Analyze Phase D> Statistical Inference

Total Page:16

File Type:pdf, Size:1020Kb

Analyze Phase D> Statistical Inference Analyze Phase 331 60000 50000 40000 30000 20000 10000 O~----,------.------,------,,------,------.------,----- N = 227 136 27 41 32 5 ' V~ 00 0' 00 00 i-.~ ~G ~~ ~O~ ()0 -Sfl' 0 -S 0 ~~ 0 ~~ ~G d> ~0~ ~0 0 2S ~~ 0'0 (j «l Employment category FIGURE 10.7 Boxplots of salary by job category. Boxplots are particularly useful for comparing the distribution of values in several groups. Figure 10.7 shows boxplots for the salaries for several different job titles. The boxplot makes it easy to see the different properties of the distributions. The location, variability, and shapes of the distributions are obvious at a glance. This ease of interpretation is something that statistics alone cannot provide. Statistical Inference This section discusses the basic concept of statistical inference. The reader should also consult the glossary in the Appendix for additional information. Inferential statistics belong to the enumerative class of statistical methods. All statements made in this sec­ tion are valid only for stable processes, that is, processes in statistical control. Although most applications of Six Sigma are analytic, there are times when enumerative statistics prove useful. The term inference is defined as (1) the act or process of deriving logical conclusions from premises known or assumed to be true, or (2) the act of reasoning from factual knowledge or evidence. Inferential statistics provide information that is used in the process of inference. As can be seen from the definitions, inference involves two domains: the premises and the evidence or factual knowledge. Additionally, there are two conceptual frameworks for addressing premises questions in inference: the design-based approach and the model-based approach. As discussed by Koch and Gillings (1983), a statistical analysis whose only assump­ tions are random selection of units or random allocation of units to experimental condi­ tions results in design-based inferences; or, equivalently, randomization-based inferences. The objective is to structure sampling such that the sampled population has the same 332 Chap te r Ten characteristics as the target population. If this is accomplished then inferences from the sample are said to have internal validity. A limitation on design-based inferences for experimental studies is that formal conclusions are restricted to the finite population of subjects that actually received treatment, that is, they lack external validity. However, if sites and subjects are selected at random from larger eligible sets, then models with random effects provide one possible way of addressing both internal and external validity considerations. One important consideration for external validity is that the sample coverage includes all relevant subpopulations; another is that treatment differ­ ences be homogeneous across subpopulations. A common application of design-based inference is the survey. Alternatively, if assumptions external to the study design are required to extend inferences to the target population, then statistical analyses based on postulated prob­ ability distributional forms (e.g., binomial, normal, etc.) or other stochastic processes yield model-based inferences. A focus of distinction between design-based and model­ based studies is the population to which the results are generalized rather than the nature of the statistical methods applied. When using a model-based approach, external validity requires substantive justification for the model's assumptions, as well as statis­ tical evaluation of the assumptions. Statistical inference is used to provide probabilistic statements regarding a scientific inference. Science attempts to provide answers to basic questions, such as can this machine meet our requirements? Is the quality of this lot within the terms of our con­ tract? Does the new method of processing produce better results than the old? These questions are answered by conducting an experiment, which produces data. If the data vary, then statistical inference is necessary to interpret the answers to the questions posed. A statistical model is developed to describe the probabilistic structure relating the observed data to the quantity of interest (the parameters), that is, a scientific hypoth­ esis is formulated. Rules are applied to the data and the scientific hypothesis is either rejected or not. In formal tests of a hypothesis, there are usually two mutually exclusive and exhaustive hypotheses formulated: a null hypothesis and an alternate hypothesis. Chi-Square, Student's T, and F Distributions In addition to the distributions present earlier in the Measure phase, these three distri­ butions are used in Six Sigma to test hypotheses, construct confidence intervals, and compute control limits. Chi-Square Many characteristics encountered in Six Sigma have normal or approximately normal distributions. It can be shown that in these instances the distribution of sample vari­ ances has the form (except for a constant) of a chi-square distribution, symbolized X2. Tables have been constructed giving abscissa values for selected ordinates of the cumu­ lative X2 distribution. One such table is given in Appendix 4. The X2 distribution varies with the quantity u, which for our purposes is equal to the sample size minus 1. For each value of u there is a different X2 distribution. Equation (10.3) gives the pdf for the X2. (10.3) 336 Chapter Ten 1.0 0.8 F(2,2) 0.6 0.4 0.2 0.0 0 2 4 6 8 10 F 8 7 6 5 4 3 2 2 4 6 8 10 F FIGURE 10.12 F distributions. denominator. Appendix 5 and 6 provide values for the 1 and 5% percentage points for the F distribution. The percentages refer to the areas to the right of the values given in the tables. Figure 10.12 illustrates two F distributions. Point and Interval Estimation So far, we have introduced a number of important statistics including the sample mean, the sample standard deviation, and the sample variance. These sample statistics are called point estimators because they are single values used to represent population parameters. It is also possible to construct an interval about the statistics that has a pre­ determined probability of including the true population parameter. This interval is called a confidence interval. Interval estimation is an alternative to point estimation that gives us a better idea of the magnitude of the sampling error. Confidence intervals can be either one-sided or two-sided. A one-sided or confidence interval places an upper or lower bound on the value of a parameter with a specified level of confidence. A two­ sided confidence interval places both upper and lower bounds. In almost all practical applications of enumerative statistics, including Six Sigma applications, we make inferences about populations based on data from samples . In this chapter, we have talked about sample averages and standard deviations; we have even used these numbers to make statements about future performance, such as long term Analyze Phase 337 yields or potential failures. A problem arises that is of considerable practical impor­ tance: any estimate that is based on a sample has some amount of sampling error. This is true even though the sample estimates are the "best estimates" in the sense that they are (usually) unbiased estimators of the population parameters. Estimates of the Mean For random samples with replacement, the sampling distribution of X has a mean /.1 £!..nd a standard deviation equal to (J/.};;. For large samples the sampling distribution of X is approximately normal and normal tables can be used to find the probability that a sam­ ple mean will be within a given distance of /.1. For example, in 95% of the samples we will observe..E mean within t..1.96(J/.};; of /.1. In other words, in 95% of the samples the interval from X -1.96(J/.};; to X + 1.96(J/.};; will include /.1. This interval is called a "95% confidence interval for estimating /.1." It is usually shown using inequality symbols: X -1.96(J/.};; < /.1X + 1.96(J/.};; The factor 1.96 is the Z value obtained from the normal in the Appendix 2. It corre­ sponds to the Z value beyond which 2.5% of the population lie. Since the normal distri­ bution is symmetric, 2.5% of the distribution lies above Z and 2.5% below -Z. The notation commonly used to denote Z values for confidence interval construction or hypothesis testing is Za/ z where 100(1 - a) is the desired confidence level in percent. For example, if we want 95% confidence, a = 0:05,100(1- a) = 95%, and ZO.025 = 1.96. In hypoth­ esis testing the value of a is known as the significance level. Example: Estimating Jl When 0' Is Known Supp~e that cr is known to be 2.8. Assume that we collect a sample of n = 16 and com­ pute X = 15.7. Using the e equation mentioned in previous section we find the 95% confidence interval for /.1 as follows: X-1.96cr/.};; < /.1 < X + 1.96cr/.};; 15.7 -1.96(2.8/.Ji6) < /.1 < 15.7+1.96(2.8/.Ji6) 14.33 < /.1 < 17.07 There is a 95% level of confidence associated with this interval. The numbers 14.33 and 17.07 are sometimes referred to as the confidence limits. Note that this is a two-sided confidence interval. There is a 2.5% probability that 17.07 is lower than /.1 and a 2.5% probability that 14.33 is greater than /.1. If we were only interested in, say, the probability that /.1 were greater than 14.33, then the one­ sided confidence interval would be /.1 > 14.33 and the one-sided confidence level would be 97.5%. Example of Using Microsoft Excel to Calculate the Confidence Interval for the Mean When Sigma Is Known Microsoft Excel has a built-in capability to calculate confidence intervals for the mean.
Recommended publications
  • Confidence Interval Estimation in System Dynamics Models: Bootstrapping Vs
    Confidence Interval Estimation in System Dynamics Models: Bootstrapping vs. Likelihood Ratio Method Gokhan Dogan* MIT Sloan School of Management, 30 Wadsworth Street, E53-364, Cambridge, Massachusetts 02142 [email protected] Abstract In this paper we discuss confidence interval estimation for system dynamics models. Confidence interval estimation is important because without confidence intervals, we cannot determine whether an estimated parameter value is significantly different from 0 or any other value, and therefore we cannot determine how much confidence to place in the estimate. We compare two methods for confidence interval estimation. The first, the “likelihood ratio method,” is based on maximum likelihood estimation. This method has been used in the system dynamics literature and is built in to some popular software packages. It is computationally efficient but requires strong assumptions about the model and data. These assumptions are frequently violated by the autocorrelation, endogeneity of explanatory variables and heteroskedasticity properties of dynamic models. The second method is called “bootstrapping.” Bootstrapping requires more computation but does not impose strong assumptions on the model or data. We describe the methods and illustrate them with a series of applications from actual modeling projects. Considering the empirical results presented in the paper and the fact that the bootstrapping method requires less assumptions, we suggest that bootstrapping is a better tool for confidence interval estimation in system dynamics
    [Show full text]
  • WHAT DID FISHER MEAN by an ESTIMATE? 3 Ideas but Is in Conflict with His Ideology of Statistical Inference
    Submitted to the Annals of Applied Probability WHAT DID FISHER MEAN BY AN ESTIMATE? By Esa Uusipaikka∗ University of Turku Fisher’s Method of Maximum Likelihood is shown to be a proce- dure for the construction of likelihood intervals or regions, instead of a procedure of point estimation. Based on Fisher’s articles and books it is justified that by estimation Fisher meant the construction of likelihood intervals or regions from appropriate likelihood function and that an estimate is a statistic, that is, a function from a sample space to a parameter space such that the likelihood function obtained from the sampling distribution of the statistic at the observed value of the statistic is used to construct likelihood intervals or regions. Thus Problem of Estimation is how to choose the ’best’ estimate. Fisher’s solution for the problem of estimation is Maximum Likeli- hood Estimate (MLE). Fisher’s Theory of Statistical Estimation is a chain of ideas used to justify MLE as the solution of the problem of estimation. The construction of confidence intervals by the delta method from the asymptotic normal distribution of MLE is based on Fisher’s ideas, but is against his ’logic of statistical inference’. Instead the construc- tion of confidence intervals from the profile likelihood function of a given interest function of the parameter vector is considered as a solution more in line with Fisher’s ’ideology’. A new method of cal- culation of profile likelihood-based confidence intervals for general smooth interest functions in general statistical models is considered. 1. Introduction. ’Collected Papers of R.A.
    [Show full text]
  • A Framework for Sample Efficient Interval Estimation with Control
    A Framework for Sample Efficient Interval Estimation with Control Variates Shengjia Zhao Christopher Yeh Stefano Ermon Stanford University Stanford University Stanford University Abstract timates, e.g. for each individual district or county, meaning that we need to draw a sufficient number of We consider the problem of estimating confi- samples for every district or county. Another diffi- dence intervals for the mean of a random vari- culty can arise when we need high accuracy (i.e. a able, where the goal is to produce the smallest small confidence interval), since confidence intervals possible interval for a given number of sam- producedp by typical concentration inequalities have size ples. While minimax optimal algorithms are O(1= number of samples). In other words, to reduce known for this problem in the general case, the size of a confidence interval by a factor of 10, we improved performance is possible under addi- need 100 times more samples. tional assumptions. In particular, we design This dilemma is generally unavoidable because concen- an estimation algorithm to take advantage of tration inequalities such as Chernoff or Chebychev are side information in the form of a control vari- minimax optimal: there exist distributions for which ate, leveraging order statistics. Under certain these inequalities cannot be improved. No-free-lunch conditions on the quality of the control vari- results (Van der Vaart, 2000) imply that any alter- ates, we show improved asymptotic efficiency native estimation algorithm that performs better (i.e. compared to existing estimation algorithms. outputs a confidence interval with smaller size) on some Empirically, we demonstrate superior perfor- problems, must perform worse on other problems.
    [Show full text]
  • Likelihood Confidence Intervals When Only Ranges Are Available
    Article Likelihood Confidence Intervals When Only Ranges are Available Szilárd Nemes Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden; [email protected] Received: 22 December 2018; Accepted: 3 February 2019; Published: 6 February 2019 Abstract: Research papers represent an important and rich source of comparative data. The change is to extract the information of interest. Herein, we look at the possibilities to construct confidence intervals for sample averages when only ranges are available with maximum likelihood estimation with order statistics (MLEOS). Using Monte Carlo simulation, we looked at the confidence interval coverage characteristics for likelihood ratio and Wald-type approximate 95% confidence intervals. We saw indication that the likelihood ratio interval had better coverage and narrower intervals. For single parameter distributions, MLEOS is directly applicable. For location-scale distribution is recommended that the variance (or combination of it) to be estimated using standard formulas and used as a plug-in. Keywords: range, likelihood, order statistics, coverage 1. Introduction One of the tasks statisticians face is extracting and possibly inferring biologically/clinically relevant information from published papers. This aspect of applied statistics is well developed, and one can choose to form many easy to use and performant algorithms that aid problem solving. Often, these algorithms aim to aid statisticians/practitioners to extract variability of different measures or biomarkers that is needed for power calculation and research design [1,2]. While these algorithms are efficient and easy to use, they mostly are not probabilistic in nature, thus they do not offer means for statistical inference. Yet another field of applied statistics that aims to help practitioners in extracting relevant information when only partial data is available propose a probabilistic approach with order statistics.
    [Show full text]
  • 32. Statistics 1 32
    32. Statistics 1 32. STATISTICS Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model’s validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment. The most important tools in this framework are parameter estimation, covered in Section 32.1, and statistical tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed so as to cover the true value of a parameter with a specified probability, are treated in Section 32.3.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for a parameter. Frequentist statistics provides the usual tools for reporting objectively the outcome of an experiment without needing to incorporate prior beliefs concerning the parameter being measured or the theory being tested. As such they are used for reporting most measurements and their statistical uncertainties in High Energy Physics. In Bayesian statistics, the interpretation of probability is more general and includes degree of belief (called subjective probability). One can then speak of a probability density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about where its true value lies. Bayesian methods allow for a natural way to input additional information, such as physical boundaries and subjective information; in fact they require as input the prior p.d.f.
    [Show full text]
  • Interval Estimation Statistics (OA3102)
    Module 5: Interval Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.5-8.9 Revision: 1-12 1 Goals for this Module • Interval estimation – i.e., confidence intervals – Terminology – Pivotal method for creating confidence intervals • Types of intervals – Large-sample confidence intervals – One-sided vs. two-sided intervals – Small-sample confidence intervals for the mean, differences in two means – Confidence interval for the variance • Sample size calculations Revision: 1-12 2 Interval Estimation • Instead of estimating a parameter with a single number, estimate it with an interval • Ideally, interval will have two properties: – It will contain the target parameter q – It will be relatively narrow • But, as we will see, since interval endpoints are a function of the data, – They will be variable – So we cannot be sure q will fall in the interval Revision: 1-12 3 Objective for Interval Estimation • So, we can’t be sure that the interval contains q, but we will be able to calculate the probability the interval contains q • Interval estimation objective: Find an interval estimator capable of generating narrow intervals with a high probability of enclosing q Revision: 1-12 4 Why Interval Estimation? • As before, we want to use a sample to infer something about a larger population • However, samples are variable – We’d get different values with each new sample – So our point estimates are variable • Point estimates do not give any information about how far
    [Show full text]
  • Confidence Intervals in Analysis and Reporting of Clinical Trials Guangbin Peng, Eli Lilly and Company, Indianapolis, IN
    Confidence Intervals in Analysis and Reporting of Clinical Trials Guangbin Peng, Eli Lilly and Company, Indianapolis, IN ABSTRACT for more frequent use of confidence Regulatory agencies around the world intervals (Simon, 1993). have recommended reporting confidence There is a close relationship between intervals for treatment differences along confidence intervals and significance with the results of significance tests. tests (Hahn and Meeker, 1991); in fact, a SAS provides easy and convenient ways confidence interval can often be used to to produce confidence intervals using test a hypothesis. If the 100(1-α)% procedures such as PROC GLM and confidence interval for the mean PROC UNIVARIATE in conjunction treatment difference in a clinical trial with ODS (output delivery system). In does not contain zero, there is evidence this paper, I will discuss the relationship to indicate a treatment difference at the between significance tests and 100 α % significance level. This strategy confidence intervals, summarize the is equivalent to the hypothesis test that types of confidence intervals used in rejects the null hypothesis of no mean clinical study reports, and provide treatment difference at the level of α. examples from clinical trials to illustrate Compared to p-values, confidence the computation of distribution- intervals are generally more informative. dependent confidence intervals for the They provide quantitative bounds that mean treatment difference and express the uncertainty inherent in distribution-free confidence intervals for estimation, instead of merely an accept the median response within each or reject statement. The length of a treatment group using SAS. confidence interval depends on the sample size; this influence of sample INTRODUCTION size is evident from observing the length Confidence interval estimation and of the interval, while this is not the case significance testing (hypothesis testing) for a significance test.
    [Show full text]
  • Interval Estimation for Drop-The-Losers Designs
    Biometrika (2010), 97,2,pp. 405–418 doi: 10.1093/biomet/asq003 C 2010 Biometrika Trust Advance Access publication 14 April 2010 Printed in Great Britain Interval estimation for drop-the-losers designs BY SAMUEL S. WU Department of Epidemiology and Health Policy Research, University of Florida, Gainesville, Florida 32610, U.S.A. [email protected]fl.edu WEIZHEN WANG Downloaded from Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, U.S.A. [email protected] AND MARK C. K. YANG Department of Statistics, University of Florida, Gainesville, Florida 32610, U.S.A. http://biomet.oxfordjournals.org [email protected]fl.edu SUMMARY In the first stage of a two-stage, drop-the-losers design, a candidate for the best treatment is selected. At the second stage, additional observations are collected to decide whether the candidate is actually better than the control. The design also allows the investigator to stop the trial for ethical reasons at the end of the first stage if there is already strong evidence of futility or superiority. Two types of tests have recently been developed, one based on the combined means and the other based on the combined p-values, but corresponding inter- at University of Florida on May 27, 2010 val estimators are unavailable except in special cases. The problem is that, in most cases, the interval estimators depend on the mean configuration of all treatments in the first stage, which is unknown. In this paper, we prove a basic stochastic ordering lemma that enables us to bridge the gap between hypothesis testing and interval estimation.
    [Show full text]
  • Interval Estimation, Point Estimation, and Null Hypothesis Significance Testing Calibrated by an Estimated Posterior Probability of the Null Hypothesis David R
    Interval estimation, point estimation, and null hypothesis significance testing calibrated by an estimated posterior probability of the null hypothesis David R. Bickel To cite this version: David R. Bickel. Interval estimation, point estimation, and null hypothesis significance testing cali- brated by an estimated posterior probability of the null hypothesis. 2020. hal-02496126 HAL Id: hal-02496126 https://hal.archives-ouvertes.fr/hal-02496126 Preprint submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interval estimation, point estimation, and null hypothesis significance testing calibrated by an estimated posterior probability of the null hypothesis March 2, 2020 David R. Bickel Ottawa Institute of Systems Biology Department of Biochemistry, Microbiology and Immunology Department of Mathematics and Statistics University of Ottawa 451 Smyth Road Ottawa, Ontario, K1H 8M5 +01 (613) 562-5800, ext. 8670 [email protected] Abstract Much of the blame for failed attempts to replicate reports of scientific findings has been placed on ubiquitous and persistent misinterpretations of the p value. An increasingly popular solution is to transform a two-sided p value to a lower bound on a Bayes factor. Another solution is to interpret a one-sided p value as an approximate posterior probability.
    [Show full text]
  • Statistical Inference II: Interval Estimation and Hypotheses Tests
    Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing The Principles of Interval Estimation and Hypothesis Testing 1. Introduction In Statistical Inference I we described how to estimate the mean and variance of a population, and the properties of those estimation procedures. In Statistical Inference II we introduce two more aspects of statistical inference: confidence intervals and hypothesis tests. In contrast to a point estimate of the population mean β, like b = 17.158, a confidence interval estimate is a range of values which may contain the true population mean. A confidence interval estimate contains information not only about the location of the population mean but also about the precision with which we estimate it. A hypothesis test is a statistical procedure for using data to check the compatibility of a conjecture about a population with the information contained in a sample of data. Continuing the example from Statistical Inference I, suppose airplane designers have been basing seat designs based on the assumption that the average hip width of U.S. passengers is 16 inches. Is the information contained in the random sample of 50 hip measurements compatible with this conjecture, or not? These are the issues we consider in Statistical Inference II. 2. Interval Estimation for Mean of Normal Population When σ2 is Known Let Y be a random variable from a normal population. That is, assume YN~,()β σ2 . Assume that we have a random sample of size T from this population, YY12,,, YT . The least squares estimator of the population mean is T = bYT∑ i (2.1) i=1 This estimator has a normal distribution if the population is normal, bN~,()βσ2 T (2.2) For the present, let us assume that the population variance σ2 is known.
    [Show full text]
  • Contents 3 Parameter and Interval Estimation
    Probability and Statistics (part 3) : Parameter and Interval Estimation (by Evan Dummit, 2020, v. 1.25) Contents 3 Parameter and Interval Estimation 1 3.1 Parameter Estimation . 1 3.1.1 Maximum Likelihood Estimates . 2 3.1.2 Biased and Unbiased Estimators . 5 3.1.3 Eciency of Estimators . 8 3.2 Interval Estimation . 12 3.2.1 Condence Intervals . 12 3.2.2 Normal Condence Intervals . 13 3.2.3 Binomial Condence Intervals . 16 3 Parameter and Interval Estimation In the previous chapter, we discussed random variables and developed the notion of a probability distribution, and then established some fundamental results such as the central limit theorem that give strong and useful information about the statistical properties of a sample drawn from a xed, known distribution. Our goal in this chapter is, in some sense, to invert this analysis: starting instead with data obtained by sampling a distribution or probability model with certain unknown parameters, we would like to extract information about the most reasonable values for these parameters given the observed data. We begin by discussing pointwise parameter estimates and estimators, analyzing various properties that we would like these estimators to have such as unbiasedness and eciency, and nally establish the optimality of several estimators that arise from the basic distributions we have encountered such as the normal and binomial distributions. We then broaden our focus to interval estimation: from nding the best estimate of a single value to nding such an estimate along with a measurement of its expected precision. We treat in scrupulous detail several important cases for constructing such condence intervals, and close with some applications of these ideas to polling data.
    [Show full text]
  • Applied Resampling Methods
    APPLIED RESAMPLING METHODS Michael A. Martin, PhD, AStat Steven E. Stern, PhD, AStat © 2001 Michael A. Martin and Steven E. Stern [email protected] [email protected] 3 MAJOR GOALS OF STATISTICS 1. What data should I collect? How do I collect my data (sampling)? What assumptions am I making about my data? 2. How do I organise and analyse my data? Graphically? Numerically? 3. What do my data analyses and summaries mean? How “accurate” are my estimators? How “precise” are my estimators? What do “accurate” and “precise” even mean? Statistical Inference promises answers to 3. A simple example: Does aspirin prevent heart attacks? Experimental situation: population consists of healthy, middle-aged men Type of study: Controlled – half of the subjects were given aspirin, the other half a placebo (control group) Randomised – subjects were randomly assigned to aspirin and placebo groups Double-blind – neither patients nor doctors knew to which group patients belonged The Data: Subjects heart attacks Aspirin Group 11037 104 Placebo Group 11034 189 How might we analyse this data? One possible approach (there are others…) Rate of heart attacks in aspirin group: 104 =0.0094. 11037 Rate of heart attacks in placebo group: 189 =0.0171. 11034 A reasonable statistic of interest is qˆ = Rate in Aspirin Group =0.55. Rate in Placebo Group This is a ratio estimator. We could also take logs to produce a location-type estimator based † on differences. † † Now what? How did we do? Data Collection: • the use of a control group allows meaningful comparison………………… 3 • randomisation reduces the risk of systematic bias……………………………3 • double-blind study removes potential for “psychological” effects or the tendency for doctors to treat higher-risk patients……3 Analysing data: • The statistic of interest makes sense – it obviously compares the rate of heart attacks between the two groups.
    [Show full text]