Distribution and Egg Production of Pseudocalanus Species in the Chukchi Sea

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Egg Production of Pseudocalanus Species in the Chukchi Sea ARTICLE IN PRESS Deep-Sea Research II ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Distribution and egg production of Pseudocalanus species in the Chukchi Sea Russell R. Hopcroft a,Ã, Ksenia N. Kosobokova b a Institute of Marine Science, University of Alaska Fairbanks, PO Box 757220, Fairbanks, AK 99775-7220, USA b PP Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovski Prospekt, 36, Moscow 117997, Russia article info abstract The distribution and egg production of Pseudocalanus species was studied in the Chukchi Sea Keywords: during August 2004. Three species were identified throughout the study area, Pseudocalanus Pseudocalanus minutus, Pseudocalanus acuspes and Pseudocalanus newmani. The more subpolar/temperate Egg production P. newmani-dominated stations where water was warmer and likely influenced by Alaska coastal Arctic Ocean waters, and it penetrated northward into the south-eastern corner of Herald Valley. The Arctic P. acuspes Chukchi Sea dominated the colder waters. The number of eggs produced by individuals and populations differed among species, primarily because of differences in body size, but mass-specific egg production was similar among species, and was on the order of 15% per day. Future increases in the prevalence of P. newmani within the Chukchi Sea might be anticipated, and would result in a decreased average size of the copepod community, with potential implication for higher trophic levels. & 2009 Elsevier Ltd. All rights reserved. 1. Introduction those of the central Arctic Ocean, and its marginal seas (Weingartner et al., 1998; Pickart et al., 2009). The water masses Copepods of the genus Pseudocalanus are one of the most entering the region through the Bering Strait, tend to each have dominant constituents of the zooplankton community of the unique assemblages and quantities of zooplankton (Springer et al., Chukchi Sea, both in terms of numbers and biomass (Hopcroft 1989; Coyle et al., 1996; Hopcroft et al., in press) and slowly et al., in press). Pseudocalanus are common throughout coastal acquire more Arctic faunal characters as they are transformed/ waters from temperate to polar ecosystems, where they are modified moving northward (e.g. Smith and Schnack-Scheil, 1990; thought to play an important role in the trophic ecology of these Lane et al., 2008). Of the Pseudocalanus species reported for this systems due to their high rate of production relative to many region, P. newmani and P. mimus are more subpolar to temperate larger crustacean zooplankton (e.g. Corkett and McLaren, 1978). in distribution, with some inshore/offshore preferences (e.g. Napp The genus Pseudocalanus is now recognized to contain a complex et al., 2005). They are likely seasonal imports to the region, and of seven species (Frost, 1989), each with some differences in size, this raises the possibility that Pseudocalanus species could be reproductive output, and phenology (McLaren et al., 1989a; tracers of water mass origin as well as the magnitude of advection Bucklin et al., 1998; Napp et al., 2005). Five of these species are within this region. recorded at present in the Chukchi Sea, Pseudocalanus minutus, The advection of subpolar/temperate Pseudocalanus species Pseudocalanus acuspes, Pseudocalanus major, Pseudocalanus new- into a community of more polar affinity raises interesting mani, and to a lesser extent Pseudocalanus mimus (Frost, 1989). questions about their short-term and long-term viability, and However, their occurrence is seldom reported as more than their competitive success in the Chukchi ecosystem. Ideally one Pseudocalanus spp. due to the difficulty involved in separating would explore the somatic growth rates of Pseudocalanus in their adults by species, and the near impossibility of routinely habitat (e.g. Liu and Hopcroft, 2008), but our inability to separate separating juveniles (e.g. Smith and Vidal, 1986; Lane et al., juveniles of these species precludes such an approach. A more 2008) by other than molecular techniques (e.g. Bucklin et al., 1998, practical approach for exploring species success would be to look 2003). at the reproductive output of these egg-carrying species. Differ- The Chukchi Sea represents a complex gateway into the Arctic, ences in clutch size are known to occur between Pseudocalanus due to the interplay of several distinct water masses of Pacific species (e.g. Napp et al., 2005), as well as differences in egg and origin (i.e. Alaska Coastal, Bering Shelf, and Anadyr Water) with body size (Frost, 1989; McLaren et al., 1989a, b; Napp et al., 2005). Furthermore, even when co-occurring, the more polar species tend to produce only one generation per year, while the more subpolar/temperate species have multiple generations per year à Corresponding author. E-mail addresses: [email protected] (R.R. Hopcroft), (McLaren et al., 1989a). The net effect of these reproductive [email protected] (K.N. Kosobokova). attributes is unknown, but there is clearly potential for differences 0967-0645/$ - see front matter & 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.dsr2.2009.08.004 Please cite this article as: Hopcroft, R.R., Kosobokova, K.N., Distribution and egg production of Pseudocalanus species in the Chukchi.... Deep-Sea Research II (2009), doi:10.1016/j.dsr2.2009.08.004 ARTICLE IN PRESS 2 R.R. Hopcroft, K.N. Kosobokova / Deep-Sea Research II ] (]]]]) ]]]–]]] in both numerical and weight-specific egg production rates diameter and eggs per clutch determined with a computer- among the different species. To address these questions, we assisted measuring system (Roff and Hopcroft, 1986). Mean clutch determined the distribution of Pseudocalanus species adults size was calculated for experiments with at least 4 clutches within the Chukchi Sea and explored their species-specific produced. Egg production rate (EPR) was calculated as (Mean patterns of egg production. clutch size)  (Fraction of females extruding a clutch)/the incuba- tion time in days (Runge and Roff, 2000) for all cases where more then 10 females of a species were present. In practice, egg 2. Methods production declined precipitously after the second day, so analysis was limited to 48 h. Female dry-mass (DW, in mg) was predicted The Russian American Long-term Census of the Arctic from prosome length (PL, in mm) using a relationship established (RUSALCA) survey consisted of 22 stations along three transects for a mixture of P. newmani and P. mimus in the Gulf of Alaska in the southern Chukchi Sea between Alaska and Russia, plus (log10 DW ¼7.62+2.85 log10 PL: Liu and Hopcroft, 2008). Egg four more northern high-speed transects across the Herald Valley mass was predicted from diameter, assuming a density of À3 (Fig. 1). Non-quantitative 200 mm mesh ring nets were taken at 0.14 ng C mm (Kiørboe and Sabatini, 1994). Egg carbon was alternate stations on the three southern transects, and at the ends converted to ash-free dry-mass assuming carbon as 40% of AFDW. plus midpoint of the upper transects in Herald Valley, for Specific egg production rate (SEP) was calculated for each female reproductive experiments at 21 stations. Nets were slowly using the ratio of her predicted weight to that predicted for her hauled vertically in the upper 25 m of the water column and eggs. catches were diluted. Despite the relative gentleness of collection, Standardization of rates for temperature differences proved egg sacs were dislodged from most Pseudocalanus females that problematic due the large differences in temperature across the may have been carrying eggs, leaving only a few females (usually experimental domain, but restriction to a single incubator placed o5%, always o10%) in the samples with partial remnants of at an intermediate temperature. If we presume there is physio- clutches. Sorting of female Pseudocalanus (genus level only) was logical ‘‘inertia’’ in egg carriers to the multi-day process of usually completed within 2–3 h of capture; further sorting to preparing eggs to be laid (i.e. 11 days at 0 1C, 3 days at 12 1C; species level was not possible on live specimens. Single sac-less McLaren et al., 1989b), then correction should be relative to Pseudocalanus females (N ¼ 30–100) were transferred with a wide ambient temperature. If metabolic processes respond rapidly to bore pipette into 70 ml polystyrene tissue culture flasks, pre-filled change in temperature, then correction should be relative to the with 100 mm prescreened water from the mixed layer (e.g. Napp incubation temperature. In all likelihood, the appropriate correc- et al., 2005). Incubations were performed within 1–2 1C of the tion will be somewhere in between these possibilities. SEP was mixedlayer temperature on a low-light photocycle comparable to standardized from both possible reference temperatures to 5 1C ambient. In the southern domain, temperature was held at 3–6 1C, (the intermediate temperature observed over the study area) then lowered to 1–2 1C in the northern, Herald Valley domain. using a Q10 of 2.7 for food-satiated juvenile broadcast spawners Females were checked every 24 hours over 3 days; females (Hirst and Bunker, 2003). Concurrent estimates of the physical producing egg sacs before the conclusion of the experiment were environment and chlorophyll were provided by other investiga- removed and preserved individually. All non-producing females tors (Lee et al., 2007; Pickart et al., 2009). were preserved together at the conclusion of each experiment. Finally, if a large percentage of the female Pseudocalanus were For calculating egg production rates, females removed and reproductively inactive, the exclusion of individuals with sac preserved during and at the conclusion of the experiments were remnant may introduce bias in our egg production rates. Based on identified to species (Frost, 1989), with prosome length, egg the proportion of females that produced clutches in our experi- ments (see below) and the known hatching rates of Pseudocalanus (McLaren et al., 1989b), most females appear to have been reproductively active.
Recommended publications
  • Newmani (Copepoda: Calanoida) in Toyama Bay, Southern Japan Sea
    Plankton Biol. Ecol. 45 (2): 183-193, 1998 plankton biology & ecology D The Plankton Society of Japan 1998 Population structure and life cycle of Pseudocalanus minutus and Pseudocalanus newmani (Copepoda: Calanoida) in Toyama Bay, southern Japan Sea Atsushi Yamaguchi, Tsutomu Ikeda & Naonobu Shiga Biological Oceanography Laboratory, Faculty ofFisheries, Hokkaido University, 3-1-1, Minatomachi, Hakodate, Hokkaido 041-0821, Japan Received 14 January 1998; accepted 12 February 1998 Abstract: Population structure and life cycle of Pseudocalanus minutus and P. new mani in Toyama Bay, southern Japan Sea, were investigated based on seasonal samples obtained by vertical hauls (0-500 m depth) of twin-type Norpac nets (0.33- mm and 0.10-mm mesh) over one full year from February 1990 through January 1991. Closing PCP nets (0.06-mm mesh) were also towed to evaluate vertical distrib ution patterns in September 1990, November 1991 and February 1997. P. minutus was present throughout the year. The population structure was characterized by nu merous early copepodite stages in February-April, largely copepodite V (CV) in May-November, and a rapid increase of adults in November to January. As the ex clusive component of the population, CVs were distributed below 300 m in Septem ber and November both day and night. These CVs were considered to be in dia pause. In February most of the Cl to CIV stages were concentrated in the top 100 m. All copepodite stages of P. newmani were collected for only 7 months of the year, disappearing from the water column in Toyama Bay from mid-June onward and their very small population recovered in November.
    [Show full text]
  • Fishery Bulletin/U S Dept of Commerce National Oceanic
    NEW RECORDS OF ELLOBIOPSIDAE (PROTISTA (INCERTAE SEDIS» FROM THE NORTH PACIFIC WITH A DESCRIPTION OF THALASSOMYCES ALBATROSSI N.SP., A PARASITE OF THE MYSID STILOMYSIS MAJOR BRUCE L. WINGl ABSTRACT Ten species of ellobiopsids are currently known to occur in the North Pacific Ocean-three on mysids and seven on other crustaceans. Thalassomyces boschmai parasitizes mysids of genera Acanthomysis, Neomysis, and Meterythrops from the coastal waters of Alaska, British Columbia, and Washington. Thalassomyces albatrossi n.sp. is described as a parasite of Stilomysis major from Korea. Thalassomyces fasciatus parasitizes the pelagic mysids Gnathophausia ingens and G. gracilis from Baja California and southern California. Thalassomyces marsupii parasitizes the hyperiid amphipods Parathemisto pacifica and P. libellula and the lysianassid amphipod Cypho­ caris challengeri in the northeastern Pacific. Thalassomyces fagei parasitizes euphausiids of the genera Euphausia and Thysanoessa in the northeastern Pacific from the southern Chukchi Sea to southern California, and occurs off the coast of Japan in the western Pacific. Thalassomyces capillosus parasitizes the decapod shrimp Pasiphaea pacifica in the northeastern Pacific from Alaska to Oregon, while Thalassomyces californiensis parasitizes Pasiphaea emarginata from central California. An eighth species of Thalassomyces parasitizing pasiphaeid shrimp from Baja California remains undescribed. Ellobiopsis chattoni parasitizes the calanoid copepods Metridia longa and Pseudocalanus minutus in the coastal waters of southeastern Alaska. Ellobiocystis caridarum is found frequently on the mouth parts ofPasiphaea pacifica from southeastern Alaska. An epibiont closely resembling Ellobiocystis caridarum has been found on the benthic gammarid amphipod Rhachotropis helleri from Auke Bay, Alaska. Where sufficient data are available, notes on variability, seasonal occurrence, and effects on the hosts are presented for each species of ellobiopsid.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • The Effect of Abiotic and Biotic Variables on Culturing Conditions of Calanoid Copepod Acartia Grani
    The effect of abiotic and biotic variables on culturing conditions of Calanoid copepod Acartia grani Luis Bernardo dos Santos Sumares Dissertation for the Master in Marine Sciences – Marine Resources 2012 Luís Bernardo dos Santos Sumares The effect of abiotic and biotic variables on culturing conditions of Calanoid copepod Acartia grani Dissertation application to the master degree in Marine Sciences – Marine Resources submitted to the Institute of Biomedical Sciences Abel Salazar, University of Porto. Supervisor: Natacha Nogueira Researcher Mariculture Center of Calheta (CMC) Co-Supervisor: António Afonso Associate Professor Institute of Biomedical Sciences Abel Salazar, University of Porto 1 Master´s degree in Marine Sciences – Marine Resources | Bernardo Sumares Preface The work described in this document was made between the months of November 2011 and September 2012, initially on IPIMAR - Algarve, and later at the Mariculture Center of Calheta (CMC), in Madeira Island. The work was organized in two phases: one was to acquire knowledge of microalgae and copepods in IPIMAR; and the second phase, performed at CMC facilities, was the performance of all the experiments that gave rise to this thesis. i Master´s degree in Marine Sciences – Marine Resources | Bernardo Sumares ii Master´s degree in Marine Sciences – Marine Resources | Bernardo Sumares Acknowledgements To my super parents Paula e Angelino that give me all the support and love for successfully completes another important stage of my life. The wise words of my father who helped me a lot: “Depois da tempestade vem a bonança”. My sister Carolina and Rik for always being available to help me even in the hours of hard work always put my work first.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Oup Plankt Fbw025 610..623 ++
    Journal of Plankton Research plankt.oxfordjournals.org J. Plankton Res. (2016) 38(3): 610–623. First published online April 21, 2016 doi:10.1093/plankt/fbw025 Phylogeography and connectivity of the Pseudocalanus (Copepoda: Calanoida) species complex in the eastern North Pacific and the Pacific Arctic Region JENNIFER MARIE QUESTEL1*, LEOCADIO BLANCO-BERCIAL2, RUSSELL R. HOPCROFT1 AND ANN BUCKLIN3 INSTITUTE OF MARINE SCIENCE, UNIVERSITY OF ALASKA FAIRBANKS, N. KOYUKUK DRIVE, O’NEILL BUILDING, FAIRBANKS, AK , USA, BERMUDA INSTITUTE OF OCEAN SCIENCES–ZOOPLANKTON ECOLOGY, ST. GEORGE’S, BERMUDA AND DEPARTMENT OF MARINE SCIENCES, UNIVERSITY OF CONNECTICUT, SHENNECOSSETT ROAD, GROTON, CT , USA *CORRESPONDING AUTHOR: [email protected] Received December 14, 2015; accepted March 9, 2016 Corresponding editor: Roger Harris The genus Pseudocalanus (Copepoda, Calanoida) is among the most numerically dominant copepods in eastern North Pacific and Pacific-Arctic waters. We compared population connectivity and phylogeography based on DNA sequence variation for a portion of the mitochondrial cytochrome oxidase I gene for four Pseudocalanus species with differing biogeographical ranges within these ocean regions. Genetic analyses were linked to characterization of bio- logical and physical environmental variables for each sampled region. Haplotype diversity was higher for the temp- erate species (Pseudocalanus mimus and Pseudocalanus newmani) than for the Arctic species (Pseudocalanus acuspes and Pseudocalanus minutus). Genetic differentiation among populations at regional scales was observed for all species, except P. minutus. The program Migrate-N tested the likelihood of alternative models of directional gene flow between sampled populations in relation to oceanographic features. Model results estimated predominantly north- ward gene flow from the Gulf of Alaska to the Beaufort Sea for P.
    [Show full text]
  • Life Histories of the Copepods Pseudocalanus Minutus, P. Acuspes (Calanoida) and Oithona Similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OceanRep Polar Biol (2005) 28: 910–921 DOI 10.1007/s00300-005-0017-1 ORIGINAL PAPER Silke Lischka Æ Wilhelm Hagen Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard) Received: 7 February 2005 / Revised: 27 April 2005 / Accepted: 29 April 2005 / Published online: 12 July 2005 Ó Springer-Verlag 2005 Abstract The year-round variation in abundance and Digby 1954; Grainger 1959; Kwasniewski 1990), due to stage-specific (vertical) distribution of Pseudocalanus the remoteness and difficult accessibility of polar re- minutus and Oithona similis was studied in the Arctic gions. The paucity of year-round studies has also been Kongsfjorden, Svalbard. Maxima of vertically inte- addressed by Conover and Siferd (1993). For auteco- grated abundance were found in November with logical investigations, for example, on species physiology 111,297 ind mÀ2 for P. minutus and 704,633 ind mÀ2 or biochemistry, data on distribution and population for O. similis. Minimum abundances comprised dynamics provide essential baseline information (Fal- 1,088 ind mÀ2 and 4,483 ind mÀ2 in June for P. min- kenhaug et al. 1997). Among metazooplankton in the utus and O. similis, respectively. The congener P. acuspes world’s oceans, copepods are by far the dominant taxon only occurred in low numbers (15–213 ind mÀ2), and in most of the areas (Longhurst 1985). Yet, many studies successful reproduction was debatable. Reproduction of on zooplankton ecology in the Arctic have focused on P.
    [Show full text]
  • The Biology of the Predatory Calanoid Copepod Tortanus Discaudatus (Thompson and Scott) in a New Hampshire Estuary David George Phillips
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1976 THE BIOLOGY OF THE PREDATORY CALANOID COPEPOD TORTANUS DISCAUDATUS (THOMPSON AND SCOTT) IN A NEW HAMPSHIRE ESTUARY DAVID GEORGE PHILLIPS Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation PHILLIPS, DAVID GEORGE, "THE BIOLOGY OF THE PREDATORY CALANOID COPEPOD TORTANUS DISCAUDATUS (THOMPSON AND SCOTT) IN A NEW HAMPSHIRE ESTUARY" (1976). Doctoral Dissertations. 1124. https://scholars.unh.edu/dissertation/1124 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • (Gulf Watch Alaska) Final Report the Seward Line: Marine Ecosystem
    Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth Danielson Institute of Marine Science University of Alaska Fairbanks 905 N. Koyukuk Dr. Fairbanks, AK 99775-7220 Suzanne Strom Shannon Point Marine Center Western Washington University 1900 Shannon Point Road, Anacortes, WA 98221 Kathy Kuletz U.S. Fish and Wildlife Service 1011 East Tudor Road Anchorage, AK 99503 July 2018 The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Action of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 4230 University Dr., Ste. 220, Anchorage, Alaska 99508-4650, or [email protected], or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth L.
    [Show full text]
  • Seasonal Succession of Zooplankton Populations in Two Dissimilar Marine Embayments on the Oregon Coast
    ANABSTRACTOF THE THESIS OF STEVEN THOMAS ZIMMERMAN for the DOCTOR OF PHILOSOPHY (Name of student) (Degree) in OCEANOGRAPHY presented on ): (Major) (Date) TITLE: SEASONAL SUCCESSION OF ZOO PLANKTON POPULATIONS IN TWO DISSIMILAR MARINE EMBAYMENTS ON THE OREGON COAST Redacted for Privacy Abstract approved: H. F. Frolander Zooplankton tows and hydrographic observations were made in two bays on the Oregon coast.Five stations were sampled weekly in Yaquina Bay from May,1969through September,1970. Three stations were sampled weekly in Netarts Bay from October,1969 through January,1961. Zooplankton collections were made with a a Clarke-Bumpus sampler towed in a series of oblique steps. A#6 mesh (.239 mm aperature) net was used, A one year period from October,1969through September, 1970 was used to make a compar- ison of location and succession of zooplankton populations in the two bays. Yaquina Bay is a dredged estuary receiving seasonally high river flow. A salinity gradient is found year round from the mouth to the head end of the bay.During the winter, when rainfall is high, salinities at the head end are very low.Netarts Bay has no large river flow and salinities are never greatly decreased due to large tidal mixing.The flushing time of Netarts Bay is very short and tidal exchange is high throughout the bay,Yaquina Bay has a rela- tively longer flushing time and tidal exchange is not as high in the head end of the bay as in Netarts Bay. Because of these physical differences large indigenous popula- tions of the estuarine copepods Acartia tonsa, Acartia clausi, and Eurytemora americana were found in Yaquina Bay.Indigenous popu- lations made a much smaller contribution to Netarts Bay, and only Eurytemora americana developed a population which was apparently confined to the bay.
    [Show full text]
  • 방류 연어, Oncorhynchus Keta 치어의 해양 먹이선택성
    JF M S E, 26(2), pp. 421~429, 2014. www.ksfme.or.kr 수산해양교육연구, 제26권 제2호, 통권68호, 2014. http://dx.doi.org/10.13000/JFMSE.2014.26.2.421 방류 연어, Oncorhynchus keta 치어의 해양 먹이선택성 권오남 김주경* 윤문근* 김두호* 홍관의 (강릉원주대학교 동해안생명과학연구소 * 한국수산자원관리공단 양양연어사업소) Marine Prey Selectivity of Released Juvenile Chum Salmon (Oncorhynchus keta) During arly Marine Migration in Korean Waters O-Nam KWONㆍJu-Kyoung KIM*ㆍMoon-Geun YOON*ㆍDoo-Ho KIM*ㆍKwan-Eui HONG (Gangneung-Wonju National Universityㆍ* Marine biology Center for Research and Education) Abstract We investigated the feeding ecology of juvenile chum salmon (Oncorhynchus keta) during the critical early life stage prey selectivity of juvenile chum salmon during early marine migration in Korean waters at spring 2011. Salmon juveniles and zooplanktons were collected to draw with 20 m×5 m gill net and 300 μm mesh zooplankton net at each station on 11th-13th April n 2011. Collected zooplanktons were classified to 5 Phylum, 6 Class, 9 Order 17 Species in this study. Almost 76.4-100% species were classified to Phylum Arthropoda, dominant species was a species out of Hyperia galba of Order Amphipoda, Acartia spp and Paracalanus parvus of Order Calanoida. Collected salmon juveniles were grew up to average 4.7-5.4 cm fork length and average 1.0-1.5 g wet weight in whole station. Fish stomach content (mg/salmon) was heaver to 97.4, 82.4 and 63.2 mg wet weight/salmon in ST 2, 3, 4 than 20.4, 18.9 mg/salmon of ST 1, 5, because there are fish (sand eel, Hypoptychus dybowskii) and Krill (Euphausia) as prey in salmon stomach in ST 2, 3, 4.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]