Ranksum — Equality Tests on Unmatched Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hypothesis Testing and Likelihood Ratio Tests
Hypottthesiiis tttestttiiing and llliiikellliiihood ratttiiio tttesttts Y We will adopt the following model for observed data. The distribution of Y = (Y1, ..., Yn) is parameter considered known except for some paramett er ç, which may be a vector ç = (ç1, ..., çk); ç“Ç, the paramettter space. The parameter space will usually be an open set. If Y is a continuous random variable, its probabiiillliiittty densiiittty functttiiion (pdf) will de denoted f(yy;ç) . If Y is y probability mass function y Y y discrete then f(yy;ç) represents the probabii ll ii tt y mass functt ii on (pmf); f(yy;ç) = Pç(YY=yy). A stttatttiiistttiiicalll hypottthesiiis is a statement about the value of ç. We are interested in testing the null hypothesis H0: ç“Ç0 versus the alternative hypothesis H1: ç“Ç1. Where Ç0 and Ç1 ¶ Ç. hypothesis test Naturally Ç0 § Ç1 = ∅, but we need not have Ç0 ∞ Ç1 = Ç. A hypott hesii s tt estt is a procedure critical region for deciding between H0 and H1 based on the sample data. It is equivalent to a crii tt ii call regii on: a critical region is a set C ¶ Rn y such that if y = (y1, ..., yn) “ C, H0 is rejected. Typically C is expressed in terms of the value of some tttesttt stttatttiiistttiiic, a function of the sample data. For µ example, we might have C = {(y , ..., y ): y – 0 ≥ 3.324}. The number 3.324 here is called a 1 n s/ n µ criiitttiiicalll valllue of the test statistic Y – 0 . S/ n If y“C but ç“Ç 0, we have committed a Type I error. -
Applied Biostatistics Mean and Standard Deviation the Mean the Median Is Not the Only Measure of Central Value for a Distribution
Health Sciences M.Sc. Programme Applied Biostatistics Mean and Standard Deviation The mean The median is not the only measure of central value for a distribution. Another is the arithmetic mean or average, usually referred to simply as the mean. This is found by taking the sum of the observations and dividing by their number. The mean is often denoted by a little bar over the symbol for the variable, e.g. x . The sample mean has much nicer mathematical properties than the median and is thus more useful for the comparison methods described later. The median is a very useful descriptive statistic, but not much used for other purposes. Median, mean and skewness The sum of the 57 FEV1s is 231.51 and hence the mean is 231.51/57 = 4.06. This is very close to the median, 4.1, so the median is within 1% of the mean. This is not so for the triglyceride data. The median triglyceride is 0.46 but the mean is 0.51, which is higher. The median is 10% away from the mean. If the distribution is symmetrical the sample mean and median will be about the same, but in a skew distribution they will not. If the distribution is skew to the right, as for serum triglyceride, the mean will be greater, if it is skew to the left the median will be greater. This is because the values in the tails affect the mean but not the median. Figure 1 shows the positions of the mean and median on the histogram of triglyceride. -
Demand STAR Ranking Methodology
Demand STAR Ranking Methodology The methodology used to assess demand in this tool is based upon a process used by the State of Louisiana’s “Star Rating” system. Data regarding current openings, short term and long term hiring outlooks along with wages are combined into a single five-point ranking metric. Long Term Occupational Projections 2014-2014 The steps to derive a rank for long term hiring outlook (DUA Occupational Projections) are as follows: 1.) Eliminate occupations with a SOC code ending in “9” in order to remove catch-all occupational titles containing “All Other” in the description. 2.) Compile occupations by six digit Standard Occupational Classification (SOC) codes. 3.) Calculate decile ranking for each occupation based on: a. Total Projected Employment 2024 b. Projected Change number from 2014-2024 4.) For each metric, assign 1-10 points for each occupation based on the decile ranking 5.) Average the points for Project Employment and Change from 2014-2024 Short Term Occupational Projection 2015-2017 The steps to derive occupational ranks for the short-term hiring outlook are same use for the Long Term Hiring Outlook, but using the Short Term Occupational Projections 2015-2017 data set. Current Job Openings Current job openings rankings are assigned based on actual jobs posted on-line for each region for a 12 month period. 12 month average posting volume for each occupation by six digit SOC codes was captured using The Conference Board’s Help Wanted On-Line analytics tool. The process for ranking is as follows: 1) Eliminate occupations with a SOC ending in “9” in order to remove catch-all occupational titles containing “All Other” in the description 2) Compile occupations by six digit Standard Occupational Classification (SOC) codes 3) Determine decile ranking for the average number of on-line postings by occupation 4) Assign 1-10 points for each occupation based on the decile ranking Wages In an effort to prioritize occupations with higher wages, wages are weighted more heavily than the current, short-term and long-term hiring outlook rankings. -
Ranking of Genes, Snvs, and Sequence Regions Ranking Elements Within Various Types of Biosets for Metaanalysis of Genetic Data
Technical Note: Informatics Ranking of Genes, SNVs, and Sequence Regions Ranking elements within various types of biosets for metaanalysis of genetic data. Introduction In summary, biosets may contain many of the following columns: • Identifier of an entity such as a gene, SNV, or sequence One of the primary applications of the BaseSpace® Correlation Engine region (required) is to allow researchers to perform metaanalyses that harness large amounts of genomic, epigenetic, proteomic, and assay data. Such • Other identifiers of the entity—eg, chromosome, position analyses look for potentially novel and interesting results that cannot • Summary statistics—eg, p-value, fold change, score, rank, necessarily be seen by looking at a single existing experiment. These odds ratio results may be interesting in themselves (eg, associations between different treatment factors, or between a treatment and an existing Ranking of Elements within a Bioset known pathway or protein family), or they may be used to guide further Most biosets generated at Illumina include elements that are changing research and experimentation. relative to a reference genome (mutations) or due to a treatment (or some other test factor) along with a corresponding rank and The primary entity in these analyses is the bioset. It is a ranked list directionality. Typically, the rank will be based on the magnitude of of elements (genes, probes, proteins, compounds, single-nucleotide change (eg, fold change); however, other values, including p-values, variants [SNVs], sequence regions, etc.) that corresponds to a given can be used for this ranking. Directionality is determined from the sign treatment or condition in an experiment, an assay, or a single patient of the statistic: eg, up (+) or down(-) regulation or copy-number gain sample (eg, mutations). -
Conduct and Interpret a Mann-Whitney U-Test
Statistics Solutions Advancement Through Clarity http://www.statisticssolutions.com Conduct and Interpret a Mann-Whitney U-Test What is the Mann-Whitney U-Test? The Mann-Whitney U-test, is a statistical comparison of the mean. The U-test is a member of the bigger group of dependence tests. Dependence tests assume that the variables in the analysis can be split into independent and dependent variables. A dependence tests that compares the mean scores of an independent and a dependent variable assumes that differences in the mean score of the dependent variable are caused by the independent variable. In most analyses the independent variable is also called factor, because the factor splits the sample in two or more groups, also called factor steps. Other dependency tests that compare the mean scores of two or more groups are the F-test, ANOVA and the t-test family. Unlike the t-test and F-test, the Mann-Whitney U-test is a non- paracontinuous-level test. That means that the test does not assume any properties regarding the distribution of the underlying variables in the analysis. This makes the Mann-Whitney U-test the analysis to use when analyzing variables of ordinal scale. The Mann-Whitney U-test is also the mathematical basis for the H-test (also called Kruskal Wallis H), which is basically nothing more than a series of pairwise U-tests. Because the test was initially designed in 1945 by Wilcoxon for two samples of the same size and in 1947 further developed by Mann and Whitney to cover different sample sizes the test is also called Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test, Wilcoxon–Mann–Whitney test, or Wilcoxon two-sample test. -
TR Multivariate Conditional Median Estimation
Discussion Paper: 2004/02 TR multivariate conditional median estimation Jan G. de Gooijer and Ali Gannoun www.fee.uva.nl/ke/UvA-Econometrics Department of Quantitative Economics Faculty of Economics and Econometrics Universiteit van Amsterdam Roetersstraat 11 1018 WB AMSTERDAM The Netherlands TR Multivariate Conditional Median Estimation Jan G. De Gooijer1 and Ali Gannoun2 1 Department of Quantitative Economics University of Amsterdam Roetersstraat 11, 1018 WB Amsterdam, The Netherlands Telephone: +31—20—525 4244; Fax: +31—20—525 4349 e-mail: [email protected] 2 Laboratoire de Probabilit´es et Statistique Universit´e Montpellier II Place Eug`ene Bataillon, 34095 Montpellier C´edex 5, France Telephone: +33-4-67-14-3578; Fax: +33-4-67-14-4974 e-mail: [email protected] Abstract An affine equivariant version of the nonparametric spatial conditional median (SCM) is con- structed, using an adaptive transformation-retransformation (TR) procedure. The relative performance of SCM estimates, computed with and without applying the TR—procedure, are compared through simulation. Also included is the vector of coordinate conditional, kernel- based, medians (VCCMs). The methodology is illustrated via an empirical data set. It is shown that the TR—SCM estimator is more efficient than the SCM estimator, even when the amount of contamination in the data set is as high as 25%. The TR—VCCM- and VCCM estimators lack efficiency, and consequently should not be used in practice. Key Words: Spatial conditional median; kernel; retransformation; robust; transformation. 1 Introduction p s Let (X1, Y 1),...,(Xn, Y n) be independent replicates of a random vector (X, Y ) IR IR { } ∈ × where p > 1,s > 2, and n>p+ s. -
5. the Student T Distribution
Virtual Laboratories > 4. Special Distributions > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5. The Student t Distribution In this section we will study a distribution that has special importance in statistics. In particular, this distribution will arise in the study of a standardized version of the sample mean when the underlying distribution is normal. The Probability Density Function Suppose that Z has the standard normal distribution, V has the chi-squared distribution with n degrees of freedom, and that Z and V are independent. Let Z T= √V/n In the following exercise, you will show that T has probability density function given by −(n +1) /2 Γ((n + 1) / 2) t2 f(t)= 1 + , t∈ℝ ( n ) √n π Γ(n / 2) 1. Show that T has the given probability density function by using the following steps. n a. Show first that the conditional distribution of T given V=v is normal with mean 0 a nd variance v . b. Use (a) to find the joint probability density function of (T,V). c. Integrate the joint probability density function in (b) with respect to v to find the probability density function of T. The distribution of T is known as the Student t distribution with n degree of freedom. The distribution is well defined for any n > 0, but in practice, only positive integer values of n are of interest. This distribution was first studied by William Gosset, who published under the pseudonym Student. In addition to supplying the proof, Exercise 1 provides a good way of thinking of the t distribution: the t distribution arises when the variance of a mean 0 normal distribution is randomized in a certain way. -
This Is Dr. Chumney. the Focus of This Lecture Is Hypothesis Testing –Both What It Is, How Hypothesis Tests Are Used, and How to Conduct Hypothesis Tests
TRANSCRIPT: This is Dr. Chumney. The focus of this lecture is hypothesis testing –both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 TRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing. 2 TRANSCRIPT: Let’s being the lecture with a summary of the logic process that underlies hypothesis testing. 3 TRANSCRIPT: It is often impossible or otherwise not feasible to collect data on every individual within a population. Therefore, researchers rely on samples to help answer questions about populations. Hypothesis testing is a statistical procedure that allows researchers to use sample data to draw inferences about the population of interest. Hypothesis testing is one of the most commonly used inferential procedures. Hypothesis testing will combine many of the concepts we have already covered, including z‐scores, probability, and the distribution of sample means. To conduct a hypothesis test, we first state a hypothesis about a population, predict the characteristics of a sample of that population (that is, we predict that a sample will be representative of the population), obtain a sample, then collect data from that sample and analyze the data to see if it is consistent with our hypotheses. 4 TRANSCRIPT: The process of hypothesis testing begins by stating a hypothesis about the unknown population. Actually we state two opposing hypotheses. The first hypothesis we state –the most important one –is the null hypothesis. The null hypothesis states that the treatment has no effect. In general the null hypothesis states that there is no change, no difference, no effect, and otherwise no relationship between the independent and dependent variables. -
The Scientific Method: Hypothesis Testing and Experimental Design
Appendix I The Scientific Method The study of science is different from other disciplines in many ways. Perhaps the most important aspect of “hard” science is its adherence to the principle of the scientific method: the posing of questions and the use of rigorous methods to answer those questions. I. Our Friend, the Null Hypothesis As a science major, you are probably no stranger to curiosity. It is the beginning of all scientific discovery. As you walk through the campus arboretum, you might wonder, “Why are trees green?” As you observe your peers in social groups at the cafeteria, you might ask yourself, “What subtle kinds of body language are those people using to communicate?” As you read an article about a new drug which promises to be an effective treatment for male pattern baldness, you think, “But how do they know it will work?” Asking such questions is the first step towards hypothesis formation. A scientific investigator does not begin the study of a biological phenomenon in a vacuum. If an investigator observes something interesting, s/he first asks a question about it, and then uses inductive reasoning (from the specific to the general) to generate an hypothesis based upon a logical set of expectations. To test the hypothesis, the investigator systematically collects data, either with field observations or a series of carefully designed experiments. By analyzing the data, the investigator uses deductive reasoning (from the general to the specific) to state a second hypothesis (it may be the same as or different from the original) about the observations. -
Hypothesis Testing – Examples and Case Studies
Hypothesis Testing – Chapter 23 Examples and Case Studies Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 23.1 How Hypothesis Tests Are Reported in the News 1. Determine the null hypothesis and the alternative hypothesis. 2. Collect and summarize the data into a test statistic. 3. Use the test statistic to determine the p-value. 4. The result is statistically significant if the p-value is less than or equal to the level of significance. Often media only presents results of step 4. Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 2 23.2 Testing Hypotheses About Proportions and Means If the null and alternative hypotheses are expressed in terms of a population proportion, mean, or difference between two means and if the sample sizes are large … … the test statistic is simply the corresponding standardized score computed assuming the null hypothesis is true; and the p-value is found from a table of percentiles for standardized scores. Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 3 Example 2: Weight Loss for Diet vs Exercise Did dieters lose more fat than the exercisers? Diet Only: sample mean = 5.9 kg sample standard deviation = 4.1 kg sample size = n = 42 standard error = SEM1 = 4.1/ √42 = 0.633 Exercise Only: sample mean = 4.1 kg sample standard deviation = 3.7 kg sample size = n = 47 standard error = SEM2 = 3.7/ √47 = 0.540 measure of variability = [(0.633)2 + (0.540)2] = 0.83 Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 4 Example 2: Weight Loss for Diet vs Exercise Step 1. -
Statistical Analysis in JASP
Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. .......................................................................... -
Statistical Significance Testing in Information Retrieval:An Empirical
Statistical Significance Testing in Information Retrieval: An Empirical Analysis of Type I, Type II and Type III Errors Julián Urbano Harlley Lima Alan Hanjalic Delft University of Technology Delft University of Technology Delft University of Technology The Netherlands The Netherlands The Netherlands [email protected] [email protected] [email protected] ABSTRACT 1 INTRODUCTION Statistical significance testing is widely accepted as a means to In the traditional test collection based evaluation of Information assess how well a difference in effectiveness reflects an actual differ- Retrieval (IR) systems, statistical significance tests are the most ence between systems, as opposed to random noise because of the popular tool to assess how much noise there is in a set of evaluation selection of topics. According to recent surveys on SIGIR, CIKM, results. Random noise in our experiments comes from sampling ECIR and TOIS papers, the t-test is the most popular choice among various sources like document sets [18, 24, 30] or assessors [1, 2, 41], IR researchers. However, previous work has suggested computer but mainly because of topics [6, 28, 36, 38, 43]. Given two systems intensive tests like the bootstrap or the permutation test, based evaluated on the same collection, the question that naturally arises mainly on theoretical arguments. On empirical grounds, others is “how well does the observed difference reflect the real difference have suggested non-parametric alternatives such as the Wilcoxon between the systems and not just noise due to sampling of topics”? test. Indeed, the question of which tests we should use has accom- Our field can only advance if the published retrieval methods truly panied IR and related fields for decades now.