Computer Architecture Cache Memory Dr. Falah Hassan

Total Page:16

File Type:pdf, Size:1020Kb

Computer Architecture Cache Memory Dr. Falah Hassan Computer Architecture Cache Memory Dr. Falah Hassan Ali Part-time Professor uOttawa 2012 Cache memory, also called CPU memory, is random access memory (RAM) that a computer microprocessor can access more quickly than it can access regular RAM. Cache memory is typically integrated directly with the CPU chip or placed on a separate chip that has a separate bus interconnect with the CPU A CPU cache is a cache used by the central processing unit (CPU) of a computer to reduce the average time to access data from the main memory. The cache is a smaller, faster memory which stores copies of the data from frequently used main memory locations. Most CPUs have different independent caches, including instruction and data caches, where the data cache is usually organized as a hierarchy of more cache levels (L1, L2, etc.). Cache memory is a small size memory but it is faster than RAM. Cache is faster because it uses SRAM which contains flip-flops which is faster than capacitors storing charge in DRAM. Cache are of three types : L1(level 1),L2(level 2),L3(level 3) cache. L1 cache is inbuilt on the processor. The processor access RAM once and transfers the block of it in it's cache so processor doesn't need to access RAM again and again it is there on the processor cache. L2 cache can be inbuilt or outside the processor as shown in above image it is faster than RAM but slower than L1 cache. L3 cache is always outside the processor as shown in figure it is faster than RAM but slower than L1 and L2 cache. The amount of cache memory used in a computer is way more less than RAM and hard drive memory etc. because of it's high cost and, more the cache memory more is the heating on the processor. When an instruction is to be executed by the processor it will first search it in the cache and if it is not found it will search in RAM, this type of cache is called look up cache. Another type of cache is look aside cache which searches simultaneously in RAM and cache. Look aside cache saves more time in searching. In today's world cache memory are 6,8,12 MB for computers. In mobiles the cache memory concept is same, but the app's cache data is different. Apps keep cache data to access content faster in future. Cache Line Cache is partitioned into lines (also called blocks). Each line has 4-64 bytes in it. During data transfer, a whole line is read or written. Each line has a tag that indicates the address in M from which the line has been copied. Index Tag Data Index Data 0 2 ABC 0 DEF 1 0 DEF 1 PQR 2 ABC 3 XYZ Cache Main Memory Cache hit is detected through an associative search of all the tags. Associative search provides a fast response to the query: “Does this key match with any of the tags”? Data is read only if a match is found. Types of Cache 1. Fully Associative 2. Direct Mapped 3. Set Associative Fully Associative Cache tag data M-addr key C M 1- No restriction on mapping from M to C. 2- Associative search of tags is expensive. 3- Feasible for very small size caches only. Direct-Mapped Cache A given memory block can be mapped into one and only cache line. Here is an example of mapping Cache line Main memory block 0 8 … ,24 ,16 ,8 ,0n 1 8 … ,25 .17 ,9 ,1n+1 2 8 … ,26 ,18 ,10 ,2n+2 3 8 … ,27 ,19 ,11 ,3n+3 Advantage No need of expensive associative search! Disadvantage Miss rate may go up due to possible increase of mapping conflicts. Set-Associative Cache C M set 0 set 1 Set 3 Two-way Set-associative cache N-way set-associative cache Each M-block can now be mapped into any one of a set of N C-blocks. The sets are predefined. Let there be K blocks in the cache. Then N = 1 Direct-mapped cache N = K Fully associative cache Most commercial cache have N= 2, 4, or .8 Cheaper than a fully associative cache. Lower miss ratio than a direct mapped cache. But direct-mapped cache is the fastest. Specification of a cache memory Block size 64-4byte Hit time 2-1cycle Miss penalty 32-8cycles Access 10-6cycles Transfer 22-2cycles Miss rate %20-1 Cache size L1 8KB-64KB L2 128KB-2 MB Cache speed L1 0.5ns (8 GB/sec) L*2 0.75ns (6 GB/se)) on-chip cache What happens to the cache during a write operation? Write Policies If data is written to the cache, at some point it must also be written to main memory; the timing of this write is known as the write policy. In a write-through cache, every write to the cache causes a write to main memory. Alternatively, in a write-back or copy-back cache, writes are not immediately mirrored to the main memory, and the cache instead tracks which locations have been written over, marking them as dirty. The data in these locations is written back to the main memory only when that data is evicted from the cache. For this reason, a read miss in a write-back cache may sometimes require two memory accesses to service: one to first write the dirty location to main memory, and then another to read the new location from memory. Also, a write to a main memory location that is not yet mapped in a write-back cache may evict an already dirty location, thereby freeing that cache space for the new memory location. Problem with Direct-Mapped Direct-mapped cache: Two blocks in memory that map to the same index in the cache cannot be present in the cache Can lead to 0% hit rate if more than one block accessed an interleaved manner map to the same index Assume addresses A and B have the same in index bits but different tag bits A, B, A, B, A, B, A, B, … conflict in the cache index All accesses are conflict misses Set Associativity Associative memory within the set tag store --More complex, slower access, larger +Accommodates conflicts better (fewer conflict misses) 7 Modern processors have multiple interacting caches on chip. The operation of a particular cache can be completely specified by: •the cache size •the cache block size •the number of blocks in a set •the cache set replacement policy •the cache write policy (write-through or write-back) While all of the cache blocks in a particular cache are the same size and have the same associativity, typically "lower-level" caches (such as the L1 cache) have a smaller size, have smaller blocks, and have fewer blocks in a set, while "higher-level" caches (such as the L3 cache) have larger size, larger blocks, and more blocks in a set. Question : In a certain system the main memory access time is 100 ns. The cache is 10 time faster than the main memory and uses the write though protocol. If the hit ratio for read request is 0.92 and 85% of the memory requests generated by the CPU are for read, the remaining being for write; find the average time considered for read and write requests ? memory access time = 100ns, so cache access time would be = 10 ns (10 time faster). In order to find avg. time, we have a formula Tavg = hc+(1-h)M where h = hit rate, (1-h) = miss rate, c = time to access information from cache, M = miss penalty (time to access main memory) Write through operation : cache location and main memory location is updated simultaneously. It is given that 85% request generated by CPU is read request and 15% is write request. Tavg = 0.85(avg time for read request)+ 0.15(avg time for write request) = 0.85(0.92*10+0.08*100)+0.15(avg time for write request) //* 0.92 is a hit ratio for read request , but hit ratio for write request is not given ?? If I assume that hit ratio for write request is same as hit ratio for read request then, = 0.85(0.92*10+0.08*100)+0.15(0.92*(10+100)+0.08*100) =31 ns If I assume that hit ratio is 0% for write request then, = 0.85(0.92*10+0.08*100)+0.15(0*110+1*100) =29.62 ns Avg access time considering only read = 0.92*10 + 0.08*100 = 17.2 ns. Avg access time considering only write = 100 ns (because in write through you have to go back to memory to update even if it is a hit or miss. if you assume hit ratio = 0.5 and miss = 0.5 then 0.5*100 + 0.5*100 = 1*100) So, total access time for both read and write would be - 0.85*17.2 + 0.15*100 = 14.62 + 15 = 29.62 ns **you cant assume hit ratio for write same as hit ratio for read. for write request (write through) whatever will be the case, you have to write back in the memory. so the write access time will be equal to memory access time. Question 1. What advantage does a Harvard cache have over a unified cache? A Harvard (split) cache permits the processor to access both an instruction word and a data word in a single cache memory cycle.
Recommended publications
  • Memory Hierarchy Memory Hierarchy
    Memory Key challenge in modern computer architecture Lecture 2: different memory no point in blindingly fast computation if data can’t be and variable types moved in and out fast enough need lots of memory for big applications Prof. Mike Giles very fast memory is also very expensive [email protected] end up being pushed towards a hierarchical design Oxford University Mathematical Institute Oxford e-Research Centre Lecture 2 – p. 1 Lecture 2 – p. 2 CPU Memory Hierarchy Memory Hierarchy Execution speed relies on exploiting data locality 2 – 8 GB Main memory 1GHz DDR3 temporal locality: a data item just accessed is likely to be used again in the near future, so keep it in the cache ? 200+ cycle access, 20-30GB/s spatial locality: neighbouring data is also likely to be 6 used soon, so load them into the cache at the same 2–6MB time using a ‘wide’ bus (like a multi-lane motorway) L3 Cache 2GHz SRAM ??25-35 cycle access 66 This wide bus is only way to get high bandwidth to slow 32KB + 256KB main memory ? L1/L2 Cache faster 3GHz SRAM more expensive ??? 6665-12 cycle access smaller registers Lecture 2 – p. 3 Lecture 2 – p. 4 Caches Importance of Locality The cache line is the basic unit of data transfer; Typical workstation: typical size is 64 bytes 8 8-byte items. ≡ × 10 Gflops CPU 20 GB/s memory L2 cache bandwidth With a single cache, when the CPU loads data into a ←→ 64 bytes/line register: it looks for line in cache 20GB/s 300M line/s 2.4G double/s ≡ ≡ if there (hit), it gets data At worst, each flop requires 2 inputs and has 1 output, if not (miss), it gets entire line from main memory, forcing loading of 3 lines = 100 Mflops displacing an existing line in cache (usually least ⇒ recently used) If all 8 variables/line are used, then this increases to 800 Mflops.
    [Show full text]
  • Make the Most out of Last Level Cache in Intel Processors In: Proceedings of the Fourteenth Eurosys Conference (Eurosys'19), Dresden, Germany, 25-28 March 2019
    http://www.diva-portal.org Postprint This is the accepted version of a paper presented at EuroSys'19. Citation for the original published paper: Farshin, A., Roozbeh, A., Maguire Jr., G Q., Kostic, D. (2019) Make the Most out of Last Level Cache in Intel Processors In: Proceedings of the Fourteenth EuroSys Conference (EuroSys'19), Dresden, Germany, 25-28 March 2019. ACM Digital Library N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244750 Make the Most out of Last Level Cache in Intel Processors Alireza Farshin∗† Amir Roozbeh∗ KTH Royal Institute of Technology KTH Royal Institute of Technology [email protected] Ericsson Research [email protected] Gerald Q. Maguire Jr. Dejan Kostić KTH Royal Institute of Technology KTH Royal Institute of Technology [email protected] [email protected] Abstract between Central Processing Unit (CPU) and Direct Random In modern (Intel) processors, Last Level Cache (LLC) is Access Memory (DRAM) speeds has been increasing. One divided into multiple slices and an undocumented hashing means to mitigate this problem is better utilization of cache algorithm (aka Complex Addressing) maps different parts memory (a faster, but smaller memory closer to the CPU) in of memory address space among these slices to increase order to reduce the number of DRAM accesses. the effective memory bandwidth. After a careful study This cache memory becomes even more valuable due to of Intel’s Complex Addressing, we introduce a slice- the explosion of data and the advent of hundred gigabit per aware memory management scheme, wherein frequently second networks (100/200/400 Gbps) [9].
    [Show full text]
  • File Systems and Disk Layout I/O: the Big Picture
    File Systems and Disk Layout I/O: The Big Picture Processor interrupts Cache Memory Bus I/O Bridge Main I/O Bus Memory Disk Graphics Network Controller Controller Interface Disk Disk Graphics Network 1 Rotational Media Track Sector Arm Cylinder Platter Head Access time = seek time + rotational delay + transfer time seek time = 5-15 milliseconds to move the disk arm and settle on a cylinder rotational delay = 8 milliseconds for full rotation at 7200 RPM: average delay = 4 ms transfer time = 1 millisecond for an 8KB block at 8 MB/s Bandwidth utilization is less than 50% for any noncontiguous access at a block grain. Disks and Drivers Disk hardware and driver software provide basic facilities for nonvolatile secondary storage (block devices). 1. OS views the block devices as a collection of volumes. A logical volume may be a partition ofasinglediskora concatenation of multiple physical disks (e.g., RAID). 2. OS accesses each volume as an array of fixed-size sectors. Identify sector (or block) by unique (volumeID, sector ID). Read/write operations DMA data to/from physical memory. 3. Device interrupts OS on I/O completion. ISR wakes up process, updates internal records, etc. 2 Using Disk Storage Typical operating systems use disks in three different ways: 1. System calls allow user programs to access a “raw” disk. Unix: special device file identifies volume directly. Any process that can open thedevicefilecanreadorwriteany specific sector in the disk volume. 2. OS uses disk as backing storage for virtual memory. OS manages volume transparently as an “overflow area” for VM contents that do not “fit” in physical memory.
    [Show full text]
  • Migration from IBM 750FX to MPC7447A by Douglas Hamilton European Applications Engineering Networking and Computing Systems Group Freescale Semiconductor, Inc
    Freescale Semiconductor AN2808 Application Note Rev. 1, 06/2005 Migration from IBM 750FX to MPC7447A by Douglas Hamilton European Applications Engineering Networking and Computing Systems Group Freescale Semiconductor, Inc. Contents 1 Scope and Definitions 1. Scope and Definitions . 1 2. Feature Overview . 2 The purpose of this application note is to facilitate migration 3. 7447A Specific Features . 12 from IBM’s 750FX-based systems to Freescale’s 4. Programming Model . 16 MPC7447A. It addresses the differences between the 5. Hardware Considerations . 27 systems, explaining which features have changed and why, 6. Revision History . 30 before discussing the impact on migration in terms of hardware and software. Throughout this document the following references are used: • 750FX—which applies to Freescale’s MPC750, MPC740, MPC755, and MPC745 devices, as well as to IBM’s 750FX devices. Any features specific to IBM’s 750FX will be explicitly stated as such. • MPC7447A—which applies to Freescale’s MPC7450 family of products (MPC7450, MPC7451, MPC7441, MPC7455, MPC7445, MPC7457, MPC7447, and MPC7447A) except where otherwise stated. Because this document is to aid the migration from 750FX, which does not support L3 cache, the L3 cache features of the MPC745x devices are not mentioned. © Freescale Semiconductor, Inc., 2005. All rights reserved. Feature Overview 2 Feature Overview There are many differences between the 750FX and the MPC7447A devices, beyond the clear differences of the core complex. This section covers the differences between the cores and then other areas of interest including the cache configuration and system interfaces. 2.1 Cores The key processing elements of the G3 core complex used in the 750FX are shown below in Figure 1, and the G4 complex used in the 7447A is shown in Figure 2.
    [Show full text]
  • Caches & Memory
    Caches & Memory Hakim Weatherspoon CS 3410 Computer Science Cornell University [Weatherspoon, Bala, Bracy, McKee, and Sirer] Programs 101 C Code RISC-V Assembly int main (int argc, char* argv[ ]) { main: addi sp,sp,-48 int i; sw x1,44(sp) int m = n; sw fp,40(sp) int sum = 0; move fp,sp sw x10,-36(fp) for (i = 1; i <= m; i++) { sw x11,-40(fp) sum += i; la x15,n } lw x15,0(x15) printf (“...”, n, sum); sw x15,-28(fp) } sw x0,-24(fp) li x15,1 sw x15,-20(fp) Load/Store Architectures: L2: lw x14,-20(fp) lw x15,-28(fp) • Read data from memory blt x15,x14,L3 (put in registers) . • Manipulate it .Instructions that read from • Store it back to memory or write to memory… 2 Programs 101 C Code RISC-V Assembly int main (int argc, char* argv[ ]) { main: addi sp,sp,-48 int i; sw ra,44(sp) int m = n; sw fp,40(sp) int sum = 0; move fp,sp sw a0,-36(fp) for (i = 1; i <= m; i++) { sw a1,-40(fp) sum += i; la a5,n } lw a5,0(x15) printf (“...”, n, sum); sw a5,-28(fp) } sw x0,-24(fp) li a5,1 sw a5,-20(fp) Load/Store Architectures: L2: lw a4,-20(fp) lw a5,-28(fp) • Read data from memory blt a5,a4,L3 (put in registers) . • Manipulate it .Instructions that read from • Store it back to memory or write to memory… 3 1 Cycle Per Stage: the Biggest Lie (So Far) Code Stored in Memory (also, data and stack) compute jump/branch targets A memory register ALU D D file B +4 addr PC B control din dout M inst memory extend new imm forward pc Stack, Data, Code detect unit hazard Stored in Memory Instruction Instruction Write- ctrl ctrl ctrl Fetch Decode Execute Memory Back IF/ID
    [Show full text]
  • Semiconductor Memories
    Semiconductor Memories Prof. MacDonald Types of Memories! l" Volatile Memories –" require power supply to retain information –" dynamic memories l" use charge to store information and require refreshing –" static memories l" use feedback (latch) to store information – no refresh required l" Non-Volatile Memories –" ROM (Mask) –" EEPROM –" FLASH – NAND or NOR –" MRAM Memory Hierarchy! 100pS RF 100’s of bytes L1 1nS SRAM 10’s of Kbytes 10nS L2 100’s of Kbytes SRAM L3 100’s of 100nS DRAM Mbytes 1us Disks / Flash Gbytes Memory Hierarchy! l" Large memories are slow l" Fast memories are small l" Memory hierarchy gives us illusion of large memory space with speed of small memory. –" temporal locality –" spatial locality Register Files ! l" Fastest and most robust memory array l" Largest bit cell size l" Basically an array of large latches l" No sense amps – bits provide full rail data out l" Often multi-ported (i.e. 8 read ports, 2 write ports) l" Often used with ALUs in the CPU as source/destination l" Typically less than 10,000 bits –" 32 32-bit fixed point registers –" 32 60-bit floating point registers SRAM! l" Same process as logic so often combined on one die l" Smaller bit cell than register file – more dense but slower l" Uses sense amp to detect small bit cell output l" Fastest for reads and writes after register file l" Large per bit area costs –" six transistors (single port), eight transistors (dual port) l" L1 and L2 Cache on CPU is always SRAM l" On-chip Buffers – (Ethernet buffer, LCD buffer) l" Typical sizes 16k by 32 Static Memory
    [Show full text]
  • Stealing the Shared Cache for Fun and Profit
    IT 13 048 Examensarbete 30 hp Juli 2013 Stealing the shared cache for fun and profit Moncef Mechri Institutionen för informationsteknologi Department of Information Technology Abstract Stealing the shared cache for fun and profit Moncef Mechri Teknisk- naturvetenskaplig fakultet UTH-enheten Cache pirating is a low-overhead method created by the Uppsala Architecture Besöksadress: Research Team (UART) to analyze the Ångströmlaboratoriet Lägerhyddsvägen 1 effect of sharing a CPU cache Hus 4, Plan 0 among several cores. The cache pirate is a program that will actively and Postadress: carefully steal a part of the shared Box 536 751 21 Uppsala cache by keeping its working set in it. The target application can then be Telefon: benchmarked to see its dependency on 018 – 471 30 03 the available shared cache capacity. The Telefax: topic of this Master Thesis project 018 – 471 30 00 is to implement a cache pirate and use it on Ericsson’s systems. Hemsida: http://www.teknat.uu.se/student Handledare: Erik Berg Ämnesgranskare: David Black-Schaffer Examinator: Ivan Christoff IT 13 048 Sponsor: Ericsson Tryckt av: Reprocentralen ITC Contents Acronyms 2 1 Introduction 3 2 Background information 5 2.1 A dive into modern processors . 5 2.1.1 Memory hierarchy . 5 2.1.2 Virtual memory . 6 2.1.3 CPU caches . 8 2.1.4 Benchmarking the memory hierarchy . 13 3 The Cache Pirate 17 3.1 Monitoring the Pirate . 18 3.1.1 The original approach . 19 3.1.2 Defeating prefetching . 19 3.1.3 Timing . 20 3.2 Stealing evenly from every set .
    [Show full text]
  • EEPROM Emulation
    ...the world's most energy friendly microcontrollers EEPROM Emulation AN0019 - Application Note Introduction This application note demonstrates a way to use the flash memory of the EFM32 to emulate single variable rewritable EEPROM memory through software. The example API provided enables reading and writing of single variables to non-volatile flash memory. The erase-rewrite algorithm distributes page erases and thereby doing wear leveling. This application note includes: • This PDF document • Source files (zip) • Example C-code • Multiple IDE projects 2013-09-16 - an0019_Rev1.09 1 www.silabs.com ...the world's most energy friendly microcontrollers 1 General Theory 1.1 EEPROM and Flash Based Memory EEPROM stands for Electrically Erasable Programmable Read-Only Memory and is a type of non- volatile memory that is byte erasable and therefore often used to store small amounts of data that must be saved when power is removed. The EFM32 microcontrollers do not include an embedded EEPROM module for byte erasable non-volatile storage, but all EFM32s do provide flash memory for non-volatile data storage. The main difference between flash memory and EEPROM is the erasable unit size. Flash memory is block-erasable which means that bytes cannot be erased individually, instead a block consisting of several bytes need to be erased at the same time. Through software however, it is possible to emulate individually erasable rewritable byte memory using block-erasable flash memory. To provide EEPROM functionality for the EFM32s in an application, there are at least two options available. The first one is to include an external EEPROM module when designing the hardware layout of the application.
    [Show full text]
  • IBM Power Systems Performance Report Apr 13, 2021
    IBM Power Performance Report Power7 to Power10 September 8, 2021 Table of Contents 3 Introduction to Performance of IBM UNIX, IBM i, and Linux Operating System Servers 4 Section 1 – SPEC® CPU Benchmark Performance 4 Section 1a – Linux Multi-user SPEC® CPU2017 Performance (Power10) 4 Section 1b – Linux Multi-user SPEC® CPU2017 Performance (Power9) 4 Section 1c – AIX Multi-user SPEC® CPU2006 Performance (Power7, Power7+, Power8) 5 Section 1d – Linux Multi-user SPEC® CPU2006 Performance (Power7, Power7+, Power8) 6 Section 2 – AIX Multi-user Performance (rPerf) 6 Section 2a – AIX Multi-user Performance (Power8, Power9 and Power10) 9 Section 2b – AIX Multi-user Performance (Power9) in Non-default Processor Power Mode Setting 9 Section 2c – AIX Multi-user Performance (Power7 and Power7+) 13 Section 2d – AIX Capacity Upgrade on Demand Relative Performance Guidelines (Power8) 15 Section 2e – AIX Capacity Upgrade on Demand Relative Performance Guidelines (Power7 and Power7+) 20 Section 3 – CPW Benchmark Performance 19 Section 3a – CPW Benchmark Performance (Power8, Power9 and Power10) 22 Section 3b – CPW Benchmark Performance (Power7 and Power7+) 25 Section 4 – SPECjbb®2015 Benchmark Performance 25 Section 4a – SPECjbb®2015 Benchmark Performance (Power9) 25 Section 4b – SPECjbb®2015 Benchmark Performance (Power8) 25 Section 5 – AIX SAP® Standard Application Benchmark Performance 25 Section 5a – SAP® Sales and Distribution (SD) 2-Tier – AIX (Power7 to Power8) 26 Section 5b – SAP® Sales and Distribution (SD) 2-Tier – Linux on Power (Power7 to Power7+)
    [Show full text]
  • A Hybrid Swapping Scheme Based on Per-Process Reclaim for Performance Improvement of Android Smartphones (August 2018)
    Received August 19, 2018, accepted September 14, 2018, date of publication October 1, 2018, date of current version October 25, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2872794 A Hybrid Swapping Scheme Based On Per-Process Reclaim for Performance Improvement of Android Smartphones (August 2018) JUNYEONG HAN 1, SUNGEUN KIM1, SUNGYOUNG LEE1, JAEHWAN LEE2, AND SUNG JO KIM2 1LG Electronics, Seoul 07336, South Korea 2School of Software, Chung-Ang University, Seoul 06974, South Korea Corresponding author: Sung Jo Kim ([email protected]) This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2016R1D1A1B03931004 and in part by the Chung-Ang University Research Scholarship Grants in 2015. ABSTRACT As a way to increase the actual main memory capacity of Android smartphones, most of them make use of zRAM swapping, but it has limitation in increasing its capacity since it utilizes main memory. Unfortunately, they cannot use secondary storage as a swap space due to the long response time and wear-out problem. In this paper, we propose a hybrid swapping scheme based on per-process reclaim that supports both secondary-storage swapping and zRAM swapping. It attempts to swap out all the pages in the working set of a process to a zRAM swap space rather than killing the process selected by a low-memory killer, and to swap out the least recently used pages into a secondary storage swap space. The main reason being is that frequently swap- in/out pages use the zRAM swap space while less frequently swap-in/out pages use the secondary storage swap space, in order to reduce the page operation cost.
    [Show full text]
  • Cache & Memory System
    COMP 212 Computer Organization & Architecture Re-Cap of Lecture #2 • The text book is required for the class – COMP 212 Fall 2008 You will need it for homework, project, review…etc. – To get it at a good price: Lecture 3 » Check with senior student for used book » Check with university book store Cache & Memory System » Try this website: addall.com » Anyone got the book ? Care to share experience ? Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2 Z. Li, 2008 Components & Connections Instruction – CPU: processing data • Instruction word has 2 parts – Mem: store data – Opcode: eg, 4 bit, will have total 24=16 different instructions – I/O & Network: exchange data with – Operand: address or immediate number an outside world instruction can operate on – Connection: Bus, a – In von Neumann computer, instruction and data broadcasting medium share the same memory space: – Address space: 2W for address width W. • eg, 8 bit has 28=256 addressable space, • 216=65536 addressable space (room number) Comp 212 Computer Org & Arch 3 Z. Li, 2008 Comp 212 Computer Org & Arch 4 Z. Li, 2008 Instruction Cycle Register & Memory Operations During Instruction Cycle • Instruction Cycle has 3 phases • Pay attention to the – Instruction fetch: following registers’ • pull instruction from mem to IR, according to PC change over cycles: • CPU can’t process memory data directly ! – Instruction execution: – PC, IR • Operate on the operand, either load or save data to – AC memory, or move data among registers, or ALU – Mem at [940], [941] operations – Interruption Handling: to achieve parallel operation with slower IO device • Sequential • Nested Comp 212 Computer Org & Arch 5 Z.
    [Show full text]
  • AN-1471 Application Note
    AN-1471 APPLICATION NOTE One Technology Way • P. O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com ADuCM4050 Flash EEPROM Emulation by Pranit Jadhav and Rafael Lajara INTRODUCTION provides assurance that the flash initialization function works as Nonvolatile data storage is a necessity in many embedded expected. An ECC check is enabled for the entire user space in systems. Data, such as boot up configuration, calibration constants, the flash memory of the ADuCM4050. If ECC errors are reported and network related information, is normally stored on an during any read operation, the ECC engine automatically corrects electronically erasable programmable read only memory 1-bit errors and only reports on detection of 2-bit errors. When a (EEPROM) device. The advantage of using the EEPROM to store read occurs on the flash, appropriate flags are set in the status this data is that a single byte on an EEPROM device can be register of the ADuCM4050. If interrupts are generated, the source rewritten or updated without affecting the contents in the other address of the ECC error causing an interrupt is available in the locations. FLCC0_ECC_ADDR register for the interrupt service routine (ISR) to read. The ADuCM4050 is an ultra low power microcontroller unit (MCU) with integrated flash memory. The ADuCM4050 includes Emulation of the EEPROM on the integrated flash memory 512 kB of embedded flash memory with a 72-bit wide data bus reduces the bill of material (BOM) cost by omitting the EEPROM that provides two 32-bits words of data and one corresponding in the design.
    [Show full text]