Synthetic Genomes for Synthetic Biology

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Genomes for Synthetic Biology 178 | Journal of Molecular Cell Biology (2010), 2, 178–179 doi:10.1093/jmcb/mjq015 Research Highlight Synthetic Genomes for Synthetic Biology Harris H. Wang* Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA * Correspondence to: Harris H. Wang, Tel: +1-617-955-9575; E-mail: [email protected] A genome synthesized entirely from scratch has been used to replace the native genome of a living cell, thus creating a new cell. This achievement marks a new frontier in synthetic biology to design and create genomes for organisms with few genetic tools and for Downloaded from https://academic.oup.com/jmcb/article/2/4/178/866681 by guest on 24 September 2021 applications in areas of energy, health care and the environment. Biologists revel in the excitement of dis- (UGA encodes tryptophan instead of a frameshift error in an essential replication covery, and engineer in the art of creation. stop codon). The design of the synthetic gene (dnaA), which was corrected. In a fusion of two cultures, synthetic biol- genome (JCVI-syn1.0) was based on the To boot up the synthetic genome, Gibson ogists are dissecting the inner workings sequence of an M. mycoides strain the et al. utilized a genome transplantation of life by attempting to recreate it in the JCVI group previously used for genome technique in which the native genome is laboratory, piece by piece. Since the transplantation (Lartigue et al., 2009) entirely replaced with a new genome in a dawn of civilization, humans have been with four additional non-disruptive syn- living host. Prior work showed that fully builders and engineers, constructing thetic watermark sequences. This particu- intact M. mycoides genomic DNA could be houses from bricks, machines from lar genome was chosen for synthesis transferred into an M. capricolum cell by a metals and now genomes from nucleo- because of its modest genome size and polyethylene glycol (PEG)-based chemical tides. As the blue print of life, the fast doubling time (80 min). To construct transformation method (Lartigue et al., genome encodes all the necessary herita- the designed genome, a commercial gene 2007). However, because the synthetic ble information to allow a cell to survive synthesis vendor first generated a M. mycoides genome that propagated as and replicate. Genomes of all living organ- sequence-verified library of 1.1 kb DNA a yeast centromeric plasmid was unmethy- isms replicate based on a preexisting copy. fragments from chemically synthesized oli- lated, it was degraded quickly by the By contrast, de novo synthesis is a new gonucleotides using a strategy first restriction endonuclease system of the paradigm and a powerful approach to described in the 1970s(Khorana et al., recipient M. capricolum cell upon genome create genomes of any sequence, architec- 1972). Then in three hierarchical stages, transplantation. To overcome this issue, ture or design (Figure 1). Gibson et al. assembled the library of in vitro methylation of the synthetic Now for the first time, a genome made 1 kb fragments, which contained 80 bp genome using an M. capricolum cell entirely from chemically synthesized homologous overlaps, first into 10 kb frag- extract or transplantation into a restriction pieces has been successfully booted up ments and then into 100 kb fragments endonuclease-deficient M. capricolum in a living cell at the J. Craig Venter mostly using in vivo homologous recombi- strain proved to be two viable solutions. Institute in a culminating effort that has nation in yeast. Finally, the 11-second- Gibson et al. adopted the latter approach stretched over the past decade. In a techni- stage fragments were assembled into the to isolate tetracycline-resistant blue- cal tour de force, Gibson et al. synthesized whole M. mycoides genome, which propa- colored clones that were putatively former and assembled a 1.08-Mb Mycoplasma gated as a yeast centromeric plasmid in a M. capricolum cells that now contained a mycoides genome de novo and success- yeast clone. DNA sequencing, multiplex transplanted M. mycoides genome. fully transplanted it into a Mycoplasma PCR reactions and restriction digests While the exact mechanism of how the capricolum recipient to create a new were used to sequence-verify the synthetic M. mycoides genome and the M. mycoides cell (Gibson et al., 2010). assembled fragments at each step. native M. capricolum genome resolve in This effort highlights a new breed of syn- To address the bottleneck in rapid the recipient cell remains unknown, PCR thetic biology based on de novo synthesis screening of non-functional assemblies, genotyping, restriction pattern analysis and engineering for creating synthetic Gibson et al. made semi-synthetic and DNA sequencing of the genome from genomes (Carr and Church, 2009). genomes to test functionality of the the self-replicating transplanted cell Mycoplasmas are small commensal or 100 kb intermediates. Through yeast hom- suggested the presence of the designed parasitic bacteria that can cause human ologous recombination of the native M. mycoides genome. Eight unintended respiratory and inflammatory diseases. genome with pieces of the intermediate single nucleotide polymorphisms and These microorganisms lack a cell wall and constructs, the method identified a non- two mutations disrupting nonessential are unique for their altered genetic code viable 100 kb assembly caused by a genes were found through whole-genome # The Author (2010). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved. Journal of Molecular Cell Biology | 179 oligonucleotides can be .40%, which can in silico predictions (Feist et al., 2009)of increase to .95% when assembled into physiology, metabolism and regulation 1 kb gene fragments. Gibson et al. found of a synthetic cell will play a crucial role an error frequency of 90% for some assem- for creating useful synthetic genomes. blies of 10 kb fragments. For assemblies of These genomes may contain entirely new 100 kb, the error frequency was 75% with properties (e.g. reassigned genetic small deletions dominating the in vitro codes, rewired regulation, reorganized (e.g. ligation or amplification based) or operons) with new phenotypic traits (e.g. in vivo (e.g. yeast homologous recombina- resistance to viruses, modular genome tion) methods. For the 1 Mb assemblies, structure). the success rate was only 2%. Thus, As the synthetic biologist’s toolbox con- errors during genome synthesis can poten- tinues to grow, a new budding branch on tially accumulate to yield only one error- the Tree of Life is taking shape, emerging Downloaded from https://academic.oup.com/jmcb/article/2/4/178/866681 by guest on 24 September 2021 free genome in 105 or more assembly from new organisms designed, syn- reactions. A rigorous DNA sequencing thesized and created by engineers. These step after each stage of assembly endeavors will require the careful develop- enables efficient removal of error- ment of ethical frameworks around the Figure 1 Genome synthesis requires the containing products, however, at the construction of synthetic life and its poten- assembly and propagation of synthetic DNA fragments, accurate sequence verification expense of time and additional resources. tial risk, utility and impact on society. and error correction methods, and the Finally, upon producing a genome free of ability to jumpstart the synthetic genome in synthesis errors, experimental failures in a living cell through transplantation. booting up the genome can arise through a variety of causes such as transplantation References 85 failure or donor/recipient incompatibility. sequencing, including an bp dupli- Carlson, R. (2009). The changing economics of DNA cation and an E. coli IS1 transposon Error detection and correction pipelines synthesis. Nat. Biotechnol. 27, 1091–1094. element (likely from 10 kb fragment are thus crucial for any large-scale Carr, P.A., and Church, G.M. (2009). Genome engin- cloning in E. coli). Morphological studies genome synthesis endeavors and require eering. Nat. Biotechnol. 27, 1151–1162. by electron microscopy and proteomic further improvement. Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L., and Palsson, B.Ø. (2009). Reconstruction of bio- 2 While many important technical limit- analysis by D gel-electrophoresis of the chemical networks in microorganisms. Nat. Rev. transplanted cell provided further evi- ations for constructing genomes de novo Microbiol. 7, 129–143. dence that the strain was an M. mycoides. have been resolved by Gibson et al., bar- Forster, A.C., and Church, G.M. (2006). Towards Based on these results, the group con- riers to successfully design and create synthesis of a minimal cell. Mol. Syst. Biol. 2, 45. cluded that the transplanted cell contained new and functional genomes from Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.-Y., Algire, M.A., Benders, G.A., the synthetic JCVI-syn1.0 genome. scratch still remain quite high. Even Montague, M.G., Ma, L., Moodie, M.M., et al. The study highlights the important con- though the cost of gene synthesis is drop- (2010). Creation of a bacterial cell controlled by siderations for genome synthesis. As with ping precipitously (Carlson, 2009), the a chemically synthesized genome. Science. any construction project, errors must be present day construction cost is still too 329, 52–56. minimized and readily addressed when high for genome synthesis to be practical. Khorana, H.G., Agarwal, K.L., Bu¨chi, H., Caruthers, M.H., Gupta, N.K., Kleppe, K., Kumar, A., To be able to design a whole genome de encountered. Modes of failure for a syn- Otsuka, E., RajBhandary, U.L., Van de Sande, thetic genome fall mainly into three cat- novo, we need to have deeper under- J.H., et al. (1972). Studies on polynucleotides. egories: in design, in synthesis or in standing of how life’s essential com- CIII.
Recommended publications
  • Global Transposon Mutagenesis and a Minimal Mycoplasma Genome
    R EPORTS thermore, while immunosubunit precursors- stained positive, whereas no staining of PA28Ϫ/Ϫ purchased from PharMingen (San Diego, CA). 25D1.16 containing 15S proteasome assembly inter- cells was observed. (10) and a PA28a-specific antiserum (2) were kindly 11. S. C. Jameson, F. R. Carbone, M. J. Bevan, J. Exp. Med. provided by A. Porgador and M. Rechsteiner, respective- mediates were detected in wild-type cells, 177, 1541 (1993). ly. Metabolic labeling, immunoprecipitation, immuno- under identical conditions 15S complexes 12. T. Preckel and Y. Yang, unpublished results. blotting, and sodium dodecyl sulfateÐpolyacrylamide were hardly detectable in PA28Ϫ/Ϫ cells (Fig. 13. M. Ho, Cytomegalovirus: Biology and Infection (Ple- gel electrophoresis (SDS-PAGE) were performed as de- 4B). Notably, PA28 was found to be associ- num, New York, ed. 2, 1991). scribed (3). 14. P. Borrow and M. B. A. Oldstone, in Viral Pathogenesis, 19. T. Flad et al., Cancer Res. 58, 5803 (1998). ated with the immunosubunit precursor-con- N. Nathanson, Ed. (Lippincott-Raven, Philadelphia, 20. M. W. Moore, F. R. Carbone, M. J. Bevan, Cell 54, 777 taining 15S complexes, suggesting that PA28 1997), pp. 593Ð627; M. J. Buchmeier and A. J. Zajac, (1988). is required for the incorporation of immuno- in Persistent Virus Infections, R. Ahmed and I. Chen, 21. A. Vitiello et al., Eur. J. Immunol. 27, 671 (1997). Eds. ( Wiley, New York, 1999), pp. 575Ð605. subunits into proteasomes. 22. H. Bluthmann et al., Nature 334, 156 (1988). 15. G. Niedermann et al., J. Exp. Med. 186, 209 (1997); 23. W. Jacoby, P. V. Cammarata, S.
    [Show full text]
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • Genetics, Epigenetics and Disease a Literature Review By: Anthony M
    Genetics, Epigenetics and Disease A Literature Review By: Anthony M. Pasek Faculty Advisor: Rodger Tepe, PhD A senior research project submitted in partial requirement for the degree Doctor of Chiropractic August 11, 2011 Abstract Objective – This article provides an overview of the scientific literature available on the subject of genetic mechanisms of disease etiology as compared to epigenetic mechanisms of disease etiology. The effects of environmental influences on genetic expression and transgenerational inheritance will also be examined. Methods – Searches of the keywords listed below in the databases PubMed and EBSCO Host yielded referenced articles from indexed journals, literature reviews, pilot studies, longitudinal studies, and conference meeting reports. Conclusion – Although current research trends indicate a relationship between the static genome and the dynamic environment and offer epigenetics as a mechanism, further research is necessary. Epigenetic processes have been implicated in many diseases including diabetes mellitus, obesity, cardiovascular disease, metabolic disease, cancer, autism, Alzheimer’s disease, depression, and addiction. Keywords – genetics, central dogma of biology, genotype, phenotype, genomic imprinting, epigenetics, histone modification, DNA methylation, agouti mice, epigenetic drift, Överkalix, Avon Longitudinal Study of Parents and Children (ALSPAC). 2 Introduction Genetics has long been the central field of biology and it’s central dogma states that DNA leads to RNA, which leads to protein and ultimately determines human health or sickness1. The Human Genome Project marked a great triumph for humanity and researchers expected to solve the riddle of many complex diseases with the knowledge gleamed from this project. However, many more questions were raised than answered. Several rare genetic disorders including hemophilia and cystic fibrosis were explained by alterations in the genetic code but true genetic diseases only affect about one percent of the human population2.
    [Show full text]
  • Botany Genetics Mendelian Inheritance
    References 1. Elrod S., Stansfield W., 2002, Genetics, 4th Edition, Tata McGraw-Hill 2. Strickberger M. W., 1985, Genetics, 3rd Edition, Macmillan Publishing Company 3. Griffiths A. J., Wessler S.R., Lewontin R.C., Carrol S. B., 2008, Introduction to Genetic Analysis, 9th Edition, W. H. Freeman and Company 4. Klug W.S., Cumming M.R., Spencer C. A., Palladino M. A., 2009, Concepts of Genetics, 9th Edition, Benjamin Cummings Publication 5. Tamarin R. H., 2002, Principles of Genetics, 7th Edition, Tata McGraw-Hill 6. Hartwell L.H., Hood L., Goldberg M.L., Reynolds A.E., Silver L. M., Veres R. C., 2004, Genetics, 2nd Edition, McGraw-Hill 7. Pierce B.A., Genetics: A Conceptual Approach, 4th edition, W.H. Freeman 8. T.H. Noel Ellis, Julie M.I. Hofer, Gail M. Timmerman-Vaughan, Clarice J. Coyne and Roger P. Hellens, 2011, Mendel, 150 years on, Trends in Plant Science, Vol. 16, 590-596 Genetics Botany Mendelian Inheritance Learn More / Supporting Materials / Source of Further Reading 2.1 Glossary Starting Term Defination Related Term Character <Character> < Genotype > < Genotype of an organism is the gene combination it possesses. Genotype of phenotypically yellow seeded F1 may be YY or Yy.> <Character> < Phenotype > < Phenotype refers to the observable attributes of an organism. Plants with either of the two genotypes Yy or Yy are phenotypically yellow seeded.> <Character> < Homozygote > < A plant with a pair of identical alleles is called as Homozygote (Y/Y or y/y).> <Character> < Heterozygote > < a plant in which the <term2> allele of the pair differ is called as heterozygote (Y/y).> <Character> < locus > < A locus (plural: loci) is the location of a gene on a chromosome.
    [Show full text]
  • Molecular Biology and Applied Genetics
    MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included.
    [Show full text]
  • 1 Genetics, Genomics and Cell Biology, Spring 2013 Instructors
    Genetics, Genomics and Cell Biology, Spring 2013 Monday, Wednesday, Friday 9-10 AM, 2050 VLSB Instructors Michael Levine, Ph.D. ([email protected]; office hours Friday 3-5 PM, 243 Dwinelle) Craig Miller, Ph.D. ([email protected]; office hours: Friday 3-5 PM, 243 Dwinelle) Rebecca Heald, Ph.D. ([email protected]; office hours: TBA) GSIs Jeremy Amon ([email protected]; office hours TBA) Peter Combs ([email protected]; office hours TBA) Anna Maria Desai ([email protected]; office hours TBA) Anna Park ([email protected]; office hours TBA) Jennifer Parks ([email protected]; office hours TBA) Course focus This course will introduce students to key concepts in genetic analysis, eukaryotic cell biology, and state-of-the-art approaches in genomics. Lectures will highlight basic knowledge of cellular processes that form the basis for human diseases. Prerequisite courses will have introduced students to the concepts of cells, the central dogma of molecular biology, and gene regulation. Emphasis in this course will be on eukaryotic cell processes, including cellular organization, dynamics and signaling. Grading Midterm 1 (Feb 21, 7:00-9:00 PM) 100 points Midterm 2 (Mar 14, 7:00-9:00 PM) 100 points Final exam (May 13, 7-10 PM) 200 points Quizzes (3 total, 25 points each) 75 points Mini Quizzes (10 total, 2.5 points each) 25 points Total 500 points Quizzes are given during discussion sections with weekly mini quizzes and one 25 point quiz during each third of the course. Your lowest mini quiz score will be dropped and your mini quiz total score will be based upon the remaining 9 mini quizzes.
    [Show full text]
  • Development of an Artificial Cell, from Self- INAUGURAL ARTICLE Organization to Computation and Self-Reproduction
    Development of an artificial cell, from self- INAUGURAL ARTICLE organization to computation and self-reproduction Vincent Noireauxa, Yusuke T. Maedab, and Albert Libchaberb,1 aUniversity of Minnesota, 116 Church Street SE, Minneapolis, MN 55455; and bThe Rockefeller University, 1230 York Avenue, New York, NY 10021 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2007. Contributed by Albert Libchaber, November 22, 2010 (sent for review October 13, 2010) This article describes the state and the development of an artificial the now famous “Omnis cellula e cellula.” Not only is life com- cell project. We discuss the experimental constraints to synthesize posed of cells, but also the most remarkable observation is that a the most elementary cell-sized compartment that can self-reproduce cell originates from a cell and cannot grow in situ. In 1665, Hooke using synthetic genetic information. The original idea was to program made the first observation of cellular organization in cork mate- a phospholipid vesicle with DNA. Based on this idea, it was shown rial (8) (Fig. 1). He also coined the word “cell.” Schleiden later that in vitro gene expression could be carried out inside cell-sized developed a more systematic study (9). The cell model was finally synthetic vesicles. It was also shown that a couple of genes could fully presented by Schwann in 1839 (10). This cellular quantiza- be expressed for a few days inside the vesicles once the exchanges tion was not a priori necessary. Golgi proposed that the branched of nutrients with the outside environment were adequately intro- axons form a continuous network along which the nervous input duced.
    [Show full text]
  • Economic Botany, Genetics and Plant Breeding
    BSCBO- 302 B.Sc. III YEAR Economic Botany, Genetics And Plant Breeding DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Economic Botany, Genetics and Plant Breeding BSCBO-302 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Prof. Y. S. Rawat Prof. C.M. Sharma Department of Botany Department of Botany DSB Campus, Kumoun University HNB Garhwal Central University, Nainital Srinagar Prof. R.C. Dubey Prof. P.D.Pant Head, Department of Botany Director I/C, School of Sciences Gurukul Kangri University Uttarakhand Open University Haridwar Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital Unit Written By: Unit No. 1. Prof. I.S.Bisht 1, 2, 3, 5, 6, 7 National Bureau of Plant Genetic Resources (ICAR) & 8 Regional Station, Bhowali (Nainital) Uttarakhand UTTARAKHAND OPEN UNIVERSITY Page 1 Economic Botany, Genetics and Plant Breeding BSCBO-302 2-Dr. Pooja Juyal 04 Department of Botany Uttarakhand Open University Haldwani 3. Dr. Atal Bihari Bajpai 9 & 11 Department of Botany, DBS PG College Dehradun-248001 4-Dr. Urmila Rana 10 & 12 Department of Botany, Government College, Chinayalisaur, Uttarakashi Course Editor Prof. Y.S. Rawat Department of Botany DSB Campus, Kumaun University Nainital Title : Economic Botany, Genetics and Plant Breeding ISBN No.
    [Show full text]
  • Commentary the Minimal Cell Genome: ''On Being the Right Size”
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 10004–10006, September 1996 Commentary The minimal cell genome: ‘‘On being the right size” Jack Maniloff* Department of Microbiology and Immunology, University of Rochester, Medical Center Box 672, Rochester, NY 14642 ‘‘On being the right size’’ is in quotation marks in the title these studies, it is important to remember that organisms with because it has been used twice before–in each case to discuss small genomes have arisen by two vastly different evolutionary the size of biological systems in terms of interest at that time. pathways, one ‘‘top down’’ and the other ‘‘bottom up.’’ J. B. S. Haldane (1) originally used this title in the 1920s, for ‘‘Top down’’ genomes evolved in organisms with increasing a paper describing the relationship between animal size and metabolic requirements. At each metabolic level, there can be constraints like gravity, surface tension, and food and oxygen a minimal genome: from photoautotrophs, able to grow in a consumption. In the 1970s, N. W. Pirie (2) (acknowledging medium of only CO2, light, and inorganic salts; to simple Haldane) used the title for a paper analyzing how factors like heterotrophs, for which growth requires a basic medium membrane properties, water structure, and the volume needed containing an organic carbon and energy source (like glucose) for ribosomes and other macromolecules set lower limits on and inorganic salts; to fastidious heterotrophs, for which cell size. Now, in the 1990s, the title is used to discuss efforts growth requires a complex medium, frequently containing to define the minimal genome content necessary and sufficient undefined components (like serum); to obligate intracellular for a living cell.
    [Show full text]
  • Basic Genetic Concepts & Terms
    Basic Genetic Concepts & Terms 1 Genetics: what is it? t• Wha is genetics? – “Genetics is the study of heredity, the process in which a parent passes certain genes onto their children.” (http://www.nlm.nih.gov/medlineplus/ency/article/002048. htm) t• Wha does that mean? – Children inherit their biological parents’ genes that express specific traits, such as some physical characteristics, natural talents, and genetic disorders. 2 Word Match Activity Match the genetic terms to their corresponding parts of the illustration. • base pair • cell • chromosome • DNA (Deoxyribonucleic Acid) • double helix* • genes • nucleus Illustration Source: Talking Glossary of Genetic Terms http://www.genome.gov/ glossary/ 3 Word Match Activity • base pair • cell • chromosome • DNA (Deoxyribonucleic Acid) • double helix* • genes • nucleus Illustration Source: Talking Glossary of Genetic Terms http://www.genome.gov/ glossary/ 4 Genetic Concepts • H describes how some traits are passed from parents to their children. • The traits are expressed by g , which are small sections of DNA that are coded for specific traits. • Genes are found on ch . • Humans have two sets of (hint: a number) chromosomes—one set from each parent. 5 Genetic Concepts • Heredity describes how some traits are passed from parents to their children. • The traits are expressed by genes, which are small sections of DNA that are coded for specific traits. • Genes are found on chromosomes. • Humans have two sets of 23 chromosomes— one set from each parent. 6 Genetic Terms Use library resources to define the following words and write their definitions using your own words. – allele: – genes: – dominant : – recessive: – homozygous: – heterozygous: – genotype: – phenotype: – Mendelian Inheritance: 7 Mendelian Inheritance • The inherited traits are determined by genes that are passed from parents to children.
    [Show full text]
  • Synthetic Biology As a Technoscience: the Case of Minimal Genomes and Essential Genes
    Published in Studies in History and Philosophy of Science (epub ahead of print) Synthetic Biology as a Technoscience: The Case of Minimal Genomes and Essential Genes Massimiliano Simons, Ghent University [email protected] Department of Philosophy and Moral Sciences, Blandijnberg 2, BE-9000, Ghent Abstract This article examines how minimal genome research mobilizes philosophical concepts such as minimality and essentiality. Following a historical approach the article aims to uncover what function this terminology plays and which problems are raised by them. Specifically, four historical moments are examined, linked to the work of Harold Morowitz, Mitsuhiro Itaya, Eugene Koonin and Arcady Mushegian, and J. Craig Venter. What this survey shows is a historical shift away from historical questions about life or descriptive questions about specific organisms towards questions that explore biological possibilities: what are possible forms of minimal genomes, regardless of whether they exist(ed) in nature? Moreover, it highlights a fundamental ambiguity at work in minimal genome research between a universality claim and a standardization claim: does a minimal genome refer to the minimal gene set for any organism whatsoever? Or does it refer rather to a gene set that will provide stable, robust and predictable behaviour, suited for biotechnological applications? Two diagnoses are proposed for this ambiguity: a philosophical diagnosis of how minimal genome research either misunderstands the ontology of biological entities or philosophically misarticulates scientific practice. Secondly, a historical diagnosis that suggests that this ambiguity is part of a broader shift towards technoscience. Keywords: Minimal genome ; essential gene; Mycoplasma ; Craig Venter; synthetic biology ; technoscience Competing interests No competing interests to declare.
    [Show full text]
  • History of Biology - Alberto M
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. I – History of Biology - Alberto M. Simonetta HISTORY OF BIOLOGY Alberto M. Simonetta Dipartimento di Biologia Animale e Genetica, “L. Pardi,” University of Firenze, Italy Keywords: Biology, history, Antiquity, Middle ages, Renaissance, morphology, palaeontology, taxonomy, evolution, histology, embryology, genetics, ethology, ecology, pathology Contents 1. Introduction 2. Antiquity 3. The Medieval and Renaissance periods 4. The Development of Morphology 5. Paleontology 6. Taxonomy and Evolution 7. Histology, Reproduction, and Embryology 8. Physiology 9. Genetics 10. Ecology and Ethology 11. Pathology Bibliography Biographical Sketch Summary A short account is given of the development of biological sciences from their Greek origins to recent times. Biology as a pure science was the creation of Aristotle, but was abandoned shortly after his death. However, considerable advances relevant for medicine continued to be made until the end of classical times, in such fields as anatomy and botany. These developments are reviewed. After a long pause, both pure and applied research began anew in the thirteenth century, and developedUNESCO at an increasing pace therea fter.– However, EOLSS unlike astronomy and physics, which experienced a startling resurgence as soon as adequate mathematical methods and instruments became available, the development of biology was steady but slow until the appearance of Darwin’s revolutionary ideas about evolution brought about a fundamental shiftSAMPLE in the subject’s outlook. TheCHAPTERS efflorescence of biological sciences in the post-Darwinian period is outlined briefly. 1. Introduction To outline more than 2000 years of biology in a few pages is an extremely difficult endeavor as, quite apart from the complexities of both the subject itself and of the technical and theoretical approaches of various scholars, the development of scholars’ views, ideas, and researches forms an intricate network that cannot be fully disentangled in such a brief account.
    [Show full text]