Ghostsharks (Chimaeriformes) Exploitation Status Undefined

Total Page:16

File Type:pdf, Size:1020Kb

Ghostsharks (Chimaeriformes) Exploitation Status Undefined I & I NSW WILD FISHERIES RESEARCH PROGRAM Ghostsharks (Chimaeriformes) EXPLOITATION STATUS UNDEFINED Small numbers of individuals are harvested as bycatch in the Ocean Trawl Fishery mainly from the outer continental shelf and continental slope. There is a lack of information with which to assess stock status. SCIENTIFIC NAME STANDARD NAME COMMENT Occasionally caught inshore south of Callorhinchus milii elephantfish Sydney. Caught on outer shelf and upper slope (120 Hydrolagus ogilbyi Ogilby’s ghostshark to 400 m) Small species infrequently caught off Hydrolagus marmoratus marbled ghostshark nothern NSW indepths 550-1000 m Caught in upper slope depths (200 to Hydrolagus lemures blackfin ghostshark 700 m) Chimaera fulva Southern chimaera Frequently caught 780-1000 m. Chimaera macrospina longspine chimaera Caught in midslope depths (435-1300 m). Harriotta raleighana bigspine spookfish Caught in midslope depths (700-900 m). Rhinochimaera pacifica pacific spookfish Caught in midslope depths (760-1290 m). Known only from four specimens caught in Chimaera obscura shortspine chimaera 1050 m depth off Tuncurry Hydrolagus ogilbyi Image © Bernard Yau Background Harriotta ralieghana; family Rhinochimaeridae). However, despite their mainly deepwater Chimaeriforms include three families of mainly habitat and unusual appearance, chimaeras deepwater chondrichthyans (cartilaginous have good eating qualities and small quantities fishes), and all families are represented in of a variety of species are landed as incidental NSW waters. The taxonomy of deepwater catches in the Ocean Trawl Fishery. ghostsharks (Chimaeridae) in Australian and New Zealand waters has recently been clarified The elephantfish is the only shallow water and the NSW fauna is now known to include species of the group, occurring around at least nine species. There is one species southern Australia and in New Zealand. of elephantfish (Callorhinchus milii; family Elephantfish can grow to at least 110 cm in Callorhinchidae), several species of shortnosed length and about 9 kg in weight, and are ghostsharks (Chimaera spp. and occasionally caught off the far south coast Hydrolagus spp.; family Chimaeridae), and of NSW. They are bottom feeders with plate- two species of longnosed ghostsharks or like teeth in both jaws used to crush shellfish spookfishes (Rhinochimaera pacifica and and other invertebrate prey. The status of the elephantfish stock is currently being assessed STATUS OF FISHERIES RESOURCES IN NSW, 2008/09 GhostsharKS | P 145 WILD FISHERIES RESEARCH PROGRAM by the Commonwealth, as it forms a significant Historical Landings of Ghostsharks by-catch in the Southern and Eastern Scalefish and Shark Fishery, and there is a significant 8 recreational catch in the southern states. More commonly caught by NSW offshore 6 trawlers, albeit in relatively small numbers, are several species of ghostsharks. Ogilby’s ghostshark (Hydrolagus ogilbyi) may be caught 4 as shallow as 150 m but the other species Landings (t) inhabit continental slope depths between 2 500 and 1500 m. Some species of NSW ghostsharks grow to about 80 cm in length (not including the tail filament) and weigh up 0 to 5 kg. All deepwater chimaeras have long 93/94 95/96 97/98 99/00 01/02 03/04 05/06 07/08 Financial Year filamentous tails making them weak swimmers Commercial landings (including available historical and they are reported to feed mainly on small records) of ghostsharks for NSW from 1991/92 to 2008/09 fish and invertebrates, including squids. for all fishing methods. The females of all chimaeras are oviparous in that they lay single large eggs in leathery egg- cases; these eggs take up to a year to develop Further Reading and hatch into a fully formed small shark. While Graham, K.J., N.J. Andrew and K.E. Hodgson (2001). the elephantfish breeds annually in shallow Changes in relative abundance of sharks and rays water, little is known of the breeding biology on Australian South East Fishery trawl grounds of deepwater chimaerids. However, like most after twenty years of fishing, Marine and Freshwater deepwater sharks, ghostsharks are likely to Research 52: 549-61. have slow growth rates and very low fecundity, Last, P.R. and J.D. Stevens (2009). Sharks and Rays of making them vulnerable to over fishing. Australia 2nd Edition. Melbourne, CSIRO. Punt, A.E., T.I. Walker and A.S. Gason (2004). Initial assessments of sawshark (Pristiophorus cirratus Additional Notes and P. nudipinnis) and elephant fish (Callorhinchus • It is likely that the abundance of these species milii). In: G. N. Tuck and A. D. M. Smith(eds), Stock has always been quite low off NSW. assessment for South East and Southern Shark Fishery Species FRDC Project No 2001/005. Hobart, • Most are deepwater sharks with typically low Tasmania, CSIRO Marine Research: 335-369 pp. fecundity. Walker, T.I. and R.J. Hudson (2005). Sawshark and • Elephantfish is subject to catch limits in the elephant fish assessment and by-catch evaluation Commonwealth Southern Shark Fishery (Total in the Southern Shark Fishery. Final Report, FRDC project 1999/103. Victoria, Primary Industries Allowable Catch of 94 t). Research. • Ghostsharks are a key secondary species in Yearsley, G.K., P.R. Last and R.D. Ward (1999). Australian the Ocean Trawl Fishery. Seafood Handbook. Hobart, CSIRO Marine Research. Catch Please visit the CSIRO website, Recreational Catch of Ghostsharks http://www.marine.csiro.au/caab/ and search for the species code (CAAB) 37 042001, 37 042011, The annual recreational harvest of ghostsharks 37 042006, 37 042007, 37 043001, 37 042003, in NSW is likely to be less than one tonne. 37 044001 and 37 044002 common name or scientific name to find further information. Please note that common names have been adopted from Last and Stevens (2010) and may differ to those contained on the CAAB website. © State of New South Wales through Industry and Investment NSW 2010. You may copy, distribute and otherwise freely deal with this publication for any purpose, provided that you attribute Industry and Investment NSW as the owner. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (April 2010). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of Industry and Investment NSW or the user’s independent adviser. P 146 | GhostsharKS.
Recommended publications
  • Molecular Circumscription of New Species of Gyrocotyle Diesing, 1850 (Cestoda) from Deep-Sea Chimaeriform Holocephalans in the North Atlantic
    Title Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic Authors Bray, RA; Waeschenbach, A; Littlewood, T; Halvorsen, O; Olson, PD Date Submitted 2020-06-11 Syst Parasitol https://doi.org/10.1007/s11230-020-09912-w (0123456789().,-volV)(0123456789().,-volV) Molecular circumscription of new species of Gyrocotyle Diesing, 1850 (Cestoda) from deep-sea chimaeriform holocephalans in the North Atlantic Rodney A. Bray . Andrea Waeschenbach . D. Timothy J. Littlewood . Odd Halvorsen . Peter D. Olson Received: 14 November 2019 / Accepted: 1 March 2020 Ó The Author(s) 2020 Abstract Chimaeras, or ratfishes, are the only extant and their specific host associations has remained group of holocephalan fishes and are the sole host highly speculative. Here we report the presence of group of gyrocotylidean cestodes, which represent a Gyrocotyle spp. from rarely-caught deep-sea chi- sister group of the true tapeworms (Eucestoda). These maeras collected in the North-East Atlantic, and unique, non-segmented cestodes have been known describe two new species: G. haffii n. sp. from the since the 1850s and multiple species and genera have bent-nose chimaera, Harriota raleighana Goode & been erected despite a general agreement that the Bean, and G. discoveryi n. sp. from the large-eyed delineation of species on the basis of morphology is rabbit fish, Hydrolagus mirabilis (Collett). Nuclear effectively impossible. Thus, in the absence of ribosomal sequence data were generated for individual molecular studies, the validity of gyrocotylid taxa parasites taken from different host species collected on different dates and from different localities and were combined with previously published sequences.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Chondrichthyes: Carcharhiniformes: Scyliorhinidae) from the Gulf of Aden
    Zootaxa 3881 (1): 001–016 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3881.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:809A2B3B-2C2C-4D26-A50F-6D5185D3BD6A Apristurus breviventralis, a new species of deep-water catshark (Chondrichthyes: Carcharhiniformes: Scyliorhinidae) from the Gulf of Aden JUNRO KAWAUCHI1,4, SIMON WEIGMANN2 & KAZUHIRO NAKAYA3 1Chair of Marine Biology and Biodiversity (Systematic Ichthyology), Graduate School of Fisheries Sciences, Hokkaido University, 3- 3-1 Minato-cho, Hakodate Hokkaido 041-8611, Japan. E-mail: junro@ frontier.hokudai.ac.jp 2Biocenter Grindel and Zoological Museum, University of Hamburg, Section Ichthyology, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany. E-mail: [email protected] 3Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan. E-mail: [email protected] 4Corresponding author Abstract A new deep-water catshark of the genus Apristurus Garman, 1913 is described based on nine specimens from the Gulf of Aden in the northwestern Indian Ocean. Apristurus breviventralis sp. nov. belongs to the ‘brunneus group’ of the genus and is characterized by having pectoral-fin tips reaching beyond the midpoint between the paired fin bases, a much shorter pectoral-pelvic space than the anal-fin base, a low and long-based anal fin, and a first dorsal fin located behind pelvic-fin insertion. The new species most closely resembles the western Atlantic species Apristurus canutus, but is distinguishable in having greater nostril length than internarial width and longer claspers in adult males.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean Paul Joseph Clerkin San Jose State University
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2017 Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean Paul Joseph Clerkin San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Clerkin, Paul Joseph, "Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean" (2017). Master's Theses. 4869. DOI: https://doi.org/10.31979/etd.ms3e-x835 https://scholarworks.sjsu.edu/etd_theses/4869 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. LIFE HISTORY ASPECTS AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN A Thesis Presented to the Faculty of Moss Landing Marine Laboratories and San José State University In Partial Fulfilment of the Requirements for the Degree Master of Science by Paul J. Clerkin December 2017 © 2017 Paul J. Clerkin ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled LIFE HISTORY ASPECTS AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN by Paul J. Clerkin APPROVED FOR THE DEPARTMENT OF MARINE SCIENCE SAN JOSÉ STATE UNIVERSITY December 2017 Dr. David A. Ebert Moss Landing Marine Laboratories Dr. Scott Hamilton Moss Landing Marine Laboratories Dr. Kenneth H. Coale Moss Landing Marine Laboratories ABSTRACT ASPECTS OF THE LIFE HISTORY AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN by Paul J.
    [Show full text]
  • Biomechanics of Locomotion in Sharks, Rays, and Chimaeras
    5 Biomechanics of Locomotion in Sharks, Rays, and Chimaeras Anabela M.R. Maia, Cheryl A.D. Wilga, and George V. Lauder CONTENTS 5.1 Introduction 125 5.1.1 Approaches to Studying Locomotion in Chondrichthyans 125 5.1.2 Diversity of Locomotory Modes in Chondrichthyans 127 5.1.3 Body Form and Fin Shapes 127 5.2 Locomotion in Sharks 128 5.2.1 Function of the Body during Steady Locomotion and Vertical Maneuvering 128 5.2.2 Function of the Caudal Fin during Steady Locomotion and Vertical Maneuvering 130 5.2.3 Function of the Pectoral Fins during Locomotion 134 5.2.3.1 Anatomy of the Pectoral Fins 134 5.2.3.2 Role of the Pectoral Fins during Steady Swimming 136 5.2.3.3 Role of the Pectoral Fins during Vertical Maneuvering 138 5.2.3.4 Function of the Pectoral Fins during Benthic Station-Holding 139 5.2.3.5 Motor Activity in the Pectoral Fins 139 5.2.4 Routine Maneuvers and Escape Responses 140 5.2.5 Synthesis 141 5.3 Locomotion in Skates and Rays 142 5.4 Locomotion in Holocephalans 145 5.5 Material Properties of Chondrichthyan Locomotor Structures 146 5.6 Future Directions 147 Acknowledgments 148 References 148 5.1.1 Approaches to Studying 5.1 Introduction Locomotion in Chondrichthyans The body form of sharks is notable for the distinctive Historically, many attempts have been made to under- heterocercal tail with external morphological asymme- stand the function of the median and paired fins in try present in most taxa and the ventrolateral winglike sharks and rays, and these studies have included work pectoral fins extending laterally from the body (Figure with models (Affleck.
    [Show full text]
  • The Shark's Electric Sense
    BIOLOGY CREDIT © 2007 SCIENTIFIC AMERICAN, INC. LEMON SHARK chomps down on an unlucky fish. THE SHARK’S SENSE An astonishingly sensitive detector of electric fields helps sharks zero in on prey By R. Douglas Fields menacing fin pierced the surface such as those animal cells produce when in KEY CONCEPTS and sliced toward us. A great blue contact with seawater. But how they use ■ Sharks and related fish can shark—three meters in length— that unique sense had yet to be proved. We sense the extremely weak homed in on the scent of blood like a torpe- were on that boat to find out. electric fields emitted by animals in the surrounding do. As my wife, Melanie, and I watched sev- Until the 1970s, scientists did not even water, an ability few other eral large sharks circle our seven-meter Bos- suspect that sharks could perceive weak organisms possess. ton Whaler, a silver-blue snout suddenly electric fields. Today we know that such elec- ■ This ability is made possible thrust through a square cutout in the boat troreception helps the fish find food and can by unique electrosensory deck. “Look out!” Melanie shouted. We operate even when environmental condi- structures called ampullae both recoiled instinctively, but we were in tions render the five common senses—sight, of Lorenzini, after the 17th- no real danger. The shark flashed a jagged smell, taste, touch, hearing—all but useless. century anatomist who first smile of ivory saw teeth and then slipped It works in turbid water, total darkness and described them. back into the sea.
    [Show full text]
  • Sharks, Skates, Rays, and Chimaeras
    SHARKS, SKATES, RAYS, AND CHIMAERAS UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 228 TABLE 1. -- tiximum sizes of camnon species of sharks Species Traditional Mucimum length Muimum length maximum size (measure<l--U. S. coa.ts) (recorde<l--world) Scientific na.rr;e from literature SixgL. st.ark .... 1 Hexanchus sp. .•..•••••••. 15 feet 5 inches 26 feet 5 inches nd hary... ..... Carcharias taurus... 10 feet 5 inches 12 feet 3 inches 15 feet 11 inches Porbeagle •....... 1 LamTUl TUlSUS........... ... 10 feet 12 feet 12 feet Sall10n shark. .... LamTUl ditropis . 8 feet 6 inches 8 feet 6 inches 12 feet L 0 .•.••.•.•.... Isurus oxyrinchus ...... ... 10 feet 6 inches 12 feet 12 feet - 13 feet 'hi te sr.ark. ..... Carcharodan carcharias. 18 feet 2 inches 21 feet 36 feet 6 inches Basking shar".... Cetorhinus maximus . 32 feet 2 inches 45 feet 40 feet - 50 feet Thresher shark... Alopias vulpinus . 18 feet 18 feet 20 feet rse shark...... Ginglymostoma cirraturn.. 9 feet 3 inches 14 feet Whale shark. ..... Rhincodan typus........ .•. 38 feet 45 feet 45 feet - 50 feet Olain dogfish.... Scyliorhinus retifer. ... .. 1 foot 5 inches 2 feet 6 inches Leopard shark.... Triakis semifasciata... 5 feet 5 feet Smooth dogfish ... Alustelus canis ......... ... 4 feet 9 inches 5 feet rieer shark...... Galeocerdo cuvieri..... ... 13 feet 10 inches 18 feet 30 feet Soupfin shark.... Galeorhinus zyopterus . .. 6 feet 5 inches 6 feet 5 inches 6 feet 5 inches Blue shark. ...... Prionace glauca ....... 11 feet 12 feet 7 inches 25 feet Bul .. shark. ...... Carcharhinus leucas. .. 9 feet 10 inches 10 feet Whi tetip shark.
    [Show full text]
  • Fossils Provide Better Estimates of Ancestral Body Size Than Do Extant
    Acta Zoologica (Stockholm) 90 (Suppl. 1): 357–384 (January 2009) doi: 10.1111/j.1463-6395.2008.00364.x FossilsBlackwell Publishing Ltd provide better estimates of ancestral body size than do extant taxa in fishes James S. Albert,1 Derek M. Johnson1 and Jason H. Knouft2 Abstract 1Department of Biology, University of Albert, J.S., Johnson, D.M. and Knouft, J.H. 2009. Fossils provide better Louisiana at Lafayette, Lafayette, LA estimates of ancestral body size than do extant taxa in fishes. — Acta Zoologica 2 70504-2451, USA; Department of (Stockholm) 90 (Suppl. 1): 357–384 Biology, Saint Louis University, St. Louis, MO, USA The use of fossils in studies of character evolution is an active area of research. Characters from fossils have been viewed as less informative or more subjective Keywords: than comparable information from extant taxa. However, fossils are often the continuous trait evolution, character state only known representatives of many higher taxa, including some of the earliest optimization, morphological diversification, forms, and have been important in determining character polarity and filling vertebrate taphonomy morphological gaps. Here we evaluate the influence of fossils on the interpretation of character evolution by comparing estimates of ancestral body Accepted for publication: 22 July 2008 size in fishes (non-tetrapod craniates) from two large and previously unpublished datasets; a palaeontological dataset representing all principal clades from throughout the Phanerozoic, and a macroecological dataset for all 515 families of living (Recent) fishes. Ancestral size was estimated from phylogenetically based (i.e. parsimony) optimization methods. Ancestral size estimates obtained from analysis of extant fish families are five to eight times larger than estimates using fossil members of the same higher taxa.
    [Show full text]
  • Zootaxa, a New Species of Chimaera, Hydrolagus
    Zootaxa 2218: 59–68 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new species of chimaera, Hydrolagus melanophasma sp. nov. (Chondrichthyes: Chimaeriformes: Chimaeridae), from the eastern North Pacific KELSEY C. JAMES1, DAVID A. EBERT1, 2, 4, DOUGLAS J. LONG3,4 & DOMINIQUE A. DIDIER5 1Pacific Shark Research Center, Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA. E-mail: [email protected] 2Research Associate, South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa 3Department of Natural Sciences, Oakland Museum of California, 1000 Oak Street, Oakland, CA 94607 4 Research Associate, Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118 5Department of Biology, Millersville University, P.O. Box 1002, Millersville, PA 17551 USA Abstract A new species of chimaera, Hydrolagus melanophasma sp. nov. (Chimaeridae), is described from the eastern North Pacific. It is distinct from other eastern Pacific chimaeroids by the following characteristics: a large slightly curved dorsal fin spine extending beyond dorsal fin apex, a long second dorsal fin of uniform height throughout, large pectoral fins extending beyond the pelvic fin insertion when laid flat, trifid claspers forked for approximately one-quarter the total clasper length and a uniform black coloration throughout. The new species is compared to other eastern Pacific members of the genus Hydrolagus including H. alphus, H. colliei, H. macrophthalmus, and H. mccoskeri. Remote Operated Vehicle (ROV) video footage has identified and documented Hydrolagus melanophasma from the Gulf of California.
    [Show full text]