Monsters of the Deep [Adapted from the 2002 Gulf of Mexico Expedition]

Total Page:16

File Type:pdf, Size:1020Kb

Monsters of the Deep [Adapted from the 2002 Gulf of Mexico Expedition] Expedition to the Deep Slope 2007 Monsters of the Deep [adapted from the 2002 Gulf of Mexico Expedition] FOCUS AUDIO/VISUAL MATERIALS Predator-prey relationships between cold-seep None communities and the surrounding deep-sea envi- ronment TEACHING TIME Two 45-minute class periods, plus time for indi- GRADE LEVEL vidual group research 7-8 (Life Science) SEATING ARRANGEMENT FOCUS QUESTION Groups of four students What deep-sea predators may visit cold-seep communities in search of food? MAXIMUM NUMBER OF STUDENTS 30 LEARNING OBJECTIVES Students will be able to describe major features KEY WORDS of cold seep communities, and list at least five Cold seeps organisms typical of these communities. Methane hydrate ice Chemosynthesis Students will be able to infer probable trophic Brine pool relationships among organisms typical of cold- Polychaete worms seep communities and the surrounding deep-sea Vestimentiferans environment. Chemosynthetic bacteria Mussels Students will be able to describe in the process of Sea stars chemosynthesis in general terms, and will be able Eels to contrast chemosynthesis and photosynthesis. Squat lobsters Snails Students will be able to describe at least five Isopods deep-sea predator organisms. Spider crabs Anglerfishes MATERIALS Pelican eel 5 x 7 index cards Pancake bat fish Drawing materials Viperfish Corkboard, flip chart, or large poster board Fangtooth Squids Football fish 1 Expedition to the Deep Slope 2007 – Grades 7-8 (Life Science) Focus: Predator-prey relationships oceanexplorer.noaa.gov Hatchet fish Vestimentifera have been included in the phylum Trophic level Annelida). Pogonophora means “beard bear- ing,” and refers to the fact that many species in BACKGROUND INFORMATION this phylum have one or more tentacles at their Cold seeps are areas of the ocean floor where anterior end. Tentacles of vestimentiferans are gases (such as methane and hydrogen sulfide) bright red because they contain hemoglobin and oil seep out of sediments. These areas are (like our own red blood cells). Vestimentiferans commonly found along continental margins, and can grow to more than 10 feet long, sometimes are home to many species of organisms that have in clusters of millions of individuals, and are not been found anywhere else on Earth. Unlike believed to live for more than 100 years. They biological communities in shallow-water ocean do not have a mouth, stomach, or gut. Instead, habitats, cold-seep communities do not depend they have a large organ called a trophosome that upon sunlight as their primary source of energy. contains chemosynthetic bacteria. Hemoglobin in Instead, these communities derive their energy the tubeworm’s blood absorbs hydrogen sulfide from chemicals through a process called chemo- and oxygen from the water around the tentacles, synthesis (in contrast to photosynthesis in which and then transports these raw materials to bac- sunlight is the basic energy source). Some che- teria living in the trophosome (the tentacles also mosynthetic communities have been found near absorb carbon dioxide, which is also transported underwater volcanic hot springs called hydrother- to the bacteria). The bacteria produce organic mal vents, which usually occur along ridges sepa- molecules that provide nutrition to the tubeworm. rating the Earth’s tectonic plates. Visit http://www. Similar relationships are found in clams and mus- pmel.noaa.gov/vents and http://www.divediscover.whoi.edu/vents/ sels that have chemosynthetic bacteria living in index.html for more information and activities on their gills. A variety of other organisms are also hydrothermal vent communities. found in cold-seep communities, and probably use tubeworms, mussels, and bacterial mats as Typical features of the cold seep chemosynthetic sources of food. These include snails, eels, sea communities that have been studied so far include stars, crabs, isopods, sea cucumbers, and fishes. mounds of frozen crystals of methane and water Specific relationships between these organisms called methane hydrate ice that are home to have not been well-studied. polychaete worms. Brine pools, containing water four times saltier than normal seawater, have Recently, increasing attention has been focused also been found. Researchers often find dead fish on cold seeps in the Gulf of Mexico, an area that floating in the brine pool, apparently killed by the produces more petroleum than any other region high salinity. The base of the food chain in cold in the United States. Responsibility for managing seep communities is chemosynthetic bacteria that exploration and development of mineral resources are able to obtain energy from some of the chem- on the Nation’s outer continental shelf is a central icals seeping out of the ocean floor. Bacteria may mission of the U.S. Department of the Interior’s form thick bacterial mats, or may live in close Minerals Management Service (MMS). In addi- association with other organisms. tion to managing the revenues from mineral resources, an integral part of this mission is to One of the most conspicuous associations protect unique and sensitive environments where exists between chemosynthetic bacteria and these resources are found. MMS scientists are large tubeworms that belong to the group particularly interested in finding deep-sea che- Vestimentifera (formerly classified within the phy- mosynthetic communities in the Gulf of Mexico, lum Pogonophora; recently Pogonophora and because these are unique communities that often 2 Expedition to the Deep Slope 2007 – Grades 7-8 (Life Science) oceanexplorer.noaa.gov Focus: Predator-prey relationships include species that are new to science and http://www.bio.psu.edu/hotvents for a virtual tour of a whose potential importance is presently unknown. hydrothermal vent community. In addition, the presence of these communities often indicates the presence of hydrocarbons at 2. Lead a discussion of deep-sea chemosynthetic the surface of the seafloor. communities. Contrast chemosynthesis with photosynthesis: In both processes, organisms The 2006 Expedition to the Deep Slope was build sugars from carbon dioxide and water. focused on discovering and studying the sea floor This process requires energy; photosynthesiz- communities found near seeping hydrocarbons ers obtain this energy from the sun, while che- on hard bottom in the deep Gulf of Mexico. mosynthesizers obtain energy from chemical The sites visited by the Expedition were in areas reactions. Point out that there are a variety of where energy companies will soon begin to drill chemical reactions that can provide this kind of for oil and gas. A key objective was to provide energy. Contrast hydrothermal vent communities information on the ecology and biodiversity of with cold-seep communities. these communities to regulatory agencies and energy companies. Dives by scientists aboard Review the concepts of food chains and food the research submersible ALVIN revealed that webs, including the concept of trophic levels hydrocarbons seepage and chemosynthetic com- (primary producer, primary consumer, second- munities were present at all ten sites visited by the ary consumer, and tertiary consumer). Expedition. The most abundant chemosynthetic organisms seen were mussels and vestimentiferan 3. Assign each student group one or more of the tubeworms. Expedition to the Deep Slope 2007 following organisms to research: is focused on detailed sampling and mapping of Cold-Seep Groups: four key sites visited in 2006, as well as explor- • Polychaete worms ing new sites identified from seismic survey data. • Vestimentiferans • Chemosynthetic bacteria Cold-seep communities are surrounded by a • Mussels much larger deep-sea environment that contains a • Sea stars variety of unusual creatures with names like viper- • Eels fish, football fish, and vampire squid. Very little • Squat lobsters is known about interactions between cold-seep • Snails communities and organisms from the surrounding • Isopods deep-sea. It seems likely, though, that deep-sea • Spider crabs predators visit cold-seep communities in search of food, since these communities produce large Deep-Sea Groups: amount of biological material. This activity focus- • Anglerfishes es on cold-seep communities and deep-sea preda- • Pelican eel tors that may use these communities for food. • Pancake bat fish • Viperfish LEARNING PROCEDURE • Fangtooth 1. To prepare for this lesson, visit http://oceanexplorer. • Squids noaa.gov/explorations/07mexico/welcome.html for informa- • Football fish tion about Expedition to the Deep Slope 2007. • Hatchet fish You may want to visit http://www.bio.psu.edu/cold_seeps for a virtual tour of a cold seep community, and 3 Expedition to the Deep Slope 2007 – Grades 7-8 (Life Science) Focus: Predator-prey relationships oceanexplorer.noaa.gov In addition to written reference materials (ency- 5. Lead a discussion of the food web the students clopedia, periodicals, and books on the deep- have created. Which groups show the great- sea), the following Web sites contain useful est variety of anatomical types and feeding information: strategies? Which groups are responsible for http://www.bio.psu.edu/cold_seeps primary production? What would the students http://www.pbs.org/wgbh/nova/abyss/life/bestiary.html infer about the relative abundance of each tro- http://biodidac.bio.uottawa.ca/ phic level? In the simplest analysis, organisms http://www.fishbase.org/search.cfm at lower trophic levels (primary producers and http://www.learningdemo.com/noaa/ Lesson 5, primary consumers)
Recommended publications
  • Hydrothermal Vents. Teacher's Notes
    Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon.
    [Show full text]
  • Cold Seep Benthic Communities in Japan Subduction Zones: Spatial Organization, Trophic Strategies and Evidence for Temporal Evolution*
    MARINE ECOLOGY - PROGRESS SERIES Vol. 40: 115-126. 1987 Published October 7 Mar. Ecol. Prog. Ser. Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution* S. Kim Juniper", Myriam Sibuet IFREMER, Centre de Brest. BP 337. F-29273 Brest Cedex. France ABSTRACT: Submersible exploration of the Japan subduction zones has revealed benthic communities dominated by clams (Calyptogena spp.) around sed~mentporewater seeps at depths from 3850 to 6000 m. Photographic and video records were used to produce microcartographlc reconstructions of 3 contrasting cold seep sites. Spatial and abundance relations of megafauna lead us to propose several hypotheses regard~ngthe ecological functioning of these cold seep communities. We dlst~nguish between the likely direct use of reducing substances in venting fluids by Calyptogena-bacteria symbioses and indirect usage by accompanying abyssal species not known to harbour symbionts. Microdistribution and known or presumed feedmg modes of the accompanying species indicate 2 different sources of organic matter enrichment within cold seep sites: organic debris originating from bivalve colonies, and enrichment of extensive areas of surrounding surface sediments where weaker, more hffuse porewater seepage may support chemosynthetic production by free-living bacteria. The occurrence of colony-like groupings of empty Calyptogena valves indicates that cold seeps are ephemeral, with groups of living clams, mixed living and dead clams, and empty dissolving shells marlung the course of a cycle of porewater venting and offering clues to the recent history of cold seep activity. INTRODUCTION al. 1985). One of the bivalve species from this area has been shown to harbour symbiotic bacteria in its gill The discovery of deep-sea hydrothermal vents has tissue and to oxidise methane (Childress et al.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
    Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate.
    [Show full text]
  • EXPLORING DEEP SEA HYDROTHERMAL VENTS on EARTH and OCEAN WORLDS. P. Sobron1,2, L. M. Barge3, the Invader Team. 1Impossible Sensing, St
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2505.pdf EXPLORING DEEP SEA HYDROTHERMAL VENTS ON EARTH AND OCEAN WORLDS. P. Sobron1,2, L. M. Barge3, the InVADER Team. 1Impossible Sensing, St. Louis, MO ([email protected]) 2SETI Institute, Mtn. View, CA, , 3Jet Propulsion Laboratory, Pasadena, CA The Mission: InVADER (In-situ Vent Analysis precipitates showing exposed minerals and organic Divebot for Exobiology Research, Figure 4.1, content. The UNOLS ROV will use our coring tool and https://invader-mission.org/) is NASA’s most advanced its own manipulator and cameras to take ground truth subsea sensing payload, a tightly integrated imaging and samples as part of the InVADER deplotment. laser Raman spectroscopy/laser-induced breakdown In contrast to existing methods, InVADER allows spectroscopy/laser induced native fluorescence in-situ, autonomous, non-destructive measurements of instrument capable of in-situ, rapid, long-term these vent characteristics. InVADER will fill these gaps, underwater analyses of vent fluid and precipitates. and advance readiness in vent exploration on Earth and Such analyses are critical for finding and studying Ocean Worlds by simplifying operational strategies for life and life’s precursors at vent systems on Ocean identifying and characterizing seafloor environments. Worlds. To demonstrate the scientific potential and We will use statistical analysis tools for the fusion of functionality of the instrument, in July 2021 our team multi-sensor datasets, and develop real-time science will deploy InVADER on the Ocean Observatories data evaluation and payload control routines to Initiative’s (OOI) Regional Cabled Array (RCA), a establish, and then validate, adaptive science operations power/data distribution network off the Oregon coast, at strategies that maximize science return in a mission-like the underwater hydrothermal systems of Axial scenario.
    [Show full text]
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • Causes of Sea Level Rise
    FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities.
    [Show full text]
  • Marine Pollution: a Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime Lawrence R
    Hastings Law Journal Volume 24 | Issue 1 Article 5 1-1972 Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime Lawrence R. Lanctot Follow this and additional works at: https://repository.uchastings.edu/hastings_law_journal Part of the Law Commons Recommended Citation Lawrence R. Lanctot, Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime, 24 Hastings L.J. 67 (1972). Available at: https://repository.uchastings.edu/hastings_law_journal/vol24/iss1/5 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Law Journal by an authorized editor of UC Hastings Scholarship Repository. Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions-A Suggested Global Oceans' Environmental Regime By LAWRENCE R. LANCTOT* THE oceans are earth's last significant frontier for man's utiliza- tion. Advances in marine technology are opening previously unreach- able depths to permit the study of the oceans' mysteries and the extrac- tion of valuable natural resources.' Because these vast resources were inaccessible in the past, international law does not provide any certain rules governing the ownership and development of marine resources which lie beyond the limits of national jurisdiction.2 In response to this legal uncertainty and in the face of accelerating technology, the United Nations General Assembly has called a General Conference on the Law of the Sea in 1973 to formulate international conventions gov- erning the development of the seabed and ocean floor., Great interest * J.D., University of San Francisco, 1968; LL.M., Columbia University, 1969; Adjunct Professor of Law, University of San Francisco.
    [Show full text]
  • Ocean-Climate.Org
    ocean-climate.org THE INTERACTIONS BETWEEN OCEAN AND CLIMATE 8 fact sheets WITH THE HELP OF: Authors: Corinne Bussi-Copin, Xavier Capet, Bertrand Delorme, Didier Gascuel, Clara Grillet, Michel Hignette, Hélène Lecornu, Nadine Le Bris and Fabrice Messal Coordination: Nicole Aussedat, Xavier Bougeard, Corinne Bussi-Copin, Louise Ras and Julien Voyé Infographics: Xavier Bougeard and Elsa Godet Graphic design: Elsa Godet CITATION OCEAN AND CLIMATE, 2016 – Fact sheets, Second Edition. First tome here: www.ocean-climate.org With the support of: ocean-climate.org HOW DOES THE OCEAN WORK? OCEAN CIRCULATION..............................………….....………................................……………….P.4 THE OCEAN, AN INDICATOR OF CLIMATE CHANGE...............................................…………….P.6 SEA LEVEL: 300 YEARS OF OBSERVATION.....................……….................................…………….P.8 The definition of words starred with an asterisk can be found in the OCP little dictionnary section, on the last page of this document. 3 ocean-climate.org (1/2) OCEAN CIRCULATION Ocean circulation is a key regulator of climate by storing and transporting heat, carbon, nutrients and freshwater all around the world . Complex and diverse mechanisms interact with one another to produce this circulation and define its properties. Ocean circulation can be conceptually divided into two Oceanic circulation is very sensitive to the global freshwater main components: a fast and energetic wind-driven flux. This flux can be described as the difference between surface circulation, and a slow and large density-driven [Evaporation + Sea Ice Formation], which enhances circulation which dominates the deep sea. salinity, and [Precipitation + Runoff + Ice melt], which decreases salinity. Global warming will undoubtedly lead Wind-driven circulation is by far the most dynamic. to more ice melting in the poles and thus larger additions Blowing wind produces currents at the surface of the of freshwaters in the ocean at high latitudes.
    [Show full text]