Iron Phthalocyanine/Graphene Composites As Promising Electrocatalysts for the Oxygen Reduction Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Iron Phthalocyanine/Graphene Composites As Promising Electrocatalysts for the Oxygen Reduction Reaction energies Review Iron Phthalocyanine/Graphene Composites as Promising Electrocatalysts for the Oxygen Reduction Reaction Jong S. Park 1 and Dong Wook Chang 2,* 1 Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea; [email protected] 2 Department of Industrial Chemistry, Pukyong National University, Busan 48513, Korea * Correspondence: [email protected]; Tel.: +82-51-629-6444 Received: 21 May 2020; Accepted: 31 July 2020; Published: 6 August 2020 Abstract: Recently, the development of non-precious electrocatalysts for the oxygen reduction reaction (ORR) has become important in replacing currently employed platinum (Pt)-based catalysts. Although Pt-based catalysts exhibit satisfactory ORR performances, their high price, easy methanol/CO2 poisoning, and poor long-term stability significantly hamper the forward movement of fuel cell technology. Among the various candidates, graphene-supported iron phthalocyanine (FePc) composites have attracted great attention because of their unique advantages, including low cost, good dimensional stability, high durability, and tunable catalytic activity. In the composite catalyst, FePc molecules are immobilized on graphene via noncovalent or covalent interactions. In addition, two-dimensional graphene substrates can improve not only the electrical conductivity of the composite, but also the dispersion of FePc molecules, triggering a significant improvement in the catalytic properties of the composite catalyst. Herein, we summarize the recent advances in FePc/graphene composite catalysts used for the ORR. Moreover, we discuss the challenges and future perspectives of this promising field. Keywords: electrocatalysts; oxygen reduction reaction; graphene; iron phthalocyanine; composite 1. Introduction As demand to reduce emerging environmental and energy-related global issues has increased, enormous attention has been paid to the development of green and sustainable resources for energy conversion and storage applications. Direct methanol fuel cells (DMFCs), in which the chemical energy of a fuel is directly converted to useful electrical energy through electrochemical reactions (Figure1A), are of particular importance due to their unique advantages, such as high power density, minimized pollutant emission, long operational time, and good safety [1,2]. One of the major obstacles in DMFC technology is the sluggish kinetics of the oxygen reduction reaction (ORR), which occurs at the cathode. This not only decreases the overall performance of DMFCs, but also requires a high loading of noble platinum (Pt) catalysts [3,4]. The mechanism of ORR usually follows either a two-step two-electron pathway or a one-step four-electron pathway. The former generates undesirable H2O− (in an alkaline medium) or H2O2 (in an acidic medium) intermediate species, while the latter involves the favorable direct reduction of O2 molecules into OH- (in an alkaline medium) or H2O (in an acidic medium) (Figure1B) [ 5]. Although Pt-based catalysts exhibit satisfactory catalytic activities toward the ORR, the large-scale production of DMFCs is significantly impeded by the high cost and limited supply of Pt. In addition, these noble Pt catalysts suffer from several serious drawbacks, such as methanol crossover, CO2 poisoning, and low operational stability [6]. To address these problems, Energies 2020, 13, 4073; doi:10.3390/en13164073 www.mdpi.com/journal/energies Energies 2020, 13, 4073 2 of 17 Energies 2018, 11, x FOR PEER REVIEW 2 of 16 becomethe development crucial. A of number alternative of candidates non-precious have metal been or co metal-freensidered catalysts so far, including has become hetero crucial.-atom A- numberdoped carbonof candidates materials have [7–10 been], metal considered-chalcogenides so far, including[11,12], conducting hetero-atom-doped polymers [ carbon13,14], transition materials [metal7–10], oxidesmetal-chalcogenides [15,16], and metal [11, 12chelates], conducting [17,18]. polymers However, [13 these,14], materials transition possess metal oxides significant [15,16 drawbacks], and metal, andchelates are still [17 ,difficult18]. However, to be commercialized. these materials possessFor example, significant the catalytic drawbacks, performances and are still of dimostfficult hetero to be- atomcommercialized.-doped carbon For materials example, are the catalyticinferior to performances those the conventional of most hetero-atom-doped Pt-based catalysts, carbon and materials metal- chalcogenidesare inferior to often those require the conventional complicated Pt-basedand costly catalysts, synthetic and metho metal-chalcogenidesds [6]. In the case of often conducting require polymers,complicated although and costly they synthetic can provide methods the structural [6]. In the casetunability of conducting and high polymers, porosity, althoughthe scalable they and can reproducibleprovide the structural synthetic tunabilityapproaches and need high to porosity, be developed the scalable [13]. In and addition, reproducible the practical synthetic application approaches of metalneed tooxides be developed and metal [ 13chelates]. In addition, is limited the, due practical to the applicationpoor electrical of metal conductivity oxides and and metallow stability chelates in is acidiclimited, media, due torespectively the poor electrical [19–22]. conductivity and low stability in acidic media, respectively [19–22]. Figure 1. (A) Schematic of direct methanol fuel cells (DMFC), adapted from ref [23], (B) The oxygen Figure 1. (A) Schematic of direct methanol fuel cells (DMFC), adapted from ref [23], (B) The oxygen reduction reaction in alkaline and acidic conditions, adapted from ref [5] Copyright 2010 American reductionChemical reaction Society. in Chemical alkaline structureand acidic of conditions, (C) iron phthalocyanine adapted from ref (FePc), [5] Copyright and (D) two-dimensional 2010 American Chemicalgraphene, Society. adapted Chemical from ref [structure24] Copyright of (C 2016) iron Elsevier. phthalocyanine (FePc), and (D) two-dimensional graphene, adapted from ref [24] Copyright 2016 Elsevier. Among several candidates, metallo-phthalocyanine (MPc) has attracted great attention owing to its lowAmong cost, several good dimensional candidates, stability, metallo- andphthalocyanine tunable catalytic (MPc) activity has attracted [25–27 ].great MPc attention generally owing exhibits to itspeculiar low cost, spectral, good optical,dimensional and electrochemical stability, and tunable characteristics, catalytic aside activity from [25 excellent–27]. MPc chemical generally and exhibits thermal peculiarstability. spectral, Depending optical, on the and inserted electrochemical metal ions ch andaracteristics, the peripheral aside substituents, from excellent the chemical resulting MPcand thermalproperties stability. can be Depending effectively modified,on the inserted which metal finds ions it suitable and the for peripheral sensors, supercapacitors, substituents, the sensitizers, resulting MPcand electrocatalystsproperties can be [28 –effectively31]. The firstmodified, MPc-based which ORR finds electrocatalyst it suitable for dates sensors, back tosupercapacitors, 1964, in which sensitJasinskiizers, reported and electrocatalysts the catalytic activity [28–31] of. The cobalt first phthalocyanine MPc-based ORR (CoPc) electrocatalyst in the cathode dates of back fuel cellsto 1964, [32]. inThe which catalytic Jasinski properties reported of the MPc catalytic are mainly activity governed of cobalt by phthalocyanine the central metal (CoPc) atoms, in the and cathode their activityof fuel cellsusually [32] increases. The catalytic in the properties following of order: MPc copper, are mainly nickel, governed cobalt, andby the iron central (Fe) [33 metal]. Iron atoms, phthalocyanine and their activity(FePc), whichusually has increases the best ORRin the performance, following order: a facile copper, synthetic nickel, method, cobalt, and and a low iron cost, (Fe) is considered[33]. Iron phthalocyanineto be one of the (FePc), most promisingwhich has the Pt-free best ORRORR catalystsperformance, (Figure a facile1C). Insynthetic addition, method, variations and ina low the cost,chemical is con environmentsidered to be around one of FePc the achievedmost promising by controlling Pt-free theORR substituents catalysts (Figure on the Pc1C). ligand In addition, can play variationsimportant in roles the inchemical determining environment the catalytic around properties FePc achieved of FePc [ 34by]. controlling However, becausethe substituents FePc derivatives on the Pcexhibit ligand poor can conductivity play important and undesirableroles in determining aggregation, the theircatalytic catalytic prope performancesrties of FePc are[34] often. However, inferior because FePc derivatives exhibit poor conductivity and undesirable aggregation, their catalytic performances are often inferior to those of Pt-based catalysts. To overcome these limitations, composite FePc-based electrocatalysts, in which FePc is immobilized on the surface of carbon-based Energies 2020, 13, 4073 3 of 17 to those of Pt-based catalysts. To overcome these limitations, composite FePc-based electrocatalysts, in which FePc is immobilized on the surface of carbon-based materials, have been pioneered [35–39]. In these composite catalysts, the carbon-based not only improves the electrical conductivity and long-term stability, but also induces the uniform dispersion of FePc on the substrates. Graphene, a two-dimensional
Recommended publications
  • Title Formation and Properties of Various Amine Complexes of Iron
    Formation and Properties of Various Amine Complexes of Title Iron-Phthalocyanine (Commemoration Issue Dedicated to Professor Eiji Suito on the Occasion of his Retirement) Author(s) Kobayashi, Takashi; Kurokawa, Fumio; Uyeda, Natsu Bulletin of the Institute for Chemical Research, Kyoto Citation University (1975), 53(2): 186-199 Issue Date 1975-09-25 URL http://hdl.handle.net/2433/76604 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull.Inst. Chem.Res., KyotoUniv., Vol. 53,No. 2, 1975 Formation and Properties of Various Amine Complexes of Iron-Phthalocyanine Takashi KOBAYASHI,Fumio KUROKAWA, and Natsu UYEDA* ReceivedMay 12, 1975 Theformation of additivecomplexes was studied in regard to iron-phthalocyanine(FePc) dispersed in variousamines. The compositionswere determinedby means of weight-lossmeasurement and fromthe thermal behavior of the additivecomplexes as observedby DTA and X-raypowder diffraction. The decompositiontemperature ranges from 100 to 300°C,above which the crystallitesare converted into the a-formof pure FePc. Infraredabsorption spectra indicated that amine molecules are co- ordinatedto the centralmetal of FePc, whilesome extra moleculesare freelyincluded in the space of crystallattice. Fromkinetic study of visiblelight absorptionspectra, it was foundthat newabsorption appearswhen the secondmolecule of the two is combinedto the Fe atom of Pc-ring,indicating that a chargetransfer mechanism is involvedin the complexformation. INTRODUCTION The behavior of transition metal derivatives of porphyrin calls for biological signifi- cance when it forms additive complexes with various n-donor molecules which have the ability of co-ordinating to the central metal ion. In the previous paper,') we reported on the formation and properties of similar complexes of zinc-derivative of tetrabenztetraazapor- phyrin (zinc-phthalocyanine) suspended in various n-donor dispersion media.
    [Show full text]
  • Preparative Method of Novel Phthalocyanines from 3- Nitro
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2012, 4(4):1397-1403 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Preparative Method of Novel Phthalocyanines from 3- Nitro Phthalic Anhydride, Cobalt salt and Urea with Chloromethylpolyestyrene as a Heterogenous, Reusable and Efficient Catalyst Mohammad Ali Zolfigol 2, Ali Reza Pourali 1, Sami Sajjadifar 3,4 and Shohreh Farahmand 1,2,4 1Faculty of Chemistry, Bu-Ali Sina University, Hamedan, P.O. Box 6517838683, Iran 2School of Chemistry, Damghan University, Damghan, Iran 3Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran 4Department of Chemistry, Payame Noor University, Tehran, P.O. Box 19395-4697, Iran _____________________________________________________________________________________________ ABSTRACT 3-Nitrophthalic anhydride was reacted with urea and cobalt salt in nitrobenzene under N 2 at 185°C and cobalt- tetraanitrophthalocyanine (CoTNP) was produced. Cobalt-tetraaminophthalocyanine (CoTAP) was produced by reduction of CoTNP caused by Sodium borohydride under N 2(g). CoTAP and chloromethylpolystyrene was refluxed in nitrobenzene or DMF at 180 oC for 12h. The mixture was cooled down to reach the room temperature and then solvent removed and the resulting precipitate was washed with water to remove excess CoTAP, and dried it to get a light green solid (CoTAP-linked-polymer). Kaywords Phthalocyanines, Cobaltetraminophthalocyanine, CoTAP ,Phthalocyanines linked polymer. _____________________________________________________________________________________________ INTRODUCTION Phthalocyanines are of interest not only as model compounds for the biologically important porphyrins but also because the intensely colored metal complexes are of commercial importance as dyes and pigments [1], the copper derivatives being an important blue pigment [2].
    [Show full text]
  • Phthalocyanine
    Phthalocyanine sc-215718 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Phthalocyanine STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH0 HAZARD INSTABILITY0 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE ■ Phthalocyanine is a macrocyclic compound, It consists of four isoindole-class [(C6H4)C2N] units linked by four nitrogen atoms to form a conjugated chain, which take play in hosting various different metal ions in its centre. This macrocyclic structure like porphyrins(biopigments) is highly coloured Phthalocyanine derivatives derived from the basic compound of (C6H4C2N)4N4 are used as light-fast blue or green pigments. The hosted metals and substituted groups result in distinct colors; phthalocyanine (blue-green), copper phthalocyanine (blue), chlorinated copper phthalocyanine (green), and sulfonated copper phthalocyanine (green). They have also been involved in the study of photosensitizer chemistry or metal complex chemistry such as transition-metal complex catalyst chemistry for uniform polymerization, luminescence chemistry and spectrophotometric analysis, organic synthesis and polymerization. Phthalocyanine pigments are used in enamels, linoleum, inks, plastics, and rubber goods. Photoisomerizable phthalocyanines are used in rewritable CD or DVD printing. Some phthalocyanines such as fluoraluminium phthalocyanine are used in cancer treatment. Due to pi-electron cloud overlaps, phthalocyanines exhibit semiconductor property.
    [Show full text]
  • Phthalocyanine Blue in Aqueous Solutions†
    RSC Advances COMMUNICATION View Article Online View Journal | View Issue Phthalocyanine blue in aqueous solutions† Mark C. Staniford,a Marina M. Lezhninaab and Ulrich H. Kynast*a Cite this: RSC Adv.,2015,5,3974 Received 24th September 2014 Accepted 4th December 2014 DOI: 10.1039/c4ra11139g www.rsc.org/advances Using laponite nano-clay carriers, a facile method for the solubilisation Na0.7(H2O)n{(Li0.3Mg5.5)[Si8O20(OH)4]}, can be viewed as a nano- of natively insoluble phthalocyanines into aqueous solution is scaled hectorite derivative8 or a charged offspring of talcum, described. Copper(II) phthalocyanine, technologically a most relevant primarily consisting of disk-shaped platelets of 25 nm in pigment (C.I. Pigment Blue 15), thus yields hitherto unknown clear and diameter and 1 nm in height, which completely exfoliate to Creative Commons Attribution 3.0 Unported Licence. stable aqueous dispersions of either colloidal a-CuPc or monomeric form clear dispersions in water (see also Fig. 2 and the corre- CuPc, depending on details of the preparation. sponding caption).9 The resulting negatively charged platelets have been shown to adsorb numerous cationic dye species, among them Methy- Copper(II) phthalocyanine (CuPc, Fig. 1) is one of the most lene Blue10 or luminescent Rhodamine dyes,11 which can be frequently used pigments in painting and coating industries, attracted via polar and coulomb forces. However, very recently, with an annual production of approximately 60 000 t per year. the neutral and nonpolar dyes Indigo12 and Nile Red,13 both ffi The blue colorant possesses a very high extinction coe cient completely insoluble in water, have also been found to interact p–p* due to the intense transitions within the ligand electronic strong enough with nano-clays to be solubilised, the lumines- This article is licensed under a system.
    [Show full text]
  • Phthalocyanine Adsorption to Graphene on Ir(111): Evidence for Decoupling from Vibrational Spectroscopy M
    Supplemental material to: Phthalocyanine adsorption to graphene on Ir(111): Evidence for decoupling from vibrational spectroscopy M. Endlich,1, a) S. Gozdzik,1 N. N´eel,1 A. L. da Rosa,2, 3 T. Frauenheim,2 T. O. Wehling,2, 4 and J. Kr¨oger1, b) 1)Institut f¨ur Physik, Technische Universit¨at Ilmenau, D-98693 Ilmenau, Germany 2)Bremen Center for Computational Materials Science, University Bremen, D-28359 Bremen, Germany 3)Federal University of Minas Gerais, Department of Physics, 31270-901 Belo Horizonte, MG, Brazil 4)Institute for Theoretical Physics, University Bremen, D-28359 Bremen, Germany a)Electronic mail: [email protected] b)Electronic mail: [email protected] 1 Fig. S1. Relaxed geometry of free H2Pc with indicated Cartesian coordinates x, y. The z axis is oriented perpendicular to the xy plane. Specific molecule groups and atoms are labeled. The free H2Pc molecule (Fig. S1) exhibits D2h symmetry. The symmetry classes, Q, of this group together with the characters, χ, of specific reducible representations are summarized in Table SI. D2h E C2(z) C2(y) C2(x) I σ(xy) σ(xz) σ(yz) Γ 168 2 0 −2 0 58 4 2 Tab. S I. Symmetry operations of the D2h point group (the group elements are divided into classes, i.e., E: identity, C2: two-fold rotation with relevant rotation axes given in parentheses, I: inversion, σ: reflection with relevant mirror planes given in parentheses). Γ represents a set of specific reducible representations of the symmetry operations whose characters are given in the bottom row.
    [Show full text]
  • United States Patent Office (-(B) Lice (-(B)L
    2,953,574 United States Patent Office Patented Sept. 20, 1960 1. 2 0.1 to 0.8, preferably 0.2-0.4. It is to be noted, as will be shown in the following examples, that some chlorine atoms are introduced during the reaction of benzene sul 2,953,574 fonyl chloride upon cobalt phthalocyanine. The degree DYE COMPOSITIONS CONTAINING COBALT of chlorination, however, appears to have little effect with PHTHALOCYANNE PHENYL SULFONES the exception of a slight shift toward the green. The Tellis A. Martin, Evansville, Ind., assignor to General affinity for fiber of such a mixture containing chlorinated Aniline & Film Corporation, New York, N.Y., a cor phthalocyanines is highly surprising and unexpected since poration of Delaware chlorinated cobalt phthalocyanine derivatives exhibit very poor affinity for fiber. No Drawing. Filed Dec. 29, 1953, Ser. No. 401,060 10 The mixture of cobalt phthalocyanine dyes character 3 Claims. (CI. 260-314.5) ized by the above general formula are prepared by (a) the reaction of a benzene sulfonyl chloride upon cobalt phthalocyanine or (b) by the reaction of cobalt phthalo This invention relates to dyeing compositions contain 5 cyanine sulfonyl chloride and either benzene, halogenated ing cobalt phthalocyanine phenyl sulfones and particu benzene, or alkylated benzene. An excess of the benzene larly to compositions consisting of mixtures of cobalt Sulfonyl chloride or the benzene or benzene derivative is phthalocyanine and cobalt phthalocyanine containing employed. These two reactions are best effected by heat from one to four phenylsulfonyl groups. ing the co-reactants in a suitable solvent, such as, di Metal phthalocyanines of the benzene series wherein 20 chlorobenzene, trichlorobenzene, nitrobenzene, and the one or all of the benzene nuclei contain quaternary or like, and in the presence of a catalyst such as, aluminum ternary salt groups attached to an aryl radical, which is chloride, ferric chloride, antimony chloride and the like, bridged to the phthalocyanine nucleus by -S-, -SO at a temperature ranging from 80-190° C.
    [Show full text]
  • Title Formation and Properties of Various Amine Complexes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Formation and Properties of Various Amine Complexes of Title Iron-Phthalocyanine (Commemoration Issue Dedicated to Professor Eiji Suito on the Occasion of his Retirement) Author(s) Kobayashi, Takashi; Kurokawa, Fumio; Uyeda, Natsu Bulletin of the Institute for Chemical Research, Kyoto Citation University (1975), 53(2): 186-199 Issue Date 1975-09-25 URL http://hdl.handle.net/2433/76604 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull.Inst. Chem.Res., KyotoUniv., Vol. 53,No. 2, 1975 Formation and Properties of Various Amine Complexes of Iron-Phthalocyanine Takashi KOBAYASHI,Fumio KUROKAWA, and Natsu UYEDA* ReceivedMay 12, 1975 Theformation of additivecomplexes was studied in regard to iron-phthalocyanine(FePc) dispersed in variousamines. The compositionswere determinedby means of weight-lossmeasurement and fromthe thermal behavior of the additivecomplexes as observedby DTA and X-raypowder diffraction. The decompositiontemperature ranges from 100 to 300°C,above which the crystallitesare converted into the a-formof pure FePc. Infraredabsorption spectra indicated that amine molecules are co- ordinatedto the centralmetal of FePc, whilesome extra moleculesare freelyincluded in the space of crystallattice. Fromkinetic study of visiblelight absorptionspectra, it was foundthat newabsorption appearswhen the secondmolecule of the two is combinedto the Fe atom of Pc-ring,indicating that a chargetransfer mechanism is involvedin the complexformation. INTRODUCTION The behavior of transition metal derivatives of porphyrin calls for biological signifi- cance when it forms additive complexes with various n-donor molecules which have the ability of co-ordinating to the central metal ion.
    [Show full text]
  • Intercalation of Copper Phthalocyanine Within Bulk
    Intercalation of Copper Phthalocyanine Within Bulk Graphite as a New Strategy Toward the Synthesis of CuO-Based CO Oxidation Catalysts Gaëlle Couvret, Ghislain Genay, Cerise Robert, Loic Michel, Valérie Caps To cite this version: Gaëlle Couvret, Ghislain Genay, Cerise Robert, Loic Michel, Valérie Caps. Intercalation of Copper Phthalocyanine Within Bulk Graphite as a New Strategy Toward the Synthesis of CuO-Based CO Oxidation Catalysts. Frontiers in Chemistry, Frontiers Media, 2020, 8, 10.3389/fchem.2020.00735. hal-02928127 HAL Id: hal-02928127 https://hal.archives-ouvertes.fr/hal-02928127 Submitted on 2 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ORIGINAL RESEARCH published: 31 August 2020 doi: 10.3389/fchem.2020.00735 Intercalation of Copper Phthalocyanine Within Bulk Graphite as a New Strategy Toward the Synthesis of CuO-Based CO Oxidation Catalysts Gaëlle Couvret, Ghislain Genay, Cerise Robert, Loïc Michel and Valérie Caps* ICPEES (Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé), Université de Strasbourg - ECPM / CNRS UMR 7515, Strasbourg, France Graphite is a widely available natural form of carbon with peculiar chemical and surface properties. It is essentially hydrophobic and consists in very stable stacks of graphene layers held together by highly delocalized π-π interactions.
    [Show full text]
  • Cobalt Phthalocyanine Immobilized on Graphene Oxide
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Active Catalyst for the Photoreduction of Carbon Dioxide Pawan Kumar, Arvind Kumar, Bojja Sreedhar, Bir Sain, Siddharth Ray, Suman Jain To cite this version: Pawan Kumar, Arvind Kumar, Bojja Sreedhar, Bir Sain, Siddharth Ray, et al.. Cobalt Phthalocya- nine Immobilized on Graphene Oxide: An Efficient Visible-Active Catalyst for the Photoreduction of Carbon Dioxide. Chemistry - A European Journal, Wiley-VCH Verlag, 2014, 20, pp.6154 - 6161. 10.1002/chem.201304189. hal-01456553 HAL Id: hal-01456553 https://hal.archives-ouvertes.fr/hal-01456553 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DOI: 10.1002/chem.201304189 Full Paper & Heterogeneous Catalysis Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Active Catalyst for the Photoreduction of Carbon Dioxide Pawan Kumar,[a] Arvind Kumar,[b] Bojja Sreedhar,[c] Bir Sain,[a] Siddharth S. Ray,[b] and Suman L. Jain*[a] Abstract: New graphene oxide (GO)-tethered–CoII phthalo- was obtained as the major reaction product along with the cyanine complex [CoPc–GO] was synthesized by a stepwise formation of minor amount of CO (0.82%).
    [Show full text]
  • Effects of Ring Substituents on Electrocatalytic Activity of Manganese Phthalocyanines Towards the Reduction of Molecular Oxygen
    Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen Nthapo Sehlotho and Tebello Nyokong Abstract Reduction of oxygen electrocatalyzed by adsorbed films of manganese phthalocyanine complexes is reported. The complexes studied were: manganese phthalocyanine (MnPc, 1); manganese tetraamino phthalocyanine (MnTAPc, 2); manganese tetrapentoxy pyrrole phthalocyanine (MnTPePyrPc, 3); manganese tetra phenoxy pyrrole phthalocyanine (MnTPPyrPc, 4); manganese tetra mercaptopyrimidine phthalocyanine (MnTMPyPc, 5) and manganese tetra ethoxy thiophene phthalocyanine (MnTETPc, 6). The reaction was conducted in buffer solutions of pH range 1–12. Rotating disk electrode voltammetry revealed two electron reduction in acidic and slightly alkaline media due to the formation of hydrogen peroxide. In highly basic media, water is the major product formed via four electron transfer. The reaction was found to be first order in the diffusing analyte oxygen. 1. Introduction Oxygen reduction is a very important reaction, both biologically and industrially. It is a cathode reaction in fuel cells, potentially efficient, emission free energy source [1] and [2]. The reaction should occur at a low potential for efficient energy production. It is desirable that the reaction goes to completion and forms water via a four electron transfer mechanism. However, oxygen gets reduced to hydrogen peroxide via a two electron process but the peroxide can still get reduced further via another two electron process to form water. Platinum electrocatalyses reduction of oxygen to water in fuel cells [1] and [2]. Pt is however an expensive metal hence substitutes have to be found. N4 metal chelates such as metallophthalocyanines (MPcs) and metalloporphyrins (MPs) have been studied as precious metal fuel cell alternative electrocatalysts [3].
    [Show full text]
  • High and Selective CO2 Adsorption by a Phthalocyanine Nanoporous Polymer
    Showcasing studies of CO2 capture using phthalocyanines- As featured in: based porous polymers by Prof. Luis Echegoyen’s carbon nanomaterials laboratory at the University of Texas at El Paso. Title: High and selective CO2 adsorption by a phthalocyanine nanoporous polymer A rigid macrocyclic phthalocyanine-based porous polymer was synthesized by a one pot “click” reaction between tetraazido- phthalocyanine and bisamine diethynylbenzene; the fi rst example of a phthalocyanine porous polymer used for CO2 adsorption. See Luis Echegoyen et al., J. Mater. Chem. A, 2015, 3, 10284. www.rsc.org/MaterialsA Registered charity number: 207890 Journal of Materials Chemistry A View Article Online PAPER View Journal | View Issue High and selective CO2 adsorption by a phthalocyanine nanoporous polymer† Cite this: J. Mater. Chem. A,2015,3, 10284 Venkata S. Pavan K. Neti,a Jun Wang,b Shuguang Dengb and Luis Echegoyen*a A rigid macrocyclic phthalocyanine-based porous polymer, CPP, was synthesized by a one pot “click” reaction between tetraazido-phthalocyanine and bisamine diethynylbenzene. This CPP is the first Received 23rd January 2015 example of a phthalocyanine porous polymer used for CO adsorption and it shows very high CO Accepted 19th March 2015 2 2 adsorption (15.7 wt% at 273 K/1 bar) and high selectivity for CO2/N2 (94) and for CO2/CH4 (12.8) at 273 DOI: 10.1039/c5ta00587f K/1 bar. The CPP exhibited a Brunauer–Emmett–Teller (BET) surface area of 579 m2 gÀ1 and high www.rsc.org/MaterialsA thermal stability up to 500 C, thus showing good potential for CO2 capture. 1. Introduction but have tunable pore sizes and surface areas similar to those of MOFs and COFs.
    [Show full text]
  • Synthesizing Copper and Cobalt Phthalocyanines on the Basis of CokePlant Wastes A
    ISSN 1068364X, Coke and Chemistry, 2012, Vol. 55, No. 5, pp. 179–183. © Allerton Press, Inc., 2012. Original Russian Text © A.V. Velichko, L.B. Pavlovich, L.A. Samigulina, 2012, published in Koks i Khimiya, 2012, No. 5, pp. 25–30. CHEMISTRY Synthesizing Copper and Cobalt Phthalocyanines on the Basis of CokePlant Wastes A. V. Velichkoa, L. B. Pavlovichb, and L. A. Samigulinab aZAO NauchnoProizvodstvennaya Kompaniya TERMO, Novokuznetsk, Kemerovo Oblast, Russia email: [email protected] bSiberian State Industrial University, Novokuznetsk, Kemerovo Oblast, Russia email: [email protected], [email protected] Received April 11, 2012 Abstract—The synthesis of copper and cobalt phthalocyanines from cokeplant waste—specifically, the pri mary distillation fraction from phthalic anhydride—has been developed. The introduction of this process in the phthalicanhydride shop at coke plants provides the opportunity for resource and energy conservation. DOI: 10.3103/S1068364X12050109 The conservation of energy and materials is espe highly selective. Accordingly, they are widely used for cially important for coke production. In coking, the removal of sulfur compounds from gas emissions unique aromatic hydrocarbons accumulate, but they [6] and the removal of mercaptans from petroleum are not extracted or utilized. The construction of coke fractions [7]. In addition, metal phthalocyanine pig batteries without equipment for trapping and process ments are important disperse organic dyes. They are ing the coking byproducts cannot be regarded as an stable with respect to light and the atmosphere, with environmentally acceptable approach. pure and bright coloration, universal in application, In the past, pyridines, phenols, indene, couma and resistant to chemical reagents [8]. rone, anthracene, carbazole, and other materials were Metal phthalocyanines are of particular interest for extracted from the coking byproducts, and highly use in microelectronic, electrochemical, and opto effective technologies were used for the production of electronic systems [9].
    [Show full text]