Determination of Optimum Twist Equation for the Long Staple Combed Cotton Ring-Spun Yarn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Man-Made Staple Fibres
Chapter 55 Man-made staple fibres Note. 1.- Headings 55.01 and 55.02 apply only to man-made filament tow, consisting of parallel filaments of a uniform length equal to the length of the tow, meeting the following specifications : (a) Length of tow exceeding 2 m; (b) Twist less than 5 turns per metre; (c) Measuring per filament less than 67 decitex; (d) Synthetic filament tow only : the tow must be drawn, that is to say, be incapable of being stretched by more than 100 % of its length; (e) Total measurement of tow more than 20,000 decitex. Tow of a length not exceeding 2 m is to be classified in heading 55.03 or 55.04. _________________ Heading H.S. Code 55.01 Synthetic filament tow. 5501.10 - Of nylon or other polyamides 5501.20 - Of polyesters 5501.30 - Acrylic or modacrylic 5501.40 - Of polypropylene 5501.90 - Other 55.02 Artificial filament tow. 5502.10 - Of cellulose acetate 5502.90 - Other 55.03 Synthetic staple fibres, not carded, combed or otherwise processed for spinning. - Of nylon or other polyamides : 5503.11 -- Of aramids 5503.19 -- Other 5503.20 - Of polyesters 5503.30 - Acrylic or modacrylic 5503.40 - Of polypropylene 5503.90 - Other 55.04 Artificial staple fibres, not carded, combed or otherwise processed for spinning. 5504.10 - Of viscose rayon 5504.90 - Other 55.05 Waste (including noils, yarn waste and garnetted stock) of man- made fibres. 5505.10 - Of synthetic fibres 5505.20 - Of artificial fibres Heading H.S. Code 55.06 Synthetic staple fibres, carded, combed or otherwise processed for spinning. -
This Tutorial Will Explain What a Balanced Plied Yarn Is, and H
An HJS Studio Tutorial: Spinning Silk Caps I am proud to welcome Carol Weymar, a self-taught spinner and dyer of silk caps. I was much struck by the beauty of her work when I saw her website, so I asked her to write an ar- ticle, as silk is something I have no skill spinning. I hope you'll be as inspired by her expla- nation as I was! About Silk Caps Silk caps are made from cultivated cocoons that have been degummed and stretched over a frame shaped like a bell. They consist of a number of extremely thin layers; each layer is one cocoon. A cap "bell" is roughly two dozen caps, weighing about a pound altogether, which are fastened together at their tops and covered by one large cap whose edges are drawn out and tied together at the bottom to make a neat bundle. Cap silk is one of the most underrated types of silk available to the handspinner. It has its quirks, certainly, but mastering this form of silk is well worth your effort. It displays the beau- tiful luster of all its sister silks, but has the advantage of being a nearly continuous fiber. This means you can spin it to a very fine thread and it will be strong. It makes an excellent warp. It is very versatile; you can spin it into beautiful yarns, you can draw it into fine roving and knit or embroider with it in its unspun form, and you can blend it with other fibers to add bright color and gleaming highlights. -
Sheep, Fleece, Wool, Staple Length, Fiber Diameter
International Journal of Textile Science 2015, 4(5): 97-101 DOI: 10.5923/j.textile.20150405.01 Variation in Fleece Characteristics of Tunisian Sheep T. Harizi1,*, F. Abidi1, R. Hamdaoui2, Y. Ben Ameur2 1Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia 2Technical Center of Creation, Innovation, and Supervision in Carpet and Weaving, Tunis, Tunisia Abstract This experiment was aimed to identify wool quality of Tunisian sheep breeds. Fiber characteristics of different ages and various sheep breeds were studied. A total of 84 sheep were used in this study. Results show that the factor 'breed' had a highly significant effect on all controlled parameters accept scoured yield and fibre length. Breed was the most important factor. By conducting well-planned sorting, “Fine Queue of west” sheep breed can supply the wool needed for textile industries. The wool of other sheep breeds can be used in handmade carpets. Keywords Sheep, Fleece, Wool, Staple length, Fiber diameter special criteria. These include fibre diameter, fibre length, 1. Introduction luster (’shinyness’), crimp (’wavyness’) and percentage yield of clean fibre from raw fibre, following scouring Sheep farming in Tunisia occupies an important place in (washing) to remove vegetable and mineral contaminants the economic and social level, on the one hand, it can cover and wool grease. In the literature, several researches report 41% of the consumption of red meats [1] and secondly, it the effect of age, breed, sex… on fleece characteristics. contributes at 35-40% of agricultural GDP and 4 to 5% of In order to optimum use of Tunisian sheep wool, it is global GDP [2]. -
Technical Product Guide
strength in materials Technical Product Guide www.agy.com Table of Contents Corporate Overview AGY provides the best quality, highest performance, and broadest range of glass fiber yarns, rovings and chop products to Corporate Overview .............................1 a wide variety of markets and end uses. Although founded as an independent entity Glass Fiber Manufacturing ...................2 in 1998, AGY has a 50+ year history of serving the composites industry. Nomenclature ......................................3 Globally, AGY has over 600 employees Conversion Tables ...............................6 involved in production, sales, distribution and development of our products. Our AGY Glass Yarns .................................8 world headquarters, technology center and manufacturing facility are located in Aiken, AGY Glass Rovings ...........................14 SC U.S.A. AGY Chopped Glass ..........................16 We also have commercial and administrative offices in Lyon, France, and AGY Packaging Specificaions ............18 a commercial office in Shanghai, China. AGY Sizing Systems ..........................20 Typical Fiber Properties .....................26 Glossary of Terms ..............................28 strength in materials 1 Glass Fiber Manufacturing Glass Fiber Nomenclature AGY glass fibers are made from molten glass. The viscous liquid is General drawn through tiny holes at the base of the furnace to form hair-like Glass fiber yarns are typically identified by either an inch-pound based system (U.S. customary system) or a TEX/metric system (based on the SI*/metric system). filaments. A protective sizing, applied as the filament cools and This section gives a brief description of glass fiber yarn nomenclature, including hardens, helps prevent abrasion during additional processing and comparisons of the two systems (see table on page 4). A more comprehensive makes the glass compatible with various resin systems. -
Genetic Variability Studies in Gossypium Barbadense L
Electronic Journal of Plant Breeding, 1(4): 961-965 (July 2010) Research Article Genetic variability studies in Gossypium barbadense L. genotypes for seed cotton yield and its yield components K. P. M. Dhamayanathi , S. Manickam and K. Rathinavel Abstract A study was carried out during kharif 2006-07 with twenty five Gossypium barbadense L genotypes to obtain information on genetic variability, heritability and genetic advance for seed cotton yield and its yield attributes. Significant differences were observed for characters among genotypes. High genetic differences were recorded for nodes/plant, sympodia, bolls as well as fruiting points per plant, seed cotton yield, lint index indicating ample scope for genetic improvement of these characters through selection. Results also revealed high heritability coupled with high genetic advance for yield and most of the yield components as well as fibre quality traits. Sympodia/plant, fruiting point /plant, number of nodes/plant, number of bolls per plant, and lint index were positively correlated with seed cotton yield per plant and appeared to be interrelated with each other. It is suggested that these characters could be considered as selection criteria in improving the seed cotton yield of G. barbadense , L genotypes. Key words : Gossypium barbadense , genetic variability, heritability, genetic advance, lint index, selection criteria Introduction Seed cotton yield is a complex trait governed by Cotton is the most widely used vegetable fibre and several yield contributing characters such as plant also the most important raw material for the textile height, number of monopodia, number of industry, grown in tropical and subtropical regions sympodia, number of bolls, number of fruiting in more than 80 countries all over the world. -
Long Staple Processing and Textile Testing
Volume 3, Issue 3, Fall 2003 Long Staple Processing and Textile Testing Dean R. Cobb Institute of Textile Technology ABSTRACT Several vendors in the long staple processing area and the textile testing unveiled some improvements to their existing offerings. The long staple improvements came in the form of better design, more productivity, more electronic controls, less maintenance requirements, versatility, and cross compatibility with automation of all types. Improvements from some testing vendors mainly concentrated on yielding more information from the same tests; like the sticky cotton measurement from Lintronics and Weavability from Uster. Keywords: Long staple processing, short staple textile testing, Introduction • Modular frame assemblies with no cross-rails. This ITMA 2003 review will • Statically and dynamically balanced concentrate on long staple cardroom cylinders, doffers, and top rollers for processes, textile testing equipment, and a more precise setting. miscellaneous section. As a general rule, • Quick release mechanisms for easier there were no “new” technologies exhibited maintenance. in most areas; however, there were design • Air control collars to reduce fly and trends in equipment and new players improve fiber yield. entering some technology fields. Machinery • Modular design of feedroller and taker- related trends included ease of maintenance, in arrangements allowing more use of servomotors, increased productivity, versatility. and improved quality. • Metal detection systems on board (some models). Long Staple Cardroom Processes • “Underspeed” sensors to prevent chokes at the taker-in. Tatham • All drives with toothed belts for positive transmissions to carding components. Tatham introduced the “Magnum” • Tatham introduced an auto doffing woolen cards, which are produced in 2.5, mechanism for tape condensers that has 3.0, and 4.0 meters in width. -
Recommendations for Producing Linen-Look Yarn on Conventional Equipment
TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 TRI 1010 RECOMMENDATIONS FOR PRODUCING LINEN-LOOK YARN ON CONVENTIONAL EQUIPMENT © 1992 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. TABLE OF CONTENTS Page CONCEPT 2 INTRODUCTION 2 FIBER ANALYSIS 3 LINEN-LOOK YARN--PREPARATORY PROCEDURE 3 SPINNING PROCEDURE 4 PROCESSING SEQUENCE AND EQUIPMENT SETTINGS 4 OPENING AND CLEANING 4 CARDING 4 DRAWING--FIRST PROCESS 4 DRAWING--SECOND PROCESS 5 ROVING 5 SPINNING 5 TEST RESULTS--18/1 Ne 6 CONCEPT To produce a 100% cotton novelty yarn with long linen-like slubs using standard mill machinery without special attachments. INTRODUCTION Cotton Incorporated developed a totally new novelty yarn with a linen look which can be produced on conventional mill machinery without special attachments. It is called "linen look" because it simulates long slubs common to linen yarn but is made using 100% cotton. The slubs are formed by using small amounts of comber noils (short fibers) in the final drawing operation. One of the main targets for this yarn is women's wear fabrics for blouses and skirts. In the current work, counts of 18/1 Ne were spun. The effective count range of this type yarn is projected to be from 8/1 Ne to 28/1 Ne. Example: Linen-Look vs. Regular Yarn (Ne 18/1 Ring TM 3.8) 2 FIBER ANALYSES 1. Characteristics of fiber used in this project Type - U.S. upland cotton Grade - SLM Length (inches) - 1.12 Mic - 3.8 - 4.6 Strength (grams/tex) - 24 and up 2. -
Notes from Judith Mackenzie's Class on Spinning Icelandic Fibers
Icelandic Sheep Breeders of North America Volume 5, Number 1 Winter 2001 Article #2 Editor, Kathy Hayes Notes from Judith Mackenzie’s Class on Spinning Icelandic Fibers Susan Mongold Weaving makes the lightest fabrics. Using a brush like a scrub brush on the woven fabric after it is woven (or knitted), will produce a long fur-type nap. The tog makes very attractive rug warp. Icelandic locks can actually be separated into up to 5 different lengths and diameters. Each layer gets progressively finer as the length gets shorter. The last or finest coat (thel) is like cashmere. The shortest undercoat, or bottom coat, the down, makes a perfect lace yarn. Lace is best made from a 2-ply yarn as the undulated surface of the 2-ply yarn helps to lock or hold the stich in place. A rounder, smoother 3-ply yarn has a smoother and more slippery surface and will not hold the pattern as well. In order to have the fibers slip easily in the spinning process, spin from the tip end of a lock, then ply from the butt end and knit from the tip end. This will give the easiest spinning experience as you are taking advantage of the lay of the scales on the wool fibers. The most important thing in a spinning fiber is the “hand.” hand is the soft silky feel of the fiber to your hand or how it feels when you handle it. It has little bearing on the fiber diameter. Even a very fine fiber can have a rough hand, while a coarse fiber can have a nice hand. -
The Textile Machinery Collection at the American Textile History Museum a Historic Mechanical Engineering Heritage Collection
THE TEXTILE MACHINERY COLLECTION AT THE AMERICAN TEXTILE HISTORY MUSEUM A HISTORIC MECHANICAL ENGINEERING HERITAGE COLLECTION Textiles are an important part of our everyday lives. They clothe and comfort us, protect our first-responders, Introduction filter the air in our automobiles, and form the core of the fuselage in our newest aircraft. We enjoy their bright colors, wrap up in their warmth, and seldom give a second thought to how they make bicycles stronger and lighter or how they might be used to repair our vital organs. As textiles have changed from the first simple twisted fibers to high-tech smart fabrics, the tools and machinery used to make them have evolved as well. Drop spindles and spinning wheels have given way to long lines of spinning frames. And looms now use puffs of air instead of the human hand to insert the weft thread in a growing length of fabric. During the eighteenth and nineteenth centuries, textile manufacture was the catalyst for the Industrial Revolution in America. It was the leading edge in the transformation from an agricultural to a manufacturing economy and started the move of significant numbers of people from rural areas to urban centers. With industrialization came a change in the way people worked. No longer controlled by natural rhythms, the workday demanded a life governed by the factory bell. On the consumer side, industrialization transformed textiles from one of a person’s most valuable possessions to a product widely available at incredibly low prices. For more than a century, textile mills in Great Britain and the United States dominated textile production and led the industrial revolution in both Europe and North America. -
World Long Staple Market
August 2019 World Long Staple Market World long staple market: an uncertain outlook Antonia Prescott, Deputy Editor, Cotton Outlook The story of prices for both upland and long staple varieties in 2018/19 was one of progressive attrition. The Cotlook Pima quotation by now protracted trade dispute between the US, the 165 world’s largest exporter of cotton, and China, the largest consumer, has come to press more and more heavily on the 160 global market as hopes of a resolution that would see tariffs 155 on goods moving in both directions removed have been 150 repeatedly dashed. 145 140 Over the course of the 2018/19 season, upland prices lb per cents US as measured by the Cotlook A Index declined by about 25 135 percent, while the benchmark quotation for Pima (Grade 130 2, 1-7/16”, CFR Far East) displayed only a marginally greater level of resilience, relinquishing about 17 percent of its value in the same time frame. The Chinese Type 137 quotation fared somewhat better with only a 4.4 percent loss, but that still indicates a fall of 1,100 yuan per tonne Moreover, by historical comparison, long staple prices since the beginning of August 2018. appeared relatively cheap in relation to upland values. The average of the Cotlook Long Staple Premium (calculated by comparing our Pima quotation with the A Index) was just Cotlook Long Staple Premium T-137 price 2018/19 season 26,000 85 25,500 80 75 25,000 70 % 65 24,500 60 55 perYuan tonne 24,000 50 45 23,500 Page 3 over 69.7 percent, while the long-term mean stands at 91 August 31) and currently stand just shy of 88,000 tonnes, percent. -
1. Overview of Early Stage Wool Processing
1. Overview of Early Stage Wool Processing David Cottle & Errol Wood Learning objectives On completion of this topic you should be able to: • Outline the main wool processing systems, from greasy wool through to finished yarn; • Describe the essential features of the worsted, woollen and semiworsted processing routes, using an appropriate flow diagram; • Explain the similarities and differences between these routes with respect to (a) the raw material requirements, (b) complexity of each route, and (c) the properties and uses of the yarn produced by each. • Describe the essential differences between a woollen and worsted card. Key terms and concepts Worsted, woollen, semiworsted, blending, lubricating, scouring, carbonising, carding, gilling, combing, spinning, drafting, slubbing, top, sliver, roving Introduction to the topic This topic provides an overview of the steps involved in the early stage processing of wool (ESP), ie, the conversion of greasy wool into yarn. Subsequent topics in this unit provide more details on each processing step in early stage processing, as well as the steps involved in late stage processing. A brief outline of wool processing is provided by Teasdale (1995). Comprehensive information is provided Hunter (2002), Lawrence (2003), and in the review paper by Harrowfield (1987). Technical information relevant to this topic is available via the AWI website www.wool.com. 1.1 Overview of early stage processing There are two main systems used for processing wool from fibre into yarn: the worsted system and the woollen system (Figure 1.1). The semiworsted system, which was developed as a high production spinning route for synthetic fibres, is also used to process wool for carpet yarns. -
CORESPUN VERSUS SPUN POLY Threads
TECHNICAL BULLETIN CORESPUN VERSUS SPUN POLY Threads What are the major differences between A&E’s corespun brands like Perma Core® and D-Core® and Spun Polyester know in Asia as “pp” threads? What impact does using one versus the other have on the quality of your sewn products? CORESPUN Corespun threads, sometimes referred “pcore” or “polycore” or “cottoncore”, are made by wrapping a staple polyester or cotton wrapper around a continuous filament bundle of polyester fibers during spinning, and then plying these yarns into a sewing thread. The continuous filament polyester core makes up approximately 60% of the thread construction. This core contributes to: • Higher strength per size (higher tenacity) • Greater uniformity in size, strength and other physical characteristics • A higher initial modulus or resistance to stretching contributing to better loop formation and reduced seam puckering. • Better ply security – fewer unravel type thread breaks • Superior abrasion resistance & durability The wrapper of a corespun thread can be either staple polyester or staple cotton. The wrapper gives the thread a fibrous surface that contributes to: • A softer “hand” or feel than a 100% continuous filament threads • A matte finish stitch appearance similar to a spun thread construction • Superior frictional characteristics compared to a continuous filament threads • Poly wrapper contributing to: o Superior color fastness, chemical and abrasion resistance o Higher strength than cotton wrapped corespun threads o Superior “union dyeing” because of one-step dyeing process • Cotton wrapper contributing to: o Superior needle heat resistance o A “wash-down” stitch appearance TECHNICAL BULLETIN Core threads are recommended for the most demanding sewing applications from sewing fine blouses that are susceptible to seam puckering ..