Supreme Theory of Everything: Whole Universe in a Simple Formula

Total Page:16

File Type:pdf, Size:1020Kb

Supreme Theory of Everything: Whole Universe in a Simple Formula Scan to know paper details and author's profile Supreme Theory of Everything: Whole Universe in a Simple Formula Ulaanbaatar Tarzad Mongolian University of Science and Technology ABSTRACT One of the unsolved problems in science is the finding of the united theory, which explains everything in the universe. Scientists explore it in the infinitesimal orbiggest space. Here I have created a single fundamental theory of everything based on the open hysteresis of electromagnetism. Some researchers had known being whatever secret preserved in hysteresis of materials for a long time. But they can describe neither its mathematical definition nor internal secret. My theory shows brand-newly the universe from quantum mechanics to cosmology by a simple trigonometrical formula. The origin, fate, and a largest structure of the universe are described. I indicate that the diameter of the whole universe is approximately 60000 Mpc, which equals 195.7 billion light-years. Keywords: Open hysteresis, water structure, climate variability, turn-off point, and instability strips. Classification: FOR Code: 070499 Language: English LJP Copyright ID: 925653 Print ISSN: 2631-8490 Online ISSN: 2631-8504 London Journal of Research in Science: Natural and Formal 465U Volume 20 | Issue 5 | Compilation 1.0 © 2020. Ulaanbaatar Tarzad. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncom- mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Supreme Theory of Everything: Whole Universe in a Simple Formula Ulaanbaatar Tarzad ____________________________________________ ABSTRACT One of the unsolved problems in science is the finding of the united theory, which explains everything in the universe. Scientists explore it in the infinitesimal or biggest space. Here I have created a single fundamental theory of everything based on the open hysteresis of electromagnetism. Some researchers had known being whatever secret preserved in hysteresis of materials for a long time. But they can describe neither its mathematical definition nor internal secret. My theory shows brand- newly the universe from quantum mechanics to cosmology by a simple trigonometrical formula. The origin, fate, and a largest structure of the universe are described. I indicate that the diameter of the whole universe is approximately 60000 Mpc, which equals 195.7 billion light-years. Keywords: Open hysteresis, water structure, climate variability, turn-off point, and instability strips. Author: Department of Physics, School of Applied Sciences, Mongolian University of Science and Technology Ulaanbaatar, Mongolia, All Field Survey LLC, Mongolia. I. INTRODUCTION Modern science reality is that humanity waits something results, and scientists search the unified theory, consciousness, stars life cycle, dark energy, the fate of the universe. Scientists classify everything, if possible, such as a periodic system of elements, HRD of stars, Standard Model of elementary particles. There is a lot of theories and models concerning united theory. These theories may be very interested, but they are not perfect. Some part is very nice; another part is problematic. The scientific community is yet to find a united theory. According to my investigations we need to seek everything theory in the micro world, especially, in the origin of eternal motions of electromagnetism, which is described only by the mathematical circle. This motion is the motion of spin producing universe. The universe is rich in spin, consequently, in electromagnetism. Magnetization, which magnetizes a material, namely we are known as spins, magnetic spins, and spin angular momentum. London Journal of Research in Science: Natural and Formal Spins are physical cleanness theoretically as well as experimentally. The spins give rise to magnetic effects and can be studied by a variety of techniques and can be described theoretically. All magnetism mainly arises from the electrons of the atoms and molecules, of course, the nuclei and the quark also produce magnetic effects. Magnetism is essentially a quantum mechanical phenomenon, particularly the orbital motion of electrons as well as the spin of the electron. So, it is a only quantum mechanical effect. To build a unified theory, we need to study spin quantum mechanics, which is described by wave function (hysteresis of magnetism) of trigonometry and drives-up us also to cosmology because the small produce large. Without trigonometry, the mathematics have not able to judge its own path because it has expression: positive and negative infinities. However, nature has only a circle path coming back to starting point anytime by a hysteresis. “The concept of the circle is ubiquitous. It can be described mathematically, represented physically, and employed technologically. The circle is an elegant, abstract form that has been transformed by humans into tangible, practical forms to make our lives easier. And yet, no one has ever discovered a true mathematical circle” [1]. The mathematical circle is a hysteresis itself. We open closed hysteresis in the universe, from which some examples of smaller and larger phenomena are indicated in this paper. © 2020 London Journals Press Volume 20 | Issue 5 | Compilation 1.0 73 Supreme Theory of Everything indicates not only physical events, but the weirds as socio-economics, climate fluctuation in different time-scale or human destiny, etc. It can identify important connections between observations and model inputs and predictions. II. HYSTERESIS Sir James Alfred Ewing studied firstly the hysteresis of magnetic materials around 1890. Today, this kind of studies, models, and theories is a lot. Mayergoyz, I.D. (2003), [2] wrote: “The phenomenon of hysteresis has been with us for ages and has been attracting the attention of many investigators for a long time. The reason is that hysteresis is ubiquitous. It happens in many different areas of science. …However, the very meaning of hysteresis varies from one area to another, from paper to paper and from author to author. As a result, a stringent mathematical definition of hysteresis needs to avoid confusion and ambiguity. Such a definition will serve a twofold purpose: first, it will be a substitute for vague notions, and, second, it will pave the road for a more or less rigorous treatment of hysteresis”. Bertotti, G. (1998) [3] showed, “Hysteresis is at the heart of the behavior of magnetic materials. All applications rely heavily on particular aspects of hysteresis. The variety of working conditions involved brings to light the fascinating richness of phenomena that may arise and drive the behavior of different materials. On the other hand, a strong interest in hysteresis is not just the result of technological pressure. The comprehension of the physical mechanisms responsible for hysteresis and the development of adequate mathematical tools to describe it have attracted the attention of theoretical physicists and mathematicians for years. It is a beautiful example of a physical and mathematical problem of intriguing elegance and challenging complexity that is, at the same time, the source of pervading technological progress. Nobody can remain indifferent when considering the long but firm interdisciplinary chain that ties spin models of ferromagnetism to engineering applicatio ns of magnetic components ”. Mellodge, P. (2016) [4] wrote, “Hysteresis is the most complicated of all the nonlinearities presented because y is not simply a function of x, as it has been in the other cases. Rather, y is also a function of x˙. Unlike the other nonlinearities, there is no single mathematical expression for hysteresis. It is typically expressed graphically. The first thing to note about the relationship between x and y is that for a given x, there may be two possible values for y. The way to interpret the relationship is as follows. London Journal of Research in Science: Natural and Formal Consider a specific value for x shown in Figure 1 as x0. The question is whether the y value will take on value y1 or y2. Just knowing x0 is not enough information. The value of y depends on the where x came from. If x is increasing, then y = y2. If x is decreasing, then y = y1. The curve is followed in the direction given by the arrows and indicates whether to use the upper or lower part. Figure 1. Demonstrating how to interpret a hysteresis curve. A system with hysteresis is one that has memory. Its output depends on where it came from”. For this reason, leading scientists worked hard to express the mathematical formulations of the magnetic hysteresis, but generally experimental. Supreme Theory of Everything: Whole Universe in a Simple Formula 74 Volume 20 | Issue 5 | Compilation 1.0 © 2020 London Journals Press 2.1 Experimental and Theoretical Studies For example, one of the well-studied hysteresis is the Hall-effect, which can present all the physical peculiarity of reality. 2.2 Hall effects A classic example of hysteresis is the Hall effect. Visint in, A. [5] wrote: “A survey of past and ongoing research on mathematical modeling of hysteresis phenomena; it aims to illustrate some aspects of the mathematics of hysteresis and its applications, also in connection with partial differential equations (PDEs). Following M. Krasnosel’ ski, first, we introduce the concept of hysteresis operator and study some examples, then we establish connections with
Recommended publications
  • Meson-Exchange Forces and Medium Polarization in Finite Nuclei
    —11005 MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI a) 15 10 x/ r\ o 10 O W. Hengeveld MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI Free University Press is an imprint of: VU BoekhandeUUHgeverij b.v. De Boelalaan 1105 1061 HV Amsterdam The Netherlands ISBN 90-8250-140-3 CIP © W. HengevekJ, Amsterdam, 1966. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. VRIJE UNIVERSITEIT TE AMSTERDAM MESON-EXCHANGE FORCES AND MEDIUM POLARIZATION IN FINITE NUCLEI ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor in de wiskunde en natuurwetenschappen aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. P.J.D. Drenth, hoogleraar in de faculteit der sociale wetenschappen, in het openbaar te verdedigen op donderdag 1 mei 1986 te 15.30 uur in het hoofdgebouw der universiteit. De Boelelaan 1105 door WILLEM HENGEVELD geboren te Woubrugge # Free University Press Amsterdam 1986 Promotor : prof. dr. E. Boeker Copromotor: dr. K. Allaart Referent : dr. W.H. Dickhoff DANKBETUIGING Zonder de volgende personen zou dit proefschrift niet geschreven of gedrukt zijn: Klaas Allaart worstelde de verschillende onleesbare eerste versies door. Zijn bijdrage aan de presentatie was, in alle opzichten, onmisbaar. Wim Dickhoff gaf niet alleen de grote lijn maar ook de details alle aandacht. Zijn onwrikbare geloof in de mogelijkheden van een formele benadering van kernstructuur, heeft de inhoud van dit proefschrift voor een groot deel bepaald.
    [Show full text]
  • Quantum Statistics: Is There an Effective Fermion Repulsion Or Boson Attraction? W
    Quantum statistics: Is there an effective fermion repulsion or boson attraction? W. J. Mullin and G. Blaylock Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 ͑Received 13 February 2003; accepted 16 May 2003͒ Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins and validity of such exchange force ideas and the areas where they are highly misleading. We propose that explanations of quantum statistics should avoid the idea of an effective force completely, and replace it with more appropriate physical insights, some of which are suggested here. © 2003 American Association of Physics Teachers. ͓DOI: 10.1119/1.1590658͔ ␺ ͒ϭ ͒ Ϫ␣ Ϫ ϩ ͒2 I. INTRODUCTION ͑x1 ,x2 ,t C͕f ͑x1 ,x2 exp͓ ͑x1 vt a Ϫ␤͑x ϩvtϪa͒2͔Ϫ f ͑x ,x ͒ The Pauli principle states that no two fermions can have 2 2 1 ϫ Ϫ␣ Ϫ ϩ ͒2Ϫ␤ ϩ Ϫ ͒2 the same quantum numbers. The origin of this law is the exp͓ ͑x2 vt a ͑x1 vt a ͔͖, required antisymmetry of the multi-fermion wavefunction. ͑1͒ Most physicists have heard or read a shorthand way of ex- pressing the Pauli principle, which says something analogous where x1 and x2 are the particle coordinates, f (x1 ,x2) ϭ ͓ Ϫ ប͔ to fermions being ‘‘antisocial’’ and bosons ‘‘gregarious.’’ Of- exp imv(x1 x2)/ , C is a time-dependent factor, and the ten this intuitive approach involves the statement that there is packet width parameters ␣ and ␤ are unequal.
    [Show full text]
  • Consistent Treatment of Pion Exchange Force and Meson Versus Quark Dynamics in the N Ucleon-Nucleon Interaction
    Aust. J. Phys., 1993, 46, 737-50 Consistent Treatment of Pion Exchange Force and Meson versus Quark Dynamics in the N ucleon-Nucleon Interaction G. Q. Liu A and A. W. Thomas B Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, S.A. 5005, Australia. A E-mail: [email protected]. BE-mail: [email protected]. Abstract To distinguish explicit quark effects from meson exchange in the NN interaction, it is necessary to splice the long-range meson exchange forces and short-distance dynamics due to quarks. However, in most quark model studies the short-range part of the pion exchange is usually treated differently, which makes it difficult to get a uniform picture of the short-range dynamics. We make a comparison between meson exchange and quark-gluon dynamics using the same pion exchange potential based on a quark-pion coupling model. The roles of vector meson exchange and gluon exchange in the NN interaction are compared by calculating NN phase parameters. It is shown that, with this consistent one-pion exchange force, the vector meson exchange gives a better fit to the data. This suggests that non-perturbative mechanisms responsible for meson exchange may need more careful handling to supplement the usual one-gluon exchange mechanism in describing the NN interaction. 1. Introduction The extent to which the constituent quark model can be used to describe the NN interaction is still under debate. This is manifested by the various quark-based models that provide different pictures for the short-range NN force (for recent reviews see MyhreI' and Wroldsen 1988; Shimizu 1989).
    [Show full text]
  • Phys 487 Discussion 4 – Symmetrization and the Exchange
    Phys 487 Discussion 4 – Symmetrization and the Exchange Force It is considered a postulate (another axiom!) of quantum mechanics that the wavefunction for n identical particles must be either symmetric (S,+) or antisymmetric (A,–) under the exchange of any two particles: ! ! ! ! (r ,r ) (r ,r ) if particle 1 and particle 2 are indistinguishable. ψ 2 1 = ±ψ 1 2 Problem 1 : Fermi, Bose, and Pauli There is one more part to the postulate, which we mentioned at the ver end of last semester. ! ! ! ! • 2-Fermion wavefunctions are Antisymmetric under exchange → ψ (r ,r ) = –ψ (r ,r ) . !2 !1 !1 !2 • 2-Boson wavefunctions are Symmetric under exchange (r ,r ) (r ,r ) . → ψ 2 1 = +ψ 1 2 where • a Fermion is a particle with half-integer spin (e.g. electrons, protons, neutrons) • a Boson is a particle with integer spin (e.g. photons, many nuclei) (a) What if we have a system composed of one of each, e.g. a spin-1 deuterium nucleus (boson) and a spin-½ electron (fermion)? What is the symmetry of that under exchange? (Hint: No calculations required, and you will laugh when you realize the answer.) (b) Show that it is impossible for two fermions to occupy exactly the same state: show that you cannot build a ! ! wavefunction (r ,r ) with the necessary symmetry properties when particle 1 and particle 2 have the exact ψ 1 2 same individual wavefunctions. FYI: This result is the Pauli Exclusion Principle. It is an immediate consequence of the anti-symmetrization requirement on the wavefunctions of indistinguishable fermions, and is essential for understanding the periodic table – i.e.
    [Show full text]
  • 5.1 Two-Particle Systems
    5.1 Two-Particle Systems We encountered a two-particle system in dealing with the addition of angular momentum. Let's treat such systems in a more formal way. The w.f. for a two-particle system must depend on the spatial coordinates of both particles as @Ψ well as t: Ψ(r1; r2; t), satisfying i~ @t = HΨ, ~2 2 ~2 2 where H = + V (r1; r2; t), −2m1r1 − 2m2r2 and d3r d3r Ψ(r ; r ; t) 2 = 1. 1 2 j 1 2 j R Iff V is independent of time, then we can separate the time and spatial variables, obtaining Ψ(r1; r2; t) = (r1; r2) exp( iEt=~), − where E is the total energy of the system. Let us now make a very fundamental assumption: that each particle occupies a one-particle e.s. [Note that this is often a poor approximation for the true many-body w.f.] The joint e.f. can then be written as the product of two one-particle e.f.'s: (r1; r2) = a(r1) b(r2). Suppose furthermore that the two particles are indistinguishable. Then, the above w.f. is not really adequate since you can't actually tell whether it's particle 1 in state a or particle 2. This indeterminacy is correctly reflected if we replace the above w.f. by (r ; r ) = a(r ) (r ) (r ) a(r ). 1 2 1 b 2 b 1 2 The `plus-or-minus' sign reflects that there are two distinct ways to accomplish this. Thus we are naturally led to consider two kinds of identical particles, which we have come to call `bosons' (+) and `fermions' ( ).
    [Show full text]
  • Pauli's Principle in Probe Microscopy
    Chapter 1 Pauli's Principle in Probe Microscopy SP Jarvisy, AM Sweetmany, L Kantorovichz, E McGlynn], and P Moriartyy It appears to be one of the few places in physics where there is a rule which can be stated very simply, but for which no one has found a simple and easy explanation. The explanation is deep down in relativistic quantum mechanics. This probably means that we do not have a complete understanding of the fundamental principle involved.RP Feynman, The Feynman Lectures on Physics, Vol III, Chapter 4 (1964) Abstract Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the \Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions. Keywords: dynamic force microscopy;non-contact atomic force microscopy; NC-AFM; Pauli exclusion principle; submolecular resolution; intramolecular; single molecule imaging From Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy, Vol V of Advances in Atom and Single Molecule Machines, Springer-Verlag; http://www.springer.com/ series/10425. To be published late 2014. ySchool of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK z Department of Physics, Kings College London, The Strand, London WC2R 2LS, UK ] School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland arXiv:1408.1026v1 [cond-mat.mes-hall] 5 Aug 2014 1 2 SP Jarvis, AM Sweetman, L Kantorovich, E McGlynn, and P Moriarty 1.1 Intramolecular resolution via Pauli exclusion In 2009 the results of a pioneering dynamic force microscopy (DFM1) experiment by Leo Gross and co-workers at IBM Z¨urich were published[1] and revolutionised the field of scanning probe microscopy.
    [Show full text]
  • Abstract Investigation of the Magnetostatics Of
    ABSTRACT INVESTIGATION OF THE MAGNETOSTATICS OF EXCHANGE-COUPLED NANO- DOTS USING THE MAGNETO-OPTIC KERR EFFECT TECHNIQUE by Sarah C. Hernandez The effect of inter-dot exchange coupling on the magnetization reversal processes in nano- dots has been investigated on Permalloy dot arrays with dot diameters of 300 nm and thickness of 40 nm. The dots are exchange coupled via 50 nm long Permalloy bridges of width ranging from zero to 60 nm. Chains of five co-linear coupled dots form the unit cell of the array structure. Magneto-optical Kerr effect hysteresis loops are reported with comparison to simulations. With field applied along the coupling direction, nucleation is suppressed by the interdot exchange coupling resulting in highly correlated magnetization patterns. When the field is applied perpendicular-to-the-coupling direction, the exchange interaction has little effect and magnetic reversal is almost identical to arrays of isolated dots. As a result of rotating the applied magnetic field relative to the sample’s coupling direction, unusual hysteresis loops were observed, which could be explained by a combination of the x and y-component of the magnetization. Investigation of Magnetostatics of Exchange-Coupled Nano-dots using the Magneto-optic Kerr Effect Technique A Thesis Submitted to the Faculty of Miami University In partial fulfillment of the requirements for the degree of Masters of Science Department of Physics by Sarah C. Hernandez Oxford, Ohio Miami University 2009 Advisor______________________ (Michael J. Pechan) Reader______________________ (Khalid Eid) Reader______________________ (Samir Bali) © 2009 Sarah C. Hernandez Table of Contents 1 Introduction ........................................................................................................................... 1 1.1 Motivation ....................................................................................................................... 1 1.2 Purpose ...........................................................................................................................
    [Show full text]
  • Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot
    PHYSICAL REVIEW LETTERS week ending PRL 97, 056801 (2006) 4 AUGUST 2006 Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot E. A. Laird,1 J. R. Petta,1 A. C. Johnson,1 C. M. Marcus,1 A. Yacoby,2 M. P. Hanson,3 and A. C. Gossard3 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel 3Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, USA (Received 3 December 2005; published 31 July 2006) We measure singlet-triplet dephasing in a two-electron double quantum dot in the presence of an exchange interaction which can be electrically tuned from much smaller to much larger than the hyperfine energy. Saturation of dephasing and damped oscillations of the spin correlator as a function of time are observed when the two interaction strengths are comparable. Both features of the data are compared with predictions from a quasistatic model of the hyperfine field. DOI: 10.1103/PhysRevLett.97.056801 PACS numbers: 73.21.La, 71.70.Gm, 71.70.Jp Implementing quantum information processing in solid- Enuc. When J Enuc, we find that PS decays on a time @ state circuitry is an enticing experimental goal, offering the scale T2 =Enuc 14 ns. In the opposite limit where possibility of tunable device parameters and straightfor- exchange dominates, J Enuc, we find that singlet corre- ward scaling. However, realization will require control lations are substantially preserved over hundreds of nano- over the strong environmental decoherence typical of seconds.
    [Show full text]
  • PART 1 Identical Particles, Fermions and Bosons. Pauli Exclusion
    O. P. Sushkov School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia (Dated: March 1, 2016) PART 1 Identical particles, fermions and bosons. Pauli exclusion principle. Slater determinant. Variational method. He atom. Multielectron atoms, effective potential. Exchange interaction. 2 Identical particles and quantum statistics. Consider two identical particles. 2 electrons 2 protons 2 12C nuclei 2 protons .... The wave function of the pair reads ψ = ψ(~r1, ~s1,~t1...; ~r2, ~s2,~t2...) where r1,s1, t1, ... are variables of the 1st particle. r2,s2, t2, ... are variables of the 2nd particle. r - spatial coordinate s - spin t - isospin . - other internal quantum numbers, if any. Omit isospin and other internal quantum numbers for now. The particles are identical hence the quantum state is not changed under the permutation : ψ (r2,s2; r1,s1) = Rψ(r1,s1; r2,s2) , where R is a coefficient. Double permutation returns the wave function back, R2 = 1, hence R = 1. ± The spin-statistics theorem claims: * Particles with integer spin have R =1, they are called bosons (Bose - Einstein statistics). * Particles with half-integer spins have R = 1, they are called fermions (Fermi − - Dirac statistics). 3 The spin-statistics theorem can be proven in relativistic quantum mechanics. Technically the theorem is based on the fact that due to the structure of the Lorentz transformation the wave equation for a particle with spin 1/2 is of the first order in time derivative (see discussion of the Dirac equation later in the course). At the same time the wave equation for a particle with integer spin is of the second order in time derivative.
    [Show full text]
  • Comment on Photon Exchange Interactions
    Comment on Photon Exchange Interactions J.D. Franson Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 Abstract: We previously suggested that photon exchange interactions could be used to produce nonlinear effects at the two-photon level, and similar effects have been experimentally observed by Resch et al. (quant-ph/0306198). Here we note that photon exchange interactions are not useful for quantum information processing because they require the presence of substantial photon loss. This dependence on loss is somewhat analogous to the postselection required in the linear optics approach to quantum computing suggested by Knill, Laflamme, and Milburn [Nature 409, 46 (2001)]. 2 Some time ago, we suggested that photon exchange interactions could be used to produce nonlinear phase shifts at the two-photon level [1, 2]. Resch et al. have recently demonstrated somewhat similar effects in a beam-splitter experiment [3]. Because there has been some renewed discussion of this topic, we felt that it would be appropriate to briefly summarize the situation regarding photon exchange interactions. In particular, we note that photon exchange interactions are not useful for quantum information processing because the nonlinear phase shifts that they produce are dependent on the presence of significant photon loss in the form of absorption or scattering. This dependence on photon loss is somewhat analogous to the postselection process inherent in the linear optics approach to quantum computing suggested by Knill, Laflamme, and Milburn (KLM) [4]. Our interest in the use of photon exchange interactions was motivated in part by the fact that there can be a large coupling between a pair of incident photons and the collective modes of a medium containing a large number N of atoms.
    [Show full text]
  • Heisenberg and Ferromagnetism
    GENERAL I ARTICLE Heisenberg and Ferromagnetism S Chatterjee Heisenberg's contributions to the understanding of ferromagnetism are reviewed. The special fea­ tures of ferrolnagnetism, vis-a-vis dia and para magnetism, are introduced and the necessity of a Weiss molecular field is explained. It is shown how Heisenberg identified the quantum mechan­ ical exchange interaction, which first appeared in the context of chemical bonding, to be the es­ sential agency, contributing to the co-operative ordering process in ferromagnetism. Sabyasachi Chatterjee obtained his PhD in Though lTIagnetism was known to the Chinese way back condensed matter physics in 2500 BC, and to the Greeks since 600 BC, it was only from the Indian Institute in the 19th century that systematic quantitative stud­ of Science, Bangalore. He ies on magnetism were undertaken, notably by Faraday, now works at the Indian Institute of Astrophysics. Guoy and Pierre Curie. Magnetic materials were then His current interests are classified as dia, para and ferromagnetics. Theoretical in the areas of galactic understanding of these phenomena required inputs from physics and optics. He is two sources, (1) electromagnetism and (2) atomic the­ also active in the teaching ory. Electromagnetism, that unified electricity and mag­ and popularising of science. netiSlTI, showed that moving charges produce magnetic fields and moving magnets produce emfs in conductors. The fact that electrons (discovered in 1897) reside in atoms directed attention to the question whether mag­ netic properties of materials had a relation with the mo­ tiOll of electrons in atoms. The theory of diamagnetism was successfully explained to be due to the Lorentz force F = e[E + (l/c)v x H], 011 an orbiting electron when a magnetic field H is ap­ plied.
    [Show full text]
  • [Physics.Ed-Ph] 18 Apr 2003 Opeeyadrpaei Ihmr Prpit Hsclin Physical Appropriate More Here
    Quantum Statistics: Is there an effective fermion repulsion or boson attraction? W. J. Mullin and G. Blaylock Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 Abstract Physicists often claim that there is an effective repulsion between fermions, implied by the Pauli principle, and a corresponding effective attraction between bosons. We examine the origins of such exchange force ideas, the validity for them, and the areas where they are highly misleading. We propose that future explanations of quantum statistics should avoid the idea of a effective force completely and replace it with more appropriate physical insights, some of which are suggested here. arXiv:physics/0304067v1 [physics.ed-ph] 18 Apr 2003 1 I. INTRODUCTION The Pauli principle states that no two fermions can have the same quantum numbers. The origin of this law is the required antisymmetry of the multi-fermion wavefunction. Most physicists have heard or read a shorthand way of expressing the Pauli principle, which says something analogous to fermions being “antisocial” and bosons “gregarious.” Quite often this intuitive approach involves the statement that there is an effective repulsion between two fermions, sometimes called an “exchange force,” that keeps them spacially separated. We inquire into the validity of this heuristic point of view and find that the suggestion of an effective repulsion between fermions or an attraction between bosons is actually quite a dangerous concept, especially for beginning students, since it often leads to an inaccurate physical interpretation and sometimes to incorrect results. We argue that the effective interaction interpretation of the Pauli principle (or Bose principle) should almost always be replaced by some alternate physical interpretation that better reveals the true physics.
    [Show full text]