Venus Volcanism Known Parameters Composition: Gamma-Ray

Total Page:16

File Type:pdf, Size:1020Kb

Venus Volcanism Known Parameters Composition: Gamma-Ray Known Parameters • Surface atmosphere, pressure Venus Volcanism – Average 480°C (decreases with increasing elevation) – Pressure = 92 bars at mean planetary radius • Uncompressed density = 5250 kg/m3 GLY 424/524 • Gravity = 8.82 m/s2 March 20, 2002 • Surface composition: Venera landers Magellan Radar image Composition: Gamma-ray Composition Spectroscopy Venera Venera Venera Vega Vega 8 9 10 1 2 Venera Venera Vega 2 Earth Earth 13 14 th. bslt. alk. bslt. SiO 45.1 ± 3.0 48.7 ± 3.6 45.6 ± 3.2 49.7 45.1 K2O 4.8 0.6 0.4 0.54 0.48 2 Al2O3 15.8 ± 3.0 17.9 ± 2.6 16.0 ± 1.8 16.5 13.4 wt.% ± 1.4 ± 0.1 ± 0.2 ± 0.26 ± 0.24 FeO 9.3 ± 2.2 8.8 ± 1.8 7.7 ± 3.7 8.3 12.7 MgO 11.4 ± 6.2 8.1 ± 3.3 11.5 ± 3.7 9.0 11.5 U 2.2 0.6 0.5 0.64 0.68 CaO 7.1 ± 0.6 10.3 ± 1.2 7.5 ± 0.7 13.8 10.4 K2O 4.0 ± 0.6 0.2 ± 0.1 0.1 ± 0.1 0.1 0.7 TiO 1.6 ± 0.5 1.2 ± 0.4 0.2 ± 0.1 0.7 2.0 ppm ± 0.7 ± 0.2 ± 0.3 ± 0.47 ± 0.38 2 NaO 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 - - SO 1.6 ± 1.0 0.9 ± 0.8 4.7 ± 1.5 - - Th 6.5 3.7 0.7 1.5 2.0 3 Cl 0.3 0.4 <0.3 - - ppm ± 0.2 ± 0.4 ± 0.3 ± 1.2 ± 1.0 Na2O - - - 1.9 2.9 Total 96.4 96.7 93.7 100 98.7 1 Venera 8 & 13 Sites • More alkalic compositions • Evolved lavas? – Trachytes? – Syenites? • Venera 8 landed on “pancake dome”? Volcanic Features on Venus Large Shield Volcanoes • Shield volcanoes • Similar to terrestrial, martian shields • “Paterae” (not identical to martian paterae) • Hot-spot volcanism • Lava plains • Locally may be associated with • Coronae – Rift zones • “Pancake domes” – coronae • Canali, valley networks • Lava flow fields • Shield fields (a.k.a. “shielded plains”) Location of volcanoes >100 km diameter 2 Sif and Gula Mons Sif Mons ~2 km high ~300 m across 700 km apart Gula = 3.2 km high Sapas Mons Ushas Mons ~120 km across ~500 km across ~1.5 km high ~2 km high Arrows indicate flooded Dikes? impact craters Thea Mons Small Shields and Shield Plains Largest volcano >4 km tall • Shields ~20 - 100 km across ~800 km across Found at juncture • Shield clusters (shields £20 km across) of 3 major rifts – Ubiquitous – 11,000 small shields per 106 km2 – Unique form of venusian volcanism 3 Patterns of Distribution • Small shields and shield fields tend to cluster around larger shield volcanoes • Small shields and shield fields found at mid- to low-latitudes – Real? – Or burial by lava plains? Shield Field Small Shield F.o.v. ~120 km ~40 km across Shield Field and Corona Shield Field and Flows Corona ~125 km Shields ~1 - 8 km Flows <200 km 4 Coronae • Large (~100 - 1000 km diameter) • Round or oval shaped • Ring of faults or ridges • Flat, raised or down-dropped center • Surrounded by moat or trough Small Vencor Corona Coronae F.o.v. ~100 km Coronae Evolution Large Coronae 5 Artemis Corona Lava Flow Fields ~2000 km Across ~700 km long Possible Subduction? Mylitta Lava Flow Fields Fluctus • Common • Volumes (thicknesses) unknown • Similar areas to terrestrial continental flood basalts • Typical lava flow lengths of ~1000 km – How? • Ambient conditions? • Unique lava compositions? • Unique emplacement parameters? Ozza Mons Flow Field 6.
Recommended publications
  • SFSC Search Down to 4
    C M Y K www.newssun.com EWS UN NHighlands County’s Hometown-S Newspaper Since 1927 Rivalry rout Deadly wreck in Polk Harris leads Lake 20-year-old woman from Lake Placid to shutout of AP Placid killed in Polk crash SPORTS, B1 PAGE A2 PAGE B14 Friday-Saturday, March 22-23, 2013 www.newssun.com Volume 94/Number 35 | 50 cents Forecast Fire destroys Partly sunny and portable at Fred pleasant High Low Wild Elementary Fire alarms “Myself, Mr. (Wally) 81 62 Cox and other administra- Complete Forecast went off at 2:40 tors were all called about PAGE A14 a.m. Wednesday 3 a.m.,” Waldron said Wednesday morning. Online By SAMANTHA GHOLAR Upon Waldron’s arrival, [email protected] the Sebring Fire SEBRING — Department along with Investigations into a fire DeSoto City Fire early Wednesday morning Department, West Sebring on the Fred Wild Volunteer Fire Department Question: Do you Elementary School cam- and Sebring Police pus are under way. Department were all on think the U.S. govern- The school’s fire alarms the scene. ment would ever News-Sun photo by KATARA SIMMONS Rhoda Ross reads to youngsters Linda Saraniti (from left), Chyanne Carroll and Camdon began going off at approx- State Fire Marshal seize money from pri- Carroll on Wednesday afternoon at the Lake Placid Public Library. Ross was reading from imately 2:40 a.m. and con- investigator Raymond vate bank accounts a children’s book she wrote and illustrated called ‘A Wildflower for all Seasons.’ tinued until about 3 a.m., Miles Davis was on the like is being consid- according to FWE scene for a large part of ered in Cyprus? Principal Laura Waldron.
    [Show full text]
  • The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.
    [Show full text]
  • Ooooooooo ° °
    LPI Contribution No. 789 57 highest basal elevation, Maat Mons, should have a well-developed, large, and relatively deeper NBZ and that the volcano at the lowest 6055 .It .... _ .... _ .... t .... t .... I .... altitude, an unnamed volcano located southwest of Beta Regio at 10 °, 273 °, should have either a poorly developed magma chamber 6054 _ o _ o or none at all [2]. Preliminary mapping of Mast Mons [3] identified o at least six flow units that exhibit greater variations in morphology ._ o o o and radar properties than the flow• of Saps• Mons. These units are 6053 o 8 o also spatially and temporally distinct and suggest the eruption of a continuously evolving magma. Although smaller in diameter, the o oo o summit c.alders is much bener defined than the depression at Saps•. The inferred young age of Mast (lOose et at. [4] suggest that it may ooooooooo° ° ° I even be "active") may mean that the chamber has not yet grown to 605tj#o_o o 6050_ .... t", ', _ .... _ ", • i • i ' "full size." explaining the relatively smaller caldera. There is no 0 1 2 3 4 5 6 evidence of radial fractures at Maat Mons, suggesting that if lateral Height (kin) dike propagation occurxed, it was sufficiently deep that there was no surface expression. In contrast, the unnamed volcano has no summit features, no radial dikes, and only three flow units that exhibit Fig. 3. Graph showing the heights of ! l0 large volcanos as • function of considerable morphologic variations within units [3]. These obser- basal altitude.
    [Show full text]
  • Lunar and Planetary Science XXXII (2001) 1653.Pdf
    Lunar and Planetary Science XXXII (2001) 1653.pdf GEOLOGIC MAPPING OF VENERA 13 LANDING SITE REGION. A. M. Abdrakhimov, Vernadsky Insti- tute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Russia, 117975, Moscow, Kosygina Ulitsa 19, [email protected]. This work is a continuation of the studies of [1] and studied region. It embays tessera and is embayed by [2] where analyzed the Magellan images of the Ven- younger plains (Pwr, Psh). Interpretation: Mafic lava eras' and Vegas' landing sites and concluded that all the locally deformed by compressional deformation. landers sampled Venusian plains of volcanic origin. FB — Fracture Belts material forms linear, radiat- Geological analysis of Venera 13 landing site made by ing and arcuate bands with densely spaced radar-bright [3] showed that Pwr and Pl materials are the most lineaments (fractures?). FB-forming fractures, when in probable units, analyzed by the lander. In this work we contact with Pwr plains, most of the belt fractures are used images with higher resolution (FMAP) than those embayed by this plains, but some of the fractures ex- used in our previous work (C1MIDRP) than led to new tend into Pwr plains deforming them. So FB unit is interpetation in some subareas. evidently made of older (pre-Pwr) and younger (Pwr) The goal of this work is to answer what is the stra- units. The small FB islands, several dozens of km, are tigraphic position of the surface material chemically observed at SE and NE parts of the mapped area. The analyzed by the Venera 13 lander, considering modern morphology of fracture belts suggests their formation knowledge about Venus geology.
    [Show full text]
  • VENUS Corona M N R S a Ak O Ons D M L YN a G Okosha IB E .RITA N Axw E a I O
    N N 80° 80° 80° 80° L Dennitsa D. S Yu O Bachue N Szé K my U Corona EG V-1 lan L n- H V-1 Anahit UR IA ya D E U I OCHK LANIT o N dy ME Corona A P rsa O r TI Pomona VA D S R T or EG Corona E s enpet IO Feronia TH L a R s A u DE on U .TÜN M Corona .IV Fr S Earhart k L allo K e R a s 60° V-6 M A y R 60° 60° E e Th 60° N es ja V G Corona u Mon O E Otau nt R Allat -3 IO l m k i p .MARGIT M o E Dors -3 Vacuna Melia o e t a M .WANDA M T a V a D o V-6 OS Corona na I S H TA R VENUS Corona M n r s a Ak o ons D M L YN A g okosha IB E .RITA n axw e A I o U RE t M l RA R T Fakahotu r Mons e l D GI SSE I s V S L D a O s E A M T E K A N Corona o SHM CLEOPATRA TUN U WENUS N I V R P o i N L I FO A A ght r P n A MOIRA e LA L in s C g M N N t K a a TESSERA s U . P or le P Hemera Dorsa IT t M 11 km e am A VÉNUSZ w VENERA w VENUE on Iris DorsaBARSOVA E I a E a A s RM A a a OLO A R KOIDULA n V-7 s ri V VA SSE e -4 d E t V-2 Hiei Chu R Demeter Beiwe n Skadi Mons e D V-5 S T R o a o r LI s I o R M r Patera A I u u s s V Corona p Dan o a s Corona F e A o A s e N A i P T s t G yr A A i U alk 1 : 45 000 000 K L r V E A L D DEKEN t Baba-Jaga D T N T A a PIONEER or E Aspasia A o M e s S a (1 MM= 45 KM) S r U R a ER s o CLOTHO a A N u s Corona a n 40° p Neago VENUS s s 40° s 40° o TESSERA r 40° e I F et s o COCHRAN ZVEREVA Fluctus NORTH 0 500 1000 1500 2000 2500 KM A Izumi T Sekhm n I D .
    [Show full text]
  • Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop Report
    1 Venera-D Landing Sites Selection and Cloud Layer Habitability Workshop Report IKI Moscow, Russia October 2-5, 2019 Space Science Research Institute (IKI), Russian Academy of Science, Roscosmos, and NASA http://venera-d.cosmos.ru/index.php?id=workshop2019&L=2 https://www.hou.usra.edu/meetings/venera-d2019/ 2 Table of Contents Introduction ...................................................................................................................................................... 6 Final Agenda .................................................................................................................................................. 10 Astrobiology Special Collection of papers from the workshop .................................................... 14 Technical Report: Venera-D Landing Site and Cloud Habitability Workshop ......................... 15 1.0 Missions to Venus .......................................................................................................................... 15 1.1 Past and Present ................................................................................................................................. 15 1.1.1 Available Instruments and Lessons Learned Surface Geology ........................................................... 15 1.1.2 Available Instruments and Lessons Learned for Cloud Habitability ............................................... 16 1.2 Future Missions ..................................................................................................................................
    [Show full text]
  • Vénus Les Transits De Vénus L’Exploration De Vénus Par Les Sondes Iconographie, Photos Et Additifs
    VVÉÉNUSNUS Introduction - Généralités Les caractéristiques de Vénus Les transits de Vénus L’exploration de Vénus par les sondes Iconographie, photos et additifs GAP 47 • Olivier Sabbagh • Février 2015 Vénus I Introduction – Généralités Vénus est la deuxième des huit planètes du Système solaire en partant du Soleil, et la sixième par masse ou par taille décroissantes. La planète Vénus a été baptisée du nom de la déesse Vénus de la mythologie romaine. Symbolisme La planète Vénus doit son nom à la déesse de l'amour et de la beauté dans la mythologie romaine, Vénus, qui a pour équivalent Aphrodite dans la mythologie grecque. Cythère étant une épiclèse homérique d'Aphrodite, l'adjectif « cythérien » ou « cythéréen » est parfois utilisé en astronomie (notamment dans astéroïde cythérocroiseur) ou en science-fiction (les Cythériens, une race de Star Trek). Par extension, on parle d'un Vénus à propos d'une très belle femme; de manière générale, il existe en français un lexique très développé mêlant Vénus au thème de l'amour ou du plaisir charnel. L'adjectif « vénusien » a remplacé « vénérien » qui a une connotation moderne péjorative, d'origine médicale. Les cultures chinoise, coréenne, japonaise et vietnamienne désignent Vénus sous le nom d'« étoile d'or », et utilisent les mêmes caractères (jīnxīng en hanyu, pinyin en hiragana, kinsei en romaji, geumseong en hangeul), selon la « théorie » des cinq éléments. Vénus était connue des civilisations mésoaméricaines; elle occupait une place importante dans leur conception du cosmos et du temps. Les Nahuas l'assimilaient au dieu Quetzalcoatl, et, plus précisément, à Tlahuizcalpantecuhtli (« étoile du matin »), dans sa phase ascendante et à Xolotl (« étoile du soir »), dans sa phase descendante.
    [Show full text]
  • The Spreading of Variable-Viscosity Axisymmetric Radial Gravity Currents : Applications to the Emplacement of Venusian ‘Pancake ’ Domes
    J. Fluid Mech. (1995), vol. 301, pp. 65-77 65 Copyright 0 1995 Cambridge University Press The spreading of variable-viscosity axisymmetric radial gravity currents : applications to the emplacement of Venusian ‘pancake ’ domes By S. E. H. SAKIMOTOt AND M. T. ZUBER Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA (Received 26 March 1994 and in revised form 4 May 1995) The Magellan images of Venus have revealed a number of intriguing volcanic features, including the steep-sided or ‘pancake’ domes. These volcanic domes or flows have morphologies that suggest formation by a single continuous emplacement of lava with a higher viscosity than that of the surrounding basaltic plains. Numerous investigators have suggested that such high viscosity is due to high silica content, leading to the conclusion that the domes are evidence of evolved magmatic products on Venus. However, viscosity depends on crystallinity as well as on silica content : high viscosity could therefore also be due to a cooler (and therefore higher crystal content) lava. Models of dome emplacement which include both cooling and composition factors are thus necessary in order to determine the ranges of crystallinity and silica content which might lead to the observed gross dome morphologies. Accordingly, in this study domes are modelled as radial viscous gravity currents with an assumed cooling-induced viscosity increase to include both effects. Analytical and numerical results indicate that pancake dome formation is feasible with compositions ranging from basaltic to rhyolitic. Therefore, observations of gross dome morphology alone are insufficient for determining composition and the domes do not necessarily represent strong evidence for evolved magmatism on Venus.
    [Show full text]
  • Surface Processes in the Venus Highlands: Results from Analysis of Magellan and a Recibo Data
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. E], PAGES 1897-1916, JANUARY 25, 1999 Surface processes in the Venus highlands: Results from analysis of Magellan and A recibo data Bruce A. Campbell Center for Earth and Planetary Studies, Smithsonian Institution, Washington, D.C. Donald B. Campbell National Astronomy and Ionosphere Ceiitei-, Cornell University, Ithaca, New York Christopher H. DeVries Department of Physics and Astronomy, University of Massachusetts, Amherst Abstract. The highlands of Venus are characterized by an altitude-dependent change in radar backscattcr and microwave emissivity, likely produced by surface-atmosphere weathering re- actions. We analyzed Magellan and Arecibo data for these regions to study the roughness of the surface, lower radar-backscatter areas at the highest elevations, and possible causes for areas of anomalous behavior in Maxwell Montes. Arecibo data show that circular and linear radar polarization ratios rise with decreasing emissivity and increasing Fresnel reflectivity, supporting the hypothesis that surface scattering dominates the return from the highlands. The maximum values of these polarization ratios are consistent with a significant component of multiple-bounce scattering. We calibrated the Arecibo backscatter values using areas of overlap with Magellan coverage, and found that the echo at high incidence angles (up to 70") from the highlands is lower than expected for a predominantly diffuse scattering regime. This behavior may be due to geometric effects in multiple scattering from surface rocks, but fur- ther modeling is required. Areas of lower radar backscatter above an upper critical elevation are found to be generally consistent across the equatorial highlands, with the shift in micro- wave properties occurring over as little as 5ÜÜ m of elevation.
    [Show full text]
  • Cambridge University Press 978-1-107-15274-8 — Worlds Fantastic, Worlds Familiar Bonnie J
    Cambridge University Press 978-1-107-15274-8 — Worlds Fantastic, Worlds Familiar Bonnie J. Buratti Index More Information Index 10199 Chariklo, 40 Banks, Joseph, 1 162173 Ryugu, 48 Barlowe, Sy, 26, 27, 159 1992 QB1, 194 Barnard’s star, 207 1997 XF11, 84 Bartram, John, 33 2003 UB313, 196 basaltic achondrites, 79, 89 2010 RF12, 85 Batygin, Konstantin, 198 243 Ida, 88, 89 Baum, William, 124 4015 Wilson–Harrington, 94 Bayeux Tapestry, 92 433 Eros, 78, 80, 88, 89 Bell, Jeffrey, 116 51 Pegasi, 208 Benner, Lance, 90, 91 70 Ophiuchi, 207 Bessel, Friedrich, 13 951 Gaspra, 88 Bethlehem, Pennsylvania, 6, 181 99942 Apophis, 84 Binzel, Richard, 188 Black, G. J., 143 A’Hearn, Mike, 90 Blewett, Dave, 24 Adams, John Couch, 182 Boston, Penny, 3 Adamski, George, 29 Bottke, William, 117 Amalthea, 109 Bowman, Alice, 199, 200 Ammavaru, 41 Bradbury, Ray, 49, 197 Anaxagoras, 30 Brandeis, Louis, 50 Anaximander, 206 brown dwarfs, 213 anthropic principle, 222 Brown, Michael, 144, 196, 198 Antoniadi, Eugene, 14, 52 Brown, Robert H., 175 Aphrodite, 39, 41 Brownlee, Don, 221 Apollo, 6, 192, 224, 225 Broznovic, Marina, 90 apophenia, 53 Buie, Marc, 187 arachnoids, 42 Burch, Jim, 133 Arecibo, 17, 90, 91, 143 Burney, Venetia, 184, 185, 197 Armageddon (film), 78 Butler, Bryan, 23 Asimov, Isaac, 15, 18 asteroids, vii, 73, 77, 89 Callisto, 96, 98, 110, 114, 115, 116, 117 composition, 87–88 dust on, 116–117 definition, 77 surface appearance, 114–115 origin, 86 Caloris Basin, 21, 23 threat of impact, 84–85 Cambrian explosion, 221 Astounding Science Fiction (magazine), 15 Campbell, Don, 143 Avicenna, 32 Campbell, William Wallace, 12 canali, 14, 51 Baade, William, 185 Canup, Robin, 189 Babylonians, 29, 32 Canyonlands, 72, 149, 150 bandwagon effect, 13, 18, 19, 185 Carter, Jimmy, 28 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-15274-8 — Worlds Fantastic, Worlds Familiar Bonnie J.
    [Show full text]
  • 1 : 45 000 000 E a CORONA D T N O M E Or E ASPASIA T Sa MM= KM S R
    N N 80° 80° 80° Dennitsa D. 80° Y LO S Sz um U N éla yn H EG nya -U I BACHUE URO IA D d P ANAHIT CHKA PLANIT ors Klenova yr L CORONA M POMONA a D A ET CORONA o N Renpet IS r I R CORONA T sa T Mons EG FERONIA ET L I I H A . Thallo O A U u Tünde CORONA F S k L Mons 60° re R 60° 60° R a 60° . y j R E e u M Ivka a VACUNA GI l m O k . es E Allat Do O EARHART o i p e Margit N OTAU nt M T rsa CORONA a t a D E o I R Melia CORONA n o r o s M M .Wanda S H TA D a L O CORONA a n g I S Akn Mons o B . t Y a x r Mokosha N Rita e w U E M e A AUDRA D s R V s E S R l S VENUS FAKAHOTU a Mons L E E A l ES o GI K A T NIGHTINGALE I S N P O HM Cleopatra M RTUN A VÉNUSZ VENERA CORONA r V I L P FO PLANITIA ÂÅÍÅÐÀ s A o CORONA M e LA N P N n K a IT MOIRA s UM . a Hemera Dorsa A Iris DorsaBarsova 11 km a E IA TESSERA t t m A e a VENUŠE WENUS Hiei Chu n R a r A R E s T S DEMETER i A d ES D L A o Patera A r IS T N o R s r TA VIRIL CORONA s P s u e a L A N I T I A P p nt A o A L t e o N s BEIWE s M A ir u K A D G U Dan Baba-Jaga 1 : 45 000 000 E a CORONA D T N o M e or E ASPASIA t sa MM= KM S r .
    [Show full text]
  • Astronomer's Computer Companion / Jeff Foust and Ron Lafon
    astronomer’s computer companion Jeff Foust &Ron LaFon San Francisco the astronomer’s computer companion. Copyright by Jeff Foust and Ron LaFon All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any informa- tion storage or retrieval system, without the prior written permission of the copyright owner and the publisher. Printed in the United States of America c Printed on recycled paper — Trademarks Trademarked names are used throughout this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. :William Pollock :Karol Jurado :Derek Yee Design :Derek Yee :Margery Cantor copyeditors:Gail Nelson, Judy Ziajka :John Carroll :Nancy Humphreys Distributed to the book trade in the United States and Canada by Publishers Group West, Fourth Street, Berkeley, California , phone: --or --, fax: --. For information on translations or book distributors outside the United States, please contact No Starch Press directly: No Starch Press China Basin Street, Suite , San Francisco, CA - phone: --; fax: --; [email protected]; www.nostarch.com The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.
    [Show full text]