Article a New Period of Activity in the Core of NGC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distant Arm - NGC772
29 September 2016, Zeiss Cas 150/2250 Distant Arm - NGC772 Telescope: Zeiss Cassegrain 150/2250 Eyepieces: ATC53P - ATC Plossl, f=53mm, (42×, 530) ATC20K - ATC Kellner, f=20mm, (113×, 220) A-16 - Zeiss Abbe Ortho, f=16mm, (141×, 200) O-12.5 - CZJ Ortho, f=12.5mm, (180×, 140) Time: 2016/09/29 19:30-21:40UT Location: R´ıˇcanyˇ Weather: Clear sky with slight haze and decaying small thin clouds. Mount: Zeiss 1b Accessories: Baader/Zeiss T2 prism This was my typical backyard session. I could go out only for a short time after I put all three kids in to their beds. The night was still warm. Normally, I would try to take an advantage of it and go to some darker place. As I was alone with the kids for the whole week I was bound to stay in our backyard. During last couple of years, I have learnt to live with this handicap. There is always something interesting to look at, even with small refractors. Recently, I was explor- ing the capability of my largest telescope, 150mm Cassegrain. For this night, the main targets were two galaxies, NGC 660 and NGC 772, which I had troubles to locate two days before in 80mm refractor. I was curios how much of help the larger telescope would be. I did not jump to these two galaxies im- mediately. They were still low in the slight haze enhanced by the street lamps. I started a little bit higher in Andromeda with beau- tiful edge-on galaxy NGC 891 (V=10.0, 13:50 ×2:50, PA22◦). -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
A Guide to Hubble Space Telescope Objects
James L. Chen A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance Graphics by Adam Chen The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance James L. Chen Graphics by Adam Chen Author Graphics Designer James L. Chen Adam Chen Gore , VA , USA Baltimore , MD , USA ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-18871-3 ISBN 978-3-319-18872-0 (eBook) DOI 10.1007/978-3-319-18872-0 Library of Congress Control Number: 2015940538 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
A Spitzer High-Resolution Mid-Infrared Spectral Atlas of Starburst Galaxies
The Astrophysical Journal Supplement Series, 184:230–247, 2009 October doi:10.1088/0067-0049/184/2/230 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SPITZER HIGH-RESOLUTION MID-INFRARED SPECTRAL ATLAS OF STARBURST GALAXIES J. Bernard-Salas1, H. W. W. Spoon1, V. Charmandaris2,3,4, V. Lebouteiller1, D. Farrah1,5, D. Devost6, B. R. Brandl7, Yanling Wu1,8, L. Armus8,L.Hao1,9, G. C. Sloan1, D. Weedman1, and J. R. Houck1 1 Cornell University, 222 Space Sciences Bld., Ithaca, NY 14853, USA 2 Department of Physics, University of Crete, GR-71003, Heraklion, Greece 3 IESL/Foundation for Research & Technology-Hellas, GR-71110, Heraklion, Greece 4 Chercheur Associe,´ Observatoire de Paris, F-75014, Paris, France 5 Department of Physics and Astronomy, University of Sussex, Brighton, East Sussex BN1 9QH, UK 6 CFHT Corporation, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743, USA 7 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands 8 Spitzer Science Center, MS 220-06, California Institute of Technology, Pasadena, CA 91125, USA 9 Department of Astronomy, University of Texas at Austin, Austin, TX 78712-0259, USA Received 2009 March 6; accepted 2009 August 14; published 2009 September 16 ABSTRACT We present an atlas of Spitzer/IRS high-resolution (R ∼ 600) 10–37 μm spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons (PAHs). Six out of the eight objects with a known active galactic nucleus (AGN) component show emission of the high excitation [Ne v] line. -
Dust Temperatures in the Infrared Space Observatory1atlas of Bright Spiral Galaxies
Dust Temperatures in the Infrared Space Observatory1Atlas of Bright Spiral Galaxies George J. Bendo,2;3;4 Robert D. Joseph,3 Martyn Wells,5 Pascal Gallais,6 Martin Haas,7 Ana M. Heras,8;9 Ulrich Klaas,7 Ren´eJ.Laureijs,8;9 Kieron Leech,9;10 Dietrich Lemke,7 Leo Metcalfe,8 Michael Rowan-Robinson,11 Bernhard Schulz,9;12 and Charles Telesco13 ABSTRACT We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60 - 180 µm data, 1 2 we fit blackbodies with λ− emissivities and average temperatures of 31 K or λ− emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60 - 850 µm range in eight galaxies, we fit blackbodies 1 2 β β with λ− , λ− ,andλ− (with β variable) emissivities to the data. The best results were with the λ− emissivities, where the temperatures were 30 K and the emissivity coefficient β ranged from 0.9 to 1.9. These results produced gas to dust ratios that∼ ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities. Subject headings: galaxies: ISM | galaxies: spiral | dust 1. Introduction 2Steward Observatory, 933 North Cherry Ave, Tucson, AZ 85721 USA; [email protected] The far-infrared emission from galaxies is emitted by 3University of Hawaii, Institute for Astronomy, 2680 Woodlawn interstellar dust heated by a variety of energy sources. -
H-Alpha Imaging of Early-Type (Sa-Sab) Spiral Galaxies I
Hα Imaging of Early-Type(Sa-Sab) Spiral Galaxies I1 Salman Hameed2, Nick Devereux2 Astronomy Department, New Mexico State University, Las Cruces, NM 88003 ABSTRACT Hα and continuum images are presented for 27 nearby early-type(Sa-Sab) spiral galaxies. Contrary to popular perception, the images reveal copious massive star formation in some of these galaxies. A determination of the Hα morphology and a measure of the Hα luminosity suggests that early-type spirals can be classified into two broad categories based on the luminosity of largest H II region in the disk. The first category includes galaxies for which the 39 −1 individual H II regions have LHα < 10 ergs . Most of the category 1 galaxies appear to be morphologically undisturbed, but show a wide diversity in nuclear Hα properties. The second category includes galaxies which have at least one 39 −1 H II region in the disk with LHα ≥ 10 ergs . All category 2 galaxies show either prominent dust lanes or other morphological peculiarities such as tidal tails which suggests that the anomalously luminous H II regions in category 2 galaxies may have formed as a result of a recent interaction. The observations, which are part of an on-going Hα survey, reveal early-type spirals to be a heterogeneous class of galaxies that are evolving in the current epoch. We have also identified some systematic differences between the classifications of spiral galaxies in the Second General Catalog (RC2) and the Revised Shapley- Ames Catalog (RSA) which may be traced to subtle variations in the application of the criteria used for classifying spiral galaxies. -
HC3N Observations of Nearby Galaxies Xue-Jian Jiang (蒋雪健)1, 5, Jun-Zhi Wang (王均智)2, Yu Gao (高煜)1, 5, and Qiu-Sheng Gu (顾秋生)3, 4, 5
A&A 600, A15 (2017) Astronomy DOI: 10.1051/0004-6361/201629066 & c ESO 2017 Astrophysics HC3N observations of nearby galaxies Xue-Jian Jiang (蒋êe)1; 5, Jun-Zhi Wang (王Gz)2, Yu Gao (高\)1; 5, and Qiu-Sheng Gu (~Ë生)3; 4; 5 1 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing, PR China e-mail: [email protected] 2 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, 200030 Shanghai, PR China 3 School of Astronomy and Space Sciences, Nanjing University, 210093 Nanjing, PR China 4 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093 Nanjing, PR China 5 Collaborative Innovation Center of Modern Astronomy and Space Exploration, 210093 Nanjing, PR China Received 7 June 2016 / Accepted 22 December 2016 ABSTRACT Aims. We aim to systematically study the properties of the different transitions of the dense molecular gas tracer HC3N in galaxies. Methods. We have conducted single-dish observations of HC3N emission lines towards a sample of nearby gas-rich galaxies. HC3N(J = 2−1) was observed in 20 galaxies with the Effelsberg 100-m telescope. HC3N(J = 24−23) was observed in nine galaxies with the 10-m Submillimeter Telescope (SMT). Results. HC3N 2−1 is detected in three galaxies: IC 342, M 66, and NGC 660 (>3σ). HC3N 24−23 is detected in three galaxies: IC 342, NGC 1068, and IC 694. These are the first measurements of HC3N 2−1 in a relatively large sample of external galaxies, although the detection rate is low. -
A Classical Morphological Analysis of Galaxies in the Spitzer Survey Of
Accepted for publication in the Astrophysical Journal Supplement Series A Preprint typeset using LTEX style emulateapj v. 03/07/07 A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) Ronald J. Buta1, Kartik Sheth2, E. Athanassoula3, A. Bosma3, Johan H. Knapen4,5, Eija Laurikainen6,7, Heikki Salo6, Debra Elmegreen8, Luis C. Ho9,10,11, Dennis Zaritsky12, Helene Courtois13,14, Joannah L. Hinz12, Juan-Carlos Munoz-Mateos˜ 2,15, Taehyun Kim2,15,16, Michael W. Regan17, Dimitri A. Gadotti15, Armando Gil de Paz18, Jarkko Laine6, Kar´ın Menendez-Delmestre´ 19, Sebastien´ Comeron´ 6,7, Santiago Erroz Ferrer4,5, Mark Seibert20, Trisha Mizusawa2,21, Benne Holwerda22, Barry F. Madore20 Accepted for publication in the Astrophysical Journal Supplement Series ABSTRACT The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. -
Isaac Newton Institute of Chile in Eastern Europe and Eurasia Casilla
1 Isaac Newton Institute of Chile in Eastern Europe and Eurasia Casilla 8-9, Correo 9, Santiago, Chile e-Mail: [email protected] Web-address: www.ini.cl ͓S0002-7537͑95͒03301-4͔ The Isaac Newton Institute, ͑INI͒ for astronomical re- and luminosity functions ͑LFs͒ of the cluster Main Sequence search was founded in 1978 by the undersigned. The main ͑MS͒ for two fields extending from a region near the center office is located in the eastern outskirts of Santiago. Since of the cluster out to Ӎ 10 arcmin. The photometry of these 1992, it has expanded into several countries of the former fields produces a narrow MS extending down to VӍ27, Soviet Union in Eastern Europe and Eurasia. much deeper than any previous ground based study on this As of the year 2003, the Institute is composed of fifteen system and comparable to previous HST photometry. The V, Branches in nine countries ͑see figure on following page͒. V-I CMD also shows a deep white dwarf cooling sequence These are: Armenia ͑19͒, Bulgaria ͑28͒, Crimea ͑35͒, Kaza- locus, contaminated by many field stars and spurious objects. khstan ͑18͒, Kazan ͑12͒, Kiev ͑11͒, Moscow ͑23͒, Odessa We concentrate the present work on the analysis of the ͑35͒, Petersburg ͑33͒, Poland ͑13͒, Pushchino ͑23͒, Special MSLFs derived for two annuli at different radial distance Astrophysical Observatory, ‘‘SAO’’ ͑49͒, Tajikistan ͑9͒, from the center of the cluster. Evidence of a clear-cut corre- Uzbekistan ͑24͒ and Yugoslavia ͑23͒. The quantities in pa- lation between the slope of the observed LFs before reaching rentheses give the number of scientific staff, the grand total the turn-over, and the radial position of the observed fields of which is 355 members. -
AE Aurigae, 82 AGN (Active Galactic Nucleus), 116 Andromeda Galaxy
111 11 Index 011 111 Note: Messier objects, IC objects and NGC objects with separate entries in Chapters 2–4 are not listed in the index since they are given in numerical order in the book and are therefore readily found. 0111 AE Aurigae, 82 disk, galaxy (continued) AGN (active galactic nucleus), circumstellar, 19, 97, 224 with most number of globular 116 counter-rotating galactic, 34, clusters, 43 Andromeda galaxy, 20, 58 128, 166, 178 with most number of recorded Antennae, the, 142 Galactic, 4 supernovae, 226 Ap star, 86, 87, 235 globular cluster, 37, 221 Ghost of Jupiter, 119 Deer Lick group, 236 globular cluster, ␦ Scuti type star, 230 central black hole, 14, 231 0111 B 86, 205 DL Cas, 55 closest, 8, 37, 192, 208, 221 Baade’s window, 205, 207 Double Cluster, 68, 69 collapsed-core, 196 Barnard 86, 205 Duck Nebula, 95 containing planetary nebulae, 14, Beehive Cluster, 25, 107 Dumbbell Nebula, 18, 221 17, 214, 231 Be star, 26, 67, 69, 94, 101 fraction that are metal-poor, bipolar planetary nebulae, 18, 37 221 Eagle Nebula, 14, 210 fraction that are metal-rich, dex Black-Eye Galaxy, 34, 178 early-type galaxy, 2, 52 37 blazar, 145 Eridanus A galaxy group, 74 highest concentration of blue 245 Blinking Planetary Nebula, 220 Eskimo Nebula, 98 stragglers in, 19, 232 0111 Blue Flash Nebula, 224 ESO 495-G017, 107 in bulge, 36, 197, 212 Blue Snowball, 239 E.T. Cluster, 62 in disk, 37, 221 In- blue straggler, 94, 95, 212, 213 most concentrated, 14, 208, 231 Bubble Nebula, 238 most luminous, 15, 100, 196 bulge, field star contamination, 9–10, 23, -
The Stellar Content of the Ring in NGC 660
A&A 421, 833–837 (2004) Astronomy DOI: 10.1051/0004-6361:20047080 & c ESO 2004 Astrophysics The stellar content of the ring in NGC 660 G. M. Karataeva1,3, N. A. Tikhonov2,4, O. A. Galazutdinova2,4,V.A.Hagen-Thorn1,3, and V. A. Yakovleva1,3 1 Astronomical Institute, St. Petersburg State University, Universitetsky pr., 28 Petrodvoretz, St. Petersburg 198504, Russia 2 Special Astrophysical Observatory, N. Arkhyz, Karachai-Circassian Rep. 369167, Russia 3 Isaac Newton Institute of Chile, St. Petersburg Branch 4 Isaac Newton Institute of Chile, SAO Branch Received 15 January 2004 / Accepted 27 February 2004 Abstract. We present the results of stellar photometry of the polar-ring galaxy NGC 660 using the Hubble Space Telescope’s archival data obtained with the Wide Field Planetary Camera 2. The final list of the resolved stars contains 550 objects, a considerable part of which are blue and red supergiants belonging to the polar ring. The analysis of the Colour–Magnitude Diagram for polar ring stars shows that it is best represented by the isochrones with metallicity Z = 0.008. The process of star formation in the polar ring was continuous and the age of the youngest detected stars is about 7 Myr. Key words. galaxies: individual: NGC 660 – galaxies: peculiar – galaxies: starburst – galaxies: stellar content 1. Introduction Table 1. Observation log. NGC 660, known for a long time as a peculiar galaxy con- Date Band Exposure taining two inclined dust lanes (Benvenuti et al. 1976), was × included by Whitmore et al. (1990) in their catalogue of Polar- 04.07.1995 F660W 2 80 s Ring Galaxies (PRGs), candidates and related objects as a pos- 03.07.2001 F450W 2 × 230 s sible candidate (C - 13). -
LOFAR MSSS: Flattening Low-Frequency Radio Continuum Spectra of Nearby Galaxies
LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies Downloaded from: https://research.chalmers.se, 2021-09-28 12:08 UTC Citation for the original published paper (version of record): Chyz°y,K., Jurusik, W., Piotrowska, J. et al (2018) LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies Astronomy and Astrophysics, 619 http://dx.doi.org/10.1051/0004-6361/201833133 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) A&A 619, A36 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833133 & © ESO 2018 Astrophysics LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies K. T. Chy˙zy1, W. Jurusik1, J. Piotrowska1, B. Nikiel-Wroczynski´ 1, V. Heesen2,3, V. Vacca4, N. Nowak1, R. Paladino5, P. Surma1, S. S. Sridhar6,7, G. Heald8, R. Beck9, J. Conway10, K. Sendlinger11, M. Curyło1, D. Mulcahy9,16, J. W. Broderick7, M. J. Hardcastle12, J. R. Callingham7, G. Gürkan8, M. Iacobelli7, H. J. A. Röttgering13, B. Adebahr11, A. Shulevski14, R.-J. Dettmar11, R. P. Breton15, A. O. Clarke16, J. S. Farnes17, E. Orrú7, V. N. Pandey7, M. Pandey-Pommier18, R. Pizzo7, C. J. Riseley8, A. Rowlinson7, A. M. M. Scaife16, A. J. Stewart19, A. J. van der Horst20, and R. J. van Weeren13 (Affiliations can be found after the references) Received 29 March 2018 / Accepted 9 August 2018 ABSTRACT Aims.