Adaptive Significance of Vertical Migration Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Significance of Vertical Migration Behaviour ADAPTIVE SIGNIFICANCE OF VERTICAL MIGRATION BEHAVIOUR OF SKISTODIAPTOMUS OREGONENSIS by DAVID GHAN B.Sc, McGill University, 1987 M.Sc, The University of Toronto, 1991 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1997 David Ghan, 1997 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of piD J\ Uy — zru~ The University of British Columbia Vancouver, Canada Date lm/7srA .7 I'/fl"? DE-6 (2/88) 11 Abstract I have studied the adaptive significance of vertical migration of zooplankton in 2 populations of the copepod Skistodiaptomus oregonensis that migrate and 2 populations that do not migrate. Vertical migration of the copepods is associated with the presence of pelagic sticklebacks. This observation is consistent with the hypothesis that the adaptive benefit of vertical migration by S. oregonensis is to avoid stickleback predators. The alternative hypotheses including avoidance of juvenile sockeye predators, foraging efficiency, bioenergetic efficiency, or combined foraging/bioenergetic efficiency are not supported by the comparisons of migratory behaviour of S. oregonensis in the 4 lakes. Both the depth and timing of S. oregonensis migration are consistent with the hypothesis that copepods are avoiding predation by sticklebacks. Light intensities at the depth at which S. oregonensis reside during the day are sufficiently low to.reduce predation risk from visual foraging stickleback and the timing of ascent at dusk and descent at dawn are such that S. oregonensis remain at light intensities that reduce risk from stickleback. S. oregonensis are at the surface at dusk and dawn at the time that juvenile sockeye feed in the surface habitat. Vertical migration appears to be a trade-off with resource acquisition. Phytoplankton are less concentrated in the deep habitat where S. oregonensis reside during the day. Furthermore, migrating copepods contain less phytoplankton as food in their guts than do non-migrating individuals. Ill In vertical columns in the laboratory, the presence or absence of sticklebacks does not influence the vertical distributions of S. oregonensis collected from lakes with either migratory or non-migratory populations. This indicates that the migration phenotype is fixed rather than being a flexible behaviour induced by environmental cues. I developed a dynamic optimization model to predict the optimal depth decisions for S. oregonensis based on depth dependent lake food and temperature conditions, fish abundance and predation rates, and S. oregonensis bioenergetics. The model predicts that vertical migration should occur to avoid sticklebacks under a broad range of modelled conditions, but with a fitness cost due to feeding opportunity costs. This demonstrates quantitatively that it is tenable to hypothesize that vertical migration involves a trade• off between stickleback avoidance and feeding opportunity. Taken together, these results are consistent with the view that different migration behaviours in these populations are a result of divergent evolution driven by environmental variation affecting the optimal solution to the predation risk/resource acquisition trade-off. iv Table of Contents Abstract ii Table of Contents iv List of Tables v List of Figures vi Acknowledgements xii Chapter 1: General Introduction 1 Chapter 2: Testing hypotheses on the benefits and costs of vertical migration by Skistodiaptomus oregonensis by comparing populations 9 Introduction . 9 Methods 10 Results 19 Discussion 48 Chapter 3: The Timing and extent of vertical migration by Skistodiaptomus oregonensis relative to the temporal- spatial distribution of predation risk 58 Introduction 58 Methods 59 Results 63 Discussion . 98 Chapter 4: Vertical migration behavior of Skistodiaptomus oregonensis: constitutive or induced? . 103 Introduction 103 Methods 104 Results 108 Discussion 120 Chapter 5: A dynamic optimization model of Skistodiaptomus oregonensis vertical migration 128 Introduction 128 Model Description 129 Model Results 140 Summary 151 Chapter 6: Thesis Summary 153 References 158 V List of Tables Table 2.1: Physical conditions in the four study lakes. ... 37 Table 2.2: Biological conditions in the four study lakes. 3 8 Table 3.1: ANOVA results testing H0 that initial zooplankton densities in experimental feeding tanks did not differ among light intensity treatments 64 Table 3.2: ANOVA results for each prey type testing Ho that initial densities of the prey types did not differ among treatments 65 Table 3.3: ANOVA results testing Ho that initial zooplankton densities in experimental feeding tanks did not differ among days 69 Table 3.4: Regression results for the effect of light (X) on four Y variables where In(Y+l)=a*ln(X)+b, except for the capture/strike ratio where arcsin(sqrt (Y+l) ) =a*ln(X) +b 78 Table 4.1: Experiment 1 - univariate repeated measures analyses of variance for A) the effect of fishwater [+/-] treatments on the proportion of S. oregonensis below 100 cm during the day and B) the effect of fishwater [+/-] treatments on the change in the proportion of S. oregonensis below 100 cm from night to day 112 Table 4.2: Experiment 1 - nested analyses of variance for depths of individual S. oregonensis: tests of significance for fishwater [+/-] treatment effects and tube within treatment effects 114 Table 4.3: Experiment 2 - univariate repeated measures analyses of variance for A) the effect of fishwater [+/-] treatments on the proportion of S. oregonensis below 100 cm during the day and B) the effect of fishwater [+/-] treatments on the change in the proportion of S. oregonensis below 100 cm from night to day 118 Table 4.4: Experiment 2 - nested analyses of variance for depths of individual S. oregonensis: tests of significance for fishwater (+/-) treatment effects and tube within treatment effects 119 Table 4.5: Experiment 3 - nested analyses of variance for depths of individual S. oregonensis: tests of significance for fish (+/-) treatment effects and tube within treatment effects 123 vi List of Figures Fig. 2.1: Location of the four study lakes in southwestern British Columbia 11 Fig. 2.2: Map of Great Central Lake showing sample location (X) and lake contours in meters. Depth contours taken from Rutherford et al. (1986) 12 Fig. 2.3: Map of Hobiton Lake showing location of sample site (X) and lake contours in meters 13 Fig. 2.4: Map of Kennedy Lake showing location of sample site (X) and depth contours in meters 14 Fig. 2.5: Map of Paxton Lake showing location of sample site (X) and depth contours in meters 15 Fig. 2.6: Day (hatched bars) and night (solid bars) vertical distribution for 5 metasome length classes of S. oregonensis in Kennedy Lake on August 25, 1993 20 Fig. 2.7: Day (hatched bars) and night (solid bars) vertical distribution for 5 metasome length classes of S. oregonensis in Kennedy Lake on November 12, 1992. ... 21 Fig. 2.8: A) Mean day and night depth of 750-850 um metasome length S. oregonensis in Kennedy Lake on 13 sample dates from 1992-1994. B) Mean day and night depth of 3-50 um size fraction of phytoplankton in Kennedy Lake from 13 sample dates from 1992 to 1994. C) Data in part A and B redrawn to compare mean day and night depth of S. oregonensis with mean day and night depth of 3-50 um size fraction of phytoplankton 22 Fig. 2.9: Vertical distribution of chlorophyll a from the 3-50 um size fraction of phytoplankton on 12 sample dates in Kennedy Lake 23 Fig. 2.10: Depth distribution of temperature (open circles) and of chlorophyll a from the 3-50 um size fraction of phytoplankton day (open squares) and night (solid squares) on six sample dates 25 Fig. 2.11: Changes in density of S. oregonensis in three depth strata of Paxton Lake during dawn of August 19, 1994. 26 Fig. 2.12: Changes in density of S. oregonensis in three depth strata of Paxton Lake during dusk of August 19, 1994 27 Fig. 2.13: Day and night vertical distribution of chlorophyll a from the 3-50 um size fraction of phytoplankton in Paxton Lake, August, 1994 28 vii Fig. 2.14: Day (hatched bars) and night (solid bars) vertical distribution for 5 metasome length classes of S. oregonensis in Great Central Lake on July 7, 1992. 30 Fig. 2.15: Day (hatched bars) and night (solid bars) vertical distribution for 5 metasome length classes of S. oregonensis in Great Central Lake on August 18, 1992. • 31 Fig. 2.16: A) Mean day and night depth of 750-850 um metasome length S. oregonensis in Great Central Lake on 7 sample dates in 1992 and 1993. B) Mean day and night depth of 3-50 um size fraction of phytoplankton in Great Central Lake from 7 sample dates from 1992 and 1993. C) Data in part A and B redrawn to compare mean day and night depth of S. oregonensis with mean day and night depth of 3-50 um phytoplankton 32 Fig. 2.17: Day (hatched bars) and night (solid bars) vertical distribution for 5 metasome length classes of S. oregonensis in Hobiton Lake on August 5, 1992. ... 33 Fig. 2.18: Day (hatched bars) and night (solid bars) vertical distribution for 5 metasome length classes of S.
Recommended publications
  • Newmani (Copepoda: Calanoida) in Toyama Bay, Southern Japan Sea
    Plankton Biol. Ecol. 45 (2): 183-193, 1998 plankton biology & ecology D The Plankton Society of Japan 1998 Population structure and life cycle of Pseudocalanus minutus and Pseudocalanus newmani (Copepoda: Calanoida) in Toyama Bay, southern Japan Sea Atsushi Yamaguchi, Tsutomu Ikeda & Naonobu Shiga Biological Oceanography Laboratory, Faculty ofFisheries, Hokkaido University, 3-1-1, Minatomachi, Hakodate, Hokkaido 041-0821, Japan Received 14 January 1998; accepted 12 February 1998 Abstract: Population structure and life cycle of Pseudocalanus minutus and P. new mani in Toyama Bay, southern Japan Sea, were investigated based on seasonal samples obtained by vertical hauls (0-500 m depth) of twin-type Norpac nets (0.33- mm and 0.10-mm mesh) over one full year from February 1990 through January 1991. Closing PCP nets (0.06-mm mesh) were also towed to evaluate vertical distrib ution patterns in September 1990, November 1991 and February 1997. P. minutus was present throughout the year. The population structure was characterized by nu merous early copepodite stages in February-April, largely copepodite V (CV) in May-November, and a rapid increase of adults in November to January. As the ex clusive component of the population, CVs were distributed below 300 m in Septem ber and November both day and night. These CVs were considered to be in dia pause. In February most of the Cl to CIV stages were concentrated in the top 100 m. All copepodite stages of P. newmani were collected for only 7 months of the year, disappearing from the water column in Toyama Bay from mid-June onward and their very small population recovered in November.
    [Show full text]
  • The Effect of Abiotic and Biotic Variables on Culturing Conditions of Calanoid Copepod Acartia Grani
    The effect of abiotic and biotic variables on culturing conditions of Calanoid copepod Acartia grani Luis Bernardo dos Santos Sumares Dissertation for the Master in Marine Sciences – Marine Resources 2012 Luís Bernardo dos Santos Sumares The effect of abiotic and biotic variables on culturing conditions of Calanoid copepod Acartia grani Dissertation application to the master degree in Marine Sciences – Marine Resources submitted to the Institute of Biomedical Sciences Abel Salazar, University of Porto. Supervisor: Natacha Nogueira Researcher Mariculture Center of Calheta (CMC) Co-Supervisor: António Afonso Associate Professor Institute of Biomedical Sciences Abel Salazar, University of Porto 1 Master´s degree in Marine Sciences – Marine Resources | Bernardo Sumares Preface The work described in this document was made between the months of November 2011 and September 2012, initially on IPIMAR - Algarve, and later at the Mariculture Center of Calheta (CMC), in Madeira Island. The work was organized in two phases: one was to acquire knowledge of microalgae and copepods in IPIMAR; and the second phase, performed at CMC facilities, was the performance of all the experiments that gave rise to this thesis. i Master´s degree in Marine Sciences – Marine Resources | Bernardo Sumares ii Master´s degree in Marine Sciences – Marine Resources | Bernardo Sumares Acknowledgements To my super parents Paula e Angelino that give me all the support and love for successfully completes another important stage of my life. The wise words of my father who helped me a lot: “Depois da tempestade vem a bonança”. My sister Carolina and Rik for always being available to help me even in the hours of hard work always put my work first.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Oup Plankt Fbw025 610..623 ++
    Journal of Plankton Research plankt.oxfordjournals.org J. Plankton Res. (2016) 38(3): 610–623. First published online April 21, 2016 doi:10.1093/plankt/fbw025 Phylogeography and connectivity of the Pseudocalanus (Copepoda: Calanoida) species complex in the eastern North Pacific and the Pacific Arctic Region JENNIFER MARIE QUESTEL1*, LEOCADIO BLANCO-BERCIAL2, RUSSELL R. HOPCROFT1 AND ANN BUCKLIN3 INSTITUTE OF MARINE SCIENCE, UNIVERSITY OF ALASKA FAIRBANKS, N. KOYUKUK DRIVE, O’NEILL BUILDING, FAIRBANKS, AK , USA, BERMUDA INSTITUTE OF OCEAN SCIENCES–ZOOPLANKTON ECOLOGY, ST. GEORGE’S, BERMUDA AND DEPARTMENT OF MARINE SCIENCES, UNIVERSITY OF CONNECTICUT, SHENNECOSSETT ROAD, GROTON, CT , USA *CORRESPONDING AUTHOR: [email protected] Received December 14, 2015; accepted March 9, 2016 Corresponding editor: Roger Harris The genus Pseudocalanus (Copepoda, Calanoida) is among the most numerically dominant copepods in eastern North Pacific and Pacific-Arctic waters. We compared population connectivity and phylogeography based on DNA sequence variation for a portion of the mitochondrial cytochrome oxidase I gene for four Pseudocalanus species with differing biogeographical ranges within these ocean regions. Genetic analyses were linked to characterization of bio- logical and physical environmental variables for each sampled region. Haplotype diversity was higher for the temp- erate species (Pseudocalanus mimus and Pseudocalanus newmani) than for the Arctic species (Pseudocalanus acuspes and Pseudocalanus minutus). Genetic differentiation among populations at regional scales was observed for all species, except P. minutus. The program Migrate-N tested the likelihood of alternative models of directional gene flow between sampled populations in relation to oceanographic features. Model results estimated predominantly north- ward gene flow from the Gulf of Alaska to the Beaufort Sea for P.
    [Show full text]
  • 방류 연어, Oncorhynchus Keta 치어의 해양 먹이선택성
    JF M S E, 26(2), pp. 421~429, 2014. www.ksfme.or.kr 수산해양교육연구, 제26권 제2호, 통권68호, 2014. http://dx.doi.org/10.13000/JFMSE.2014.26.2.421 방류 연어, Oncorhynchus keta 치어의 해양 먹이선택성 권오남 김주경* 윤문근* 김두호* 홍관의 (강릉원주대학교 동해안생명과학연구소 * 한국수산자원관리공단 양양연어사업소) Marine Prey Selectivity of Released Juvenile Chum Salmon (Oncorhynchus keta) During arly Marine Migration in Korean Waters O-Nam KWONㆍJu-Kyoung KIM*ㆍMoon-Geun YOON*ㆍDoo-Ho KIM*ㆍKwan-Eui HONG (Gangneung-Wonju National Universityㆍ* Marine biology Center for Research and Education) Abstract We investigated the feeding ecology of juvenile chum salmon (Oncorhynchus keta) during the critical early life stage prey selectivity of juvenile chum salmon during early marine migration in Korean waters at spring 2011. Salmon juveniles and zooplanktons were collected to draw with 20 m×5 m gill net and 300 μm mesh zooplankton net at each station on 11th-13th April n 2011. Collected zooplanktons were classified to 5 Phylum, 6 Class, 9 Order 17 Species in this study. Almost 76.4-100% species were classified to Phylum Arthropoda, dominant species was a species out of Hyperia galba of Order Amphipoda, Acartia spp and Paracalanus parvus of Order Calanoida. Collected salmon juveniles were grew up to average 4.7-5.4 cm fork length and average 1.0-1.5 g wet weight in whole station. Fish stomach content (mg/salmon) was heaver to 97.4, 82.4 and 63.2 mg wet weight/salmon in ST 2, 3, 4 than 20.4, 18.9 mg/salmon of ST 1, 5, because there are fish (sand eel, Hypoptychus dybowskii) and Krill (Euphausia) as prey in salmon stomach in ST 2, 3, 4.
    [Show full text]
  • Major Patterns of Body Size Variation Within Arthropod Species: Exploring the Impact of Habitat, Temperature, Latitude, Seasonality and Altitude
    Major Patterns of Body Size Variation within Arthropod Species: Exploring the Impact of Habitat, Temperature, Latitude, Seasonality and Altitude Submitted in partial fulfilment of the requirements of the Degree of Doctor of Philosophy Curtis Robert Horne June 2017 I, Curtis Robert Horne, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 2nd June 2017 i Details of collaboration and publications Author contributions and additional collaborators are listed below for each chapter, as well as details of publications where applicable. This work was supported by the Natural Environment Research Council (NE/L501797/1). I use the term ‘we’ throughout the thesis to acknowledge the contribution of others.
    [Show full text]
  • Oceanographic Assessment of the Planktonic Communities in the Klondike and Burger Survey Areas of the Chukchi Sea Report for Survey Year 2009
    Oceanographic assessment of the planktonic communities in the Klondike and Burger Survey Areas of the Chukchi Sea Report for Survey year 2009 Russell R Hopcroft, Jennifer Questel, Cheryl Clarke-Hopcroft Institute of Marine Science, University of Alaska Fairbanks 1 November 2010 Prepared for ConocoPhillips Shell Exploration & Production Company 700 G Street 3601 C Street Anchorage, AK 99501 Anchorage, AK 99503 Statoil USA Exploration & Production Inc 2700 Gambell Street, Anchorage, AK 99507 TABLE OF CONTENTS Executive Summary......................................................................................................................... 1 Introduction..................................................................................................................................... 2 Purpose of Study and Rationale..................................................................................................2 Objectives of Study..................................................................................................................... 2 Brief History of Planktonic Biological Oceanography in Chukchi Sea ..................................... 2 Methods........................................................................................................................................... 4 Survey Design............................................................................................................................. 4 Collection Procedures ................................................................................................................
    [Show full text]
  • The Interannual Changes in the Secondary Production and Mortality Rate of Main Copepod Species in the Gulf of Gda ´Nsk(The Southern Baltic Sea)
    applied sciences Article The Interannual Changes in the Secondary Production and Mortality Rate of Main Copepod Species in the Gulf of Gda ´nsk(The Southern Baltic Sea) Lidia Dzierzbicka-Głowacka 1,* , Maja Musialik-Koszarowska 1, Marcin Kalarus 2, Anna Lemieszek 2, Paula Pr ˛atnicka 3, Maciej Janecki 1 and Maria Iwona Zmijewska˙ 3 1 Institute of Oceanology, Polish Academy of Sciences, Powsta´nców Warszawy 55, 81-712 Sopot, Poland; [email protected] (M.M.-K.); [email protected] (M.J.) 2 Maritime Institute of Gda´nsk,Długi Targ 41/42, 80-830 Gda´nsk,Poland; [email protected] (M.K.); [email protected] (A.L.) 3 Institute of Oceanography, University of Gda´nsk,Av. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland; [email protected] (P.P.); [email protected] (M.I.Z.)˙ * Correspondence: [email protected]; Tel.: +48-58-731-1915 Received: 23 April 2019; Accepted: 14 May 2019; Published: 17 May 2019 Abstract: The main objective of this paper was description of seasonal and interannual trends in secondary production and mortality rates of the three most important Copepoda taxa in the Gulf of Gda´nsk(southern Baltic Sea). Samples were collected monthly from six stations located in the western part of the Gulf of Gda´nskduring three research periods: 1998–2000, 2006–2007, and 2010–2012. Production was calculated based on copepod biomass and mortality rates estimated according to vertical life table approach. Redundancy analysis was used to investigate relationship between secondary production and environmental conditions. During the entire research period there was significant interannual and seasonal variability of secondary production, mortality rate, as well as abundance and biomass anomalies.
    [Show full text]
  • Plankton Biol. Ecol. 48(2), Page 114, 2001
    Plankton Bioi. Ecol. 48 (2): 114-120, 2001 plankton biology & ecology € The Plankton Society of Japan 2001 Metabolism, body composition (C and N) and estimated net growth efficiency of a calanoid copepod Pseudocalanus newmani raised at different temperatures in the laboratory Hong-Wu Lee1, Tsutomu Ikeda and Syuhei Ban Marine Biodiversity Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-machi, Hakodate, Hokkaido 041-0821, Japan ' Present address: Japan Applied Microbiology Research Institute Ltd., 242 Ido, Isawa-cho. Higashiyatsushiro-gun. Yamanashi, 406-0045 Japan Received 4 January 2001; accepted 11 June 2001 Abstract: Metabolism (oxygen consumption) of laboratory-raised Pseudocalanus newmani cope- podite stages 1 through 6 (C1-C6) at 10°C, and C6 at 3, 6, and 15°C was determined. Oxygen con sumption rates (/?: ji\ O2 indiv."1 h~1) of males were found to be less than the rates of females for the C4-C6, largely because of lesser body mass of the former than the latter. From stepwise regression analysis, R of copepodites was expressed as a function of body dry weight (DW: jug) and temperature (7: °C) as fl=0.00172DW+0.001547-0.00641. While higher temperatures yielded smaller adults, the effect of temperature was not seen in their carbon and nitrogen compositions. Over the temperature range tested, males (mean: 52.7% of DW) were consistently richer in carbon than females (43.1% of DW). Based on these results, the carbon budget was established for males and females growing from C1 to C6 at 3 to 15°C, and the combined effects of temperatures on metabolism and growth were as sessed in terms of the net growth efficiency or K2 [growthxi00/(growth+metabolism)].
    [Show full text]
  • Diel Vertical Migration and Feeding Rhythm of Copepods in a Shallow, Food-Abundant Embayment
    Plankton Biol. Ecol. 44 (1/2): 13-29, 1997 plankton biology & ecology © The Plankton Society of Japan 1997 Diel vertical migration and feeding rhythm of copepods in a shallow, food-abundant embayment HlROAKI SAITO1 & HlROSHI HATTORI2 1 Hokkaido National Fisheries Research Institute, 116 Katsura-koi, Kushiro 085, Japan 2School ofEngineering, Hokkaido Tokai University, Minami-ku, Sapporo 005, Japan Received 6 January 1997; accepted 6 March 1997 Abstract: We examined diel vertical migration (DVM) and diel feeding rhythm (DFR) of copepods in Akkeshi Bay during the fall bloom and tested the predation preventive hypothesis on both behaviors. The dominant copepods aggregated in the near-bottom layer during the day, and after sunset, dispersed through the water col umn. However, the magnitudes of the DVMs were not extensive, as the rises in the median depth of the populations {MD) from daytime to nighttime were less than 3.3 m. The differences between the nighttime and daytime average MDs were in significant (p>0.05) in 7 of 13 categories of copepods. The usual pattern of DFR was observed in every layer in the water column. Most of the copepods did not exploit the chlorophyll maximum layer and decreased their ingestion rate during the day. However, these copepods were not food limited, as their daily ingestion rates were 3-4 times higher than their daily food requirements. Both the daytime near-bottom aggregation and the daytime decrease in feeding activity are thought to help de crease the predation risk from visual predators. The observed diel behaviors of copepods could be thought of as a preventive behavior for avoiding visual predators in a food-abundant shallow environment.
    [Show full text]
  • Sakhalin Energy Investment Company LTD. Ecological-Fisheries
    Classification: Unclassified BM Code: A-27 Issue Purpose AFU September, 2005 Sakhalin Energy Investment Company LTD. Ecological-fisheries characteristics of bays of the Northeastern Sakhalin Эколого-рыбохозяйственная характеристика заливов северо-восточного Сахалина Document Number: 0000-S-90-04-T-7964-00-D Revision 01 The copyright of this document is vested in Sakhalin Energy Investment Company LTD. All rights reserved. Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owner. The contents of this controlled document shall not be altered without formal approval of the document Custodian. FISHERY STATE COMMITTEE OF RUSSIAN FEDERATION Federal State Unitary Enterprise Sakhalin Research Institute of Fisheries and Oceanography (SakhNIRO) «A P P R O V E» Director of SakhNIRO ____________ V.I. Radchenko «____» ______________ 2003 REPORT on the implementation of scientific-research works according to the Agreement № Y – 00571 on the subject : “ECOLOGICAL-FISHERIES CHARACTERISTICS OF BAYS OF THE NORTHEASTERN SAKHALIN” General management: Head of DAE, c.b.s. A. D. Samatov Yuzhno-Sakhalinsk, 2002 2 ABSTRACT P. 288, Tab. 155, Fig. 110, Ref. 139 PHYSIC-GEOGRAPHIC CHARACTERISTIC, HYDROLOGIC-HYDROCHEMICAL PARAMETERS, PARTICLE-SIZE COMPOSITION, PETROLEUM HYDROCARBONS, CHLORORGANIC PESTICIDES, PHENOLS, METALS, MICROBIAL INDICATION, PHYTOPLANKTON, ZOOPLANKTON,
    [Show full text]
  • Distribution and Egg Production of Pseudocalanus Species in the Chukchi Sea
    ARTICLE IN PRESS Deep-Sea Research II ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Distribution and egg production of Pseudocalanus species in the Chukchi Sea Russell R. Hopcroft a,Ã, Ksenia N. Kosobokova b a Institute of Marine Science, University of Alaska Fairbanks, PO Box 757220, Fairbanks, AK 99775-7220, USA b PP Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovski Prospekt, 36, Moscow 117997, Russia article info abstract The distribution and egg production of Pseudocalanus species was studied in the Chukchi Sea Keywords: during August 2004. Three species were identified throughout the study area, Pseudocalanus Pseudocalanus minutus, Pseudocalanus acuspes and Pseudocalanus newmani. The more subpolar/temperate Egg production P. newmani-dominated stations where water was warmer and likely influenced by Alaska coastal Arctic Ocean waters, and it penetrated northward into the south-eastern corner of Herald Valley. The Arctic P. acuspes Chukchi Sea dominated the colder waters. The number of eggs produced by individuals and populations differed among species, primarily because of differences in body size, but mass-specific egg production was similar among species, and was on the order of 15% per day. Future increases in the prevalence of P. newmani within the Chukchi Sea might be anticipated, and would result in a decreased average size of the copepod community, with potential implication for higher trophic levels. & 2009 Elsevier Ltd.
    [Show full text]