the halo, comparing our results to observed metal column lines from L L∗ galaxies and gamma-ray emission observed by Fermi LAT.
    [Show full text]
  • Ground Based, Space Based, Infrastructure, Technological Development, and State of the Profession Activities
    Ground Based, Space Based, Infrastructure, Technological Development, and State of the Profession Activities Ground Based, Space Based, Technological Development, and State of the Profession Activities Ground Based, Space Based, and Technological Development Activities Ground Based and Space Based Activities Ground Based, Infrastructure, Technological Development, and State of the Profession Activities Ground Based, Infrastructure, Technological Development, State of the Profession, and Other Activities Ground Based, Infrastructure, and Technological Development Activities Ground Based, Infrastructure, and State of the Profession Activities Ground Based and Infrastructure Activities Ground Based, Technological Development, and State of the Profession Activities Ground Based and Technological Development Activities Ground Based Projects Space Based, Infrastructure, Technological Development, and State of the Profession Activities Space Based, Infrastructure, Technological Development Activities Space Based and Infrastructure Activities Space Based, Technological Development, and State of the Profession Activities Space Based and Technological Development Activities Space Based and State of the Profession Activities Space Based Projects Infrastructure, Technological Development, and State of the Profession Activities Infrastructure, Technological Development, and Other Activities Infrastructure and Technological Development Activities Infrastructure, State of the Profession, and Other Activities Infrastructure and State of the Profession
    [Show full text]
  • Erika T. Hamden
    Erika T. Hamden University of Arizona office: 520-621-9524 Steward Observatory [email protected] 933 N Cherry Ave http://ehamden.org Tucson, AZ 85719 USA EDUCATION Columbia University, New York, NY Ph.D., Astronomy, July 2014 Thesis: FIREBall, CHαS, and the diffuse universe Advisor: David Schiminovich M.Phil, Astronomy, 2010 M.A., Astronomy, 2009 Harvard College, Cambridge, MA A.B., Astronomy & Astrophysics, June 2006 Cum Laude with High Honors Thesis: A Radial Velocity Survey of the Orion Nebula Cluster using Hectochelle Advisor: Andy Szentgyorgyi APPOINTMENTS Assistant Professor, University of Arizona, 2018 - Present Postdoctoral Fellow, California Institute of Technology, 2014 - 2018 R.A. & G.B. Millikan Prize Postdoctoral Fellowship in Experimental Physics, 2017-2018 NSF Astronomy and Astrophysics Postdoctoral Fellowship, 2014-2017 Faculty Sponsor: D. Christopher Martin RESEARCH INTERESTS Observational astronomy, UV optics and detector technology, Galactic molecular clouds, star forma- tion, the interstellar, intergalactic and circumgalactic media, galactic outflows, integral field spec- troscopy RESEARCH GRANTS Over $2 million NASA APRA 2018 (18-APRA18-0150): FIREBall-2: Trailblazing the discovery of CGM Emission in the low-redshift universe (Institutional (PI, $605K) NASA APRA 2018 (18-APRA18-0022): Advanced Filter Solutions for Multiband and Broadband Imaging (PI: A. Jewell, JPL, Co-I: Hamden) NASA RTF 2015 (15-RTF15-0005): EMCCD technology for ultraviolet astronomy and high resolu- tion spectroscopy (PI, $600K) NASA APRA 2015 (15-APRA15-0147): FIREBall-2: Trailblazing observations of the space UV cir- cumgalactic medium. (PI: C. Martin, Co-I: Hamden, $1.9M) NSF AAG 2016 (1716907): Protogalactic Disks: A New Window on Galaxy Formation (Co-PI with D.
    [Show full text]
  • TRIDENT: a UNIVERSAL TOOL for GENERATING SYNTHETIC ABSORPTION SPECTRA from ASTROPHYSICAL SIMULATIONS Cameron B
    Submitted to The Astrophysical Journal (ApJ) Preprint typeset using LATEX style emulateapj v. 12/16/11 TRIDENT: A UNIVERSAL TOOL FOR GENERATING SYNTHETIC ABSORPTION SPECTRA FROM ASTROPHYSICAL SIMULATIONS Cameron B. Hummels1,y, Britton D. Smith2, and Devin W. Silvia3,y 1TAPIR, California Institute of Technology, Pasadena, CA 91125, USA 2San Diego Supercomputer Center, University of California, San Diego, CA 92121, USA and 3Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Submitted to The Astrophysical Journal (ApJ) ABSTRACT Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the datasets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based, open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated dataset mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (iii) operate across the ultraviolet, optical and infrared using customizable absorption line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium (CGM) and intergalactic medium (IGM), but it remains a general tool applicable in other contexts.
    [Show full text]
  • Long-Slit Cross-Dispersion Spectroscopy for Hyperion UV Space Telescope
    Long-slit cross-dispersion spectroscopy for Hyperion UV space telescope Heejoo Choi,a,b Isaac Trumper,a,c Yi-Ting Feng ,a Hyukmo Kang ,a Joel Berkson,a Haeun Chung ,d Erika Hamden ,d and Dae Wook Kima,b,d,* aUniversity of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States bUniversity of Arizona, Large Binocular Telescope Observatory, Tucson, Arizona, United States cELE Optics, Inc., Tucson, Arizona, United States dUniversity of Arizona, Department of Astronomy and Steward Observatory, Tucson, Arizona, United States Abstract. Molecular clouds are a crucial stage in the lifecycle of a star, and the far ultraviolet (FUV) spectral range is a prime observation band. Hyperion is an FUV space telescope that inves- tigates the birth clouds of stars using a high-resolution spectrometer. To meet the scientific requirements, we developed and evaluated a spectrometer that covers the 140.5 to 164.5 nm wave- length range with a spectral resolution higher than 30,000. We employed on-axis and on-plane dispersive optic layouts to control the aberration from a large aspect ratio slit (10 arcmin × 2.5 arcsec, aspect ratio R ¼ 240). The cross-dispersion isolates three orders from the échelle gra- ting (n ¼ −19, −18, and −17), and the subsequent two-mirror freeform imaging optics form a two-dimensional spectral distribution on a 50 mm × 50 mm detector array. The geometrical and spectral performances of this innovative design are evaluated. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.7.1.014006] Keywords: space telescope; far-UV spectroscopy; Échelle grating; freeform optic.
    [Show full text]
  • THE 57Th INTERNATIONAL CONFERENCE on ELECTRON, ION, and PHOTON BEAM TECHNOLOGY & NANOFABRICATION
    THE 57th INTERNATIONAL CONFERENCE on ELECTRON, ION, and PHOTON BEAM TECHNOLOGY & NANOFABRICATION Gaylord Opryland Resort Nashville, TN May 28 – May 31, 2013 Sponsored Topical Conference of The American Vacuum Society Endorsed by: American Physical Society Endorsed by: Optical Society of America and Technical Co-sponsorship by: The Electron Devices Society of the Institute of Electrical and Electronic Engineers CONFERENCE ORGANIZATION CONFERENCE CHAIR Leonidas E. Ocola, Argonne National Laboratory PROGRAM CHAIR Rebecca Cheung, University of Edinburgh STEERING COMMITTEE K. Berggren, MIT, R. Blaikie, University of Otago, A.D. Brodie, KLA-Tencor, R. Cheung, Edinburgh University, R. C. Farrow, New Jersey Institute of Technology, T. Fedynyshyn, MIT Lincoln Laboratory, M. Fritze, University of Southern California, M. Guillorn, IBM Yorktown, T. Hastings, Kentucky University, L. E. Ocola, Argonne National Laboratory, ADVISORY COMMITTEE I. Adesida, E. Anderson, A.N. Broers, J.H. Brunning, S. Chou, H. Craighead, K. Cummings, L. Dobisz, N. Economou, N. Economou, D.J. Ehrlich, R.L. Engelstad, T.E. Everhart, M. Gesley, T.R. Groves, L.R. Harriot, M. Hatzakis, F. Hohn, R.E. Howard, E.L. Hu, J. Kelly, D.P. Kern, R.L. Kubena, R. Kunz, J.A. Liddle, N. MacDonald, J. Maldonado, C.R.K. Marrian, S. Matsui, M. McCord, W.D. Meisburger, J. Melngailis, A. Neureuther, A. Novembre, J. Orloff, G. Owen, S. Palmer, S. Pang, R.F. Pease, M. Peckerar, C. Pfeiffer, J.N. Randall, D. Resnick, M.L. Schattenburg, H.I. Smith, L.W. Swanson, D. Tennant*, L.F. Thompson, G. Varnell, R. Viswanathan, A. Wagner, J.C. Wiesner, A.D. Wilson, S. Wind, E.D.
    [Show full text]
  • Why I Stopped Waiting for Someone Else to Map the Warm-Hot Circumgalactic Medium Carlos Vargas University of Arizona
    Physics and Astrophysics Special Seminar Thursday, March 25, 2021 1:00 p.m. Why I Stopped Waiting for Someone Else to Map the Warm-hot Circumgalactic Medium Carlos Vargas University of Arizona For over half a century, observational astrophysics has been eager to successfully detect and map the most massive baryonic component of galaxies: warm-hot phase coronal gas extending into the circumgalactic medium (CGM). Despite its importance to galaxy evolution, this phase of gas is entirely unmapped in the nearby universe. Morphological characteristics, such as the presence, size, and extent of filamentary or cloud-like structures, are impossible to determine through pencil-beam absorption line studies. The evolution of galaxies relies heavily on the properties of gaseous halos, indicating an urgent need to map and measure these understudied regions. In the last decade, high-efficiency reflective coatings for UV optics have experienced transformative improvements in reflectivity per bounce and overall coating stability in the extreme UV (EUV). Detector technology sensitive to EUV wavelengths has seen steady development of MicroChannel Plate (MCP) detector technology. In parallel with these advances in UV technology, SmallSat missions with serious science objectives— which did not exist a decade ago—have emerged as a promising platform for high-impact science, an opportunity for more adventurous experiments and investigations. In this talk, I present Aspera (PI C. Vargas): an EUV SmallSat mission to detect and map warm-hot phase gas emission in nearby galaxies for the first time. The Aspera mission is designed to target the O VI emission line doublet from highly ionized oxygen, located at λλ=1032, 1038 Å rest frame.
    [Show full text]