Harmonic Analysis on Commutative Spaces Mathematical Surveys and Monographs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Stability of a Class of Functional Equations
Journal of Inequalities in Pure and Applied Mathematics ON THE STABILITY OF A CLASS OF FUNCTIONAL EQUATIONS volume 4, issue 5, article 104, BELAID BOUIKHALENE 2003. Département de Mathématiques et Informatique Received 20 July, 2003; Faculté des Sciences BP 133, accepted 24 October, 2003. 14000 Kénitra, Morocco. Communicated by: K. Nikodem EMail: [email protected] Abstract Contents JJ II J I Home Page Go Back Close c 2000 Victoria University ISSN (electronic): 1443-5756 Quit 098-03 Abstract In this paper, we study the Baker’s superstability for the following functional equation Z X −1 (E (K)) f(xkϕ(y)k )dωK (k) = |Φ|f(x)f(y), x, y ∈ G ϕ∈Φ K where G is a locally compact group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of On the Stability of A Class of G and f is a continuous complex-valued function on G satisfying the Kannap- Functional Equations pan type condition, for all x, y, z ∈ G Belaid Bouikhalene Z Z Z Z −1 −1 −1 −1 (*) f(zkxk hyh )dωK (k)dωK (h)= f(zkyk hxh )dωK (k)dωK (h). K K K K Title Page We treat examples and give some applications. Contents 2000 Mathematics Subject Classification: 39B72. Key words: Functional equation, Stability, Superstability, Central function, Gelfand JJ II pairs. The author would like to greatly thank the referee for his helpful comments and re- J I marks. Go Back Contents Close 1 Introduction, Notations and Preliminaries ............... -
Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces
Axioms 2013, 2, 224-270; doi:10.3390/axioms2020224 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Article Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces Sergey Ajiev School of Mathematical Sciences, Faculty of Science, University of Technology-Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; E-Mail: [email protected] Received: 4 March 2013; in revised form: 12 May 2013 / Accepted: 14 May 2013 / Published: 23 May 2013 Abstract: We introduce and study Clarkson, Dol’nikov-Pichugov, Jacobi and mutual diameter constants reflecting the geometry of a Banach space and Clarkson, Jacobi and Pichugov classes of Banach spaces and their relations with James, self-Jung, Kottman and Schaffer¨ constants in order to establish quantitative versions of Hahn-Banach separability theorem and to characterise the isometric extendability of Holder-Lipschitz¨ mappings. Abstract results are further applied to the spaces and pairs from the wide classes IG and IG+ and non-commutative Lp-spaces. The intimate relation between the subspaces and quotients of the IG-spaces on one side and various types of anisotropic Besov, Lizorkin-Triebel and Sobolev spaces of functions on open subsets of an Euclidean space defined in terms of differences, local polynomial approximations, wavelet decompositions and other means (as well as the duals and the lp-sums of all these spaces) on the other side, allows us to present the algorithm of extending the main results of the article to the latter spaces and pairs. Special attention is paid to the matter of sharpness. Our approach is quasi-Euclidean in its nature because it relies on the extrapolation of properties of Hilbert spaces and the study of 1-complemented subspaces of the spaces under consideration. -
Arxiv:1902.09497V5 [Math.DS]
GELFAND PAIRS ADMIT AN IWASAWA DECOMPOSITION NICOLAS MONOD Abstract. Every Gelfand pair (G,K) admits a decomposition G = KP , where P<G is an amenable subgroup. In particular, the Furstenberg boundary of G is homogeneous. Applications include the complete classification of non-positively curved Gelfand pairs, relying on earlier joint work with Caprace, as well as a canonical family of pure spherical functions in the sense of Gelfand–Godement for general Gelfand pairs. Let G be a locally compact group. The space M b(G) of bounded measures on G is an algebra for convolution, which is simply the push-forward of the multiplication map G × G → G. Definition. Let K<G be a compact subgroup. The pair (G,K) is a Gelfand pair if the algebra M b(G)K,K of bi-K-invariant measures is commutative. This definition, rooted in Gelfand’s 1950 work [14], is often given in terms of algebras of func- tions [12]. This is equivalent, by an approximation argument in the narrow topology, but has the inelegance of requiring the choice (and existence) of a Haar measure on G. Examples of Gelfand pairs include notably all connected semi-simple Lie groups G with finite center, where K is a maximal compact subgroup. Other examples are provided by their analogues over local fields [18], and non-linear examples include automorphism groups of trees [23],[2]. All these “classical” examples also have in common another very useful property: they admit a co-compact amenable subgroup P<G. In the semi-simple case, P is a minimal parabolic subgroup. -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
HEAT FLOW and QUANTITATIVE DIFFERENTIATION Contents 1
HEAT FLOW AND QUANTITATIVE DIFFERENTIATION TUOMAS HYTONEN¨ AND ASSAF NAOR Abstract. For every Banach space (Y; k · kY ) that admits an equivalent uniformly convex norm we prove that there exists c = c(Y ) 2 (0; 1) with the following property. Suppose that n 2 N and that X is an n-dimensional normed space with unit ball BX . Then for every 1-Lipschitz function cn f : BX ! Y and for every " 2 (0; 1=2] there exists a radius r > exp(−1=" ), a point x 2 BX with x + rBX ⊆ BX , and an affine mapping Λ : X ! Y such that kf(y) − Λ(y)kY 6 "r for every y 2 x+rBX . This is an improved bound for a fundamental quantitative differentiation problem that was formulated by Bates, Johnson, Lindenstrauss, Preiss and Schechtman (1999), and consequently it yields a new proof of Bourgain's discretization theorem (1987) for uniformly convex targets. The strategy of our proof is inspired by Bourgain's original approach to the discretization problem, which takes the affine mapping Λ to be the first order Taylor polynomial of a time-t Poisson evolute of an extension of f to all of X and argues that, under appropriate assumptions on f, there must exist a time t 2 (0; 1) at which Λ is (quantitatively) invertible. However, in the present context we desire a more stringent conclusion, namely that Λ well-approximates f on a macroscopically large ball, in which case we show that for our argument to work one cannot use the Poisson semigroup. Nevertheless, our strategy does succeed with the Poisson semigroup replaced by the heat semigroup. -
Regularization and Simulation of Constrained Partial Differential
Regularization and Simulation of Constrained Partial Differential Equations vorgelegt von Diplom-Mathematiker Robert Altmann aus Berlin Von der Fakult¨atII - Mathematik und Naturwissenschaften der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Noemi Kurt Berichter: Prof. Dr. Volker Mehrmann Berichterin: Prof. Dr. Caren Tischendorf Berichter: Prof. Dr. Alexander Ostermann Tag der wissenschaftlichen Aussprache: 29. 05. 2015 Berlin 2015 Contents Zusammenfassung . v Abstract . vii Published Papers. ix 1. Introduction . 1 Part A Preliminaries 5 2. Differential-algebraic Equations (DAEs) . 6 2.1. Index Concepts . 6 2.1.1. Differentiation Index. 7 2.1.2. Further Index Concepts. 8 2.2. High-index DAEs . 8 2.3. Index Reduction Techniques. 9 2.3.1. Index Reduction by Differentiation . 9 2.3.2. Minimal Extension . 9 3. Functional Analytic Tools . 11 3.1. Fundamentals . 11 3.1.1. Dual Operators and Riesz Representation Theorem . 11 3.1.2. Test Functions and Distributions . 12 3.1.3. Sobolev Spaces . 13 3.1.4. Traces . 14 3.1.5. Poincar´eInequality and Negative Norms . 15 3.1.6. Weak Convergence and Compactness . 17 3.2. Bochner Spaces . 17 3.3. Sobolev-Bochner Spaces . 20 3.3.1. Gelfand Triples . 20 3.3.2. Definition and Embeddings . 21 4. Abstract Differential Equations . 23 4.1. Nemytskii Mapping . 23 4.2. Operator ODEs . 24 4.2.1. First-order Equations . 25 4.2.2. Second-order Equations. 26 4.3. Operator DAEs . 27 i 5. Discretization Schemes . 29 5.1. Spatial Discretization . 29 5.1.1. -
Symmetric Spaces of Hermitian Type
Differential Geometry and its Applications 1 (1991) 195-233 195 North-Holland Symmetric spaces of Hermitian type G. ‘Olafsson Mathematisches Znstitut der Uniuersitit Giittingen, Bunsenstraj?e 3-5, D-3400 Giittingen Received 7 February 1991 ‘Olafsson, G., Symmetric spaces of Hermitian type, Diff. Geom. Appl. 1 (1991) 195-233. Abstract: Let M = G/H be a semisimple symmetric space, r the corresponding involution and D = G/K the Riemannian symmetric space. Then we show that the following are equivalent: M is of Hermitian type; r induces a conjugation on D; there exists an open regular H-invariant cone R in q = h’ such that k n 0 # 0. We relate the spaces of Hermitian type to the regular and parahermitian symmetric spaces, analyze the fine structure of D under r and construct an equivariant Cayley transform. We collect also some results on the classification of invariant cones in q. Finally we point out some applications in representations theory. Keywords: Symmetric spaces, semisimple Lie groups, invariant convex cones, causal orientation, ordering, convexity theorem. MS classification: 53635, 57S25, 22E15, 06AlO. Introduction Bounded symmetric domains and their unbounded counterparts, the Siegel domains, have long been an important part of different fields of mathematics, e.g., number theory, algebraic geometry, harmonic analysis and representations theory. So the holomorphic discrete series and other interesting representations of a group live in spaces of holo- morphic functions on such domains. In the last years some interplays with harmonic analysis on affine symmetric spaces have also become apparent, e.g., a construction of non-zero harmonic forms related to the discrete series of such spaces (see [44] and the literature there). -
MAT 449 : Representation Theory
MAT 449 : Representation theory Sophie Morel December 17, 2018 Contents I Representations of topological groups5 I.1 Topological groups . .5 I.2 Haar measures . .9 I.3 Representations . 17 I.3.1 Continuous representations . 17 I.3.2 Unitary representations . 20 I.3.3 Cyclic representations . 24 I.3.4 Schur’s lemma . 25 I.3.5 Finite-dimensional representations . 27 I.4 The convolution product and the group algebra . 28 I.4.1 Convolution on L1(G) and the group algebra of G ............ 28 I.4.2 Representations of G vs representations of L1(G) ............. 33 I.4.3 Convolution on other Lp spaces . 39 II Some Gelfand theory 43 II.1 Banach algebras . 43 II.1.1 Spectrum of an element . 43 II.1.2 The Gelfand-Mazur theorem . 47 II.2 Spectrum of a Banach algebra . 48 II.3 C∗-algebras and the Gelfand-Naimark theorem . 52 II.4 The spectral theorem . 55 III The Gelfand-Raikov theorem 59 III.1 L1(G) ....................................... 59 III.2 Functions of positive type . 59 III.3 Functions of positive type and irreducible representations . 65 III.4 The convex set P1 ................................. 68 III.5 The Gelfand-Raikov theorem . 73 IV The Peter-Weyl theorem 75 IV.1 Compact operators . 75 IV.2 Semisimplicity of unitary representations of compact groups . 77 IV.3 Matrix coefficients . 80 IV.4 The Peter-Weyl theorem . 86 IV.5 Characters . 87 3 Contents IV.6 The Fourier transform . 90 IV.7 Characters and Fourier transforms . 93 V Gelfand pairs 97 V.1 Invariant and bi-invariant functions . -
Arxiv:1810.00775V1 [Math-Ph] 1 Oct 2018 .Introduction 1
Modular structures and extended-modular-group-structures after Hecke pairs Orchidea Maria Lecian Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Theoretical Physics and Physics Education- KTFDF, Mlynsk´aDolina F2, 842 48, Bratislava, Slovakia; Sapienza University of Rome, Faculty of Civil and Industrial Engineering, DICEA- Department of Civil, Constructional and Environmental Engineering, Via Eudossiana, 18- 00184 Rome, Italy. E-mail: [email protected]; [email protected] Abstract. The simplices and the complexes arsing form the grading of the fundamental (desymmetrized) domain of arithmetical groups and non-arithmetical groups, as well as their extended (symmetrized) ones are described also for oriented manifolds in dim > 2. The conditions for the definition of fibers are summarized after Hamiltonian analysis, the latters can in some cases be reduced to those for sections for graded groups, such as the Picard groups and the Vinberg group.The cases for which modular structures rather than modular-group- structure measures can be analyzed for non-arithmetic groups, i.e. also in the cases for which Gelfand triples (rigged spaces) have to be substituted by Hecke couples, as, for Hecke groups, the existence of intertwining operators after the calculation of the second commutator within the Haar measures for the operators of the correspondingly-generated C∗ algebras is straightforward. The results hold also for (also non-abstract) groups with measures on (manifold) boundaries. The Poincar´e invariance of the representation of Wigner-Bargmann (spin 1/2) particles is analyzed within the Fock-space interaction representation. The well-posed-ness of initial conditions and boundary ones for the connected (families of) equations is discussed. -
Linear Algebraic Groups
Clay Mathematics Proceedings Volume 4, 2005 Linear Algebraic Groups Fiona Murnaghan Abstract. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups. 1. Algebraic groups Let K be an algebraically closed field. An algebraic K-group G is an algebraic variety over K, and a group, such that the maps µ : G × G → G, µ(x, y) = xy, and ι : G → G, ι(x)= x−1, are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set) in Kn for some natural number n, we say that G is a linear algebraic group. If G and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group isomorphism. A closed subgroup of an algebraic group is an algebraic group. If H is a closed subgroup of a linear algebraic group G, then G/H can be made into a quasi- projective variety (a variety which is a locally closed subset of some projective space). If H is normal in G, then G/H (with the usual group structure) is a linear algebraic group. Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G. -
Complex-Symmetric Spaces Annales De L’Institut Fourier, Tome 39, No 2 (1989), P
ANNALES DE L’INSTITUT FOURIER RALF LEHMANN Complex-symmetric spaces Annales de l’institut Fourier, tome 39, no 2 (1989), p. 373-416 <http://www.numdam.org/item?id=AIF_1989__39_2_373_0> © Annales de l’institut Fourier, 1989, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 39, 2 (1989), 373-416. COMPLEX-SYMMETRIC SPACES by Ralf LEHMANN 0. Introduction. Let M be a complete complex Hermitian manifold. Then M is called a Hermitian symmetric space, if and only if for every x e M there exists a holomorphic isometry of order two which has x as an isolated fixed point. This condition immediately implies that the group of holomorphic isometries acts transitively on M and that the Hermitian metric is Kahlerian. Moreover, each compact Hermitian symmetric space can be written as a product of a compact torus and a homogeneous projective rational manifold which is Hermitian symmetric. These manifolds are classified by using the classification of semisimple Lie algebras (see e.g. [Hel] and [Ca]). Generalizations of symmetric spaces to the infinite-dimensional case have turned out to be very interesting (see e.g. [K]). We are concerned here with manifolds where the isometry condition is dropped. -
Nilpotent Orbits and Theta-Stable Parabolic Subalgebras
REPRESENTATION THEORY An Electronic Journal of the American Mathematical Society Volume 2, Pages 1{32 (February 3, 1998) S 1088-4165(98)00038-7 NILPOTENT ORBITS AND THETA-STABLE PARABOLIC SUBALGEBRAS ALFRED G. NOEL¨ Abstract. In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on p , the “complex symmetric space associated C with g”. The Kostant-Sekiguchi correspondence, a bijection between nilpotent orbits in g and nilpotent orbits in p , is also used. We identify a fundamental C set of noticed nilpotents in p and show that they allow us to recover all other C nilpotents. Finally, we study the behaviour of a principal orbit, that is an orbit of maximal dimension, under our classification. This is not done in the other classification schemes currently available in the literature. Introduction Let g be a semisimple Lie algebra and G its adjoint group. We say that an C C element x of g is nilpotent if and only if, ad : y [x; y] for all y g ,isa C x C nilpotent endomorphism of g . Kostant (see also Dynkin→ [Dy]) has shown,∈ in his C fundamental 1959 paper [Ko], that the number of nilpotent orbits of G in g is C C finite. The Bala-Carter classification can be expressed as follows: There is a one-to-one correspondence between nilpotent orbits of g and con- C jugacy classes of pairs (m; p ), where m is a Levi subalgebra of g and p is a m C m distinguished parabolic subalgebra of the semisimple algebra [m; m].