A Man and His Vision for the Browser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Origins of the Underline As Visual Representation of the Hyperlink on the Web: a Case Study in Skeuomorphism
The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Romano, John J. 2016. The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797379 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism John J Romano A Thesis in the Field of Visual Arts for the Degree of Master of Liberal Arts in Extension Studies Harvard University November 2016 Abstract This thesis investigates the process by which the underline came to be used as the default signifier of hyperlinks on the World Wide Web. Created in 1990 by Tim Berners- Lee, the web quickly became the most used hypertext system in the world, and most browsers default to indicating hyperlinks with an underline. To answer the question of why the underline was chosen over competing demarcation techniques, the thesis applies the methods of history of technology and sociology of technology. Before the invention of the web, the underline–also known as the vinculum–was used in many contexts in writing systems; collecting entities together to form a whole and ascribing additional meaning to the content. -
Bibliography of Erik Wilde
dretbiblio dretbiblio Erik Wilde's Bibliography References [1] AFIPS Fall Joint Computer Conference, San Francisco, California, December 1968. [2] Seventeenth IEEE Conference on Computer Communication Networks, Washington, D.C., 1978. [3] ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, Cal- ifornia, March 1982. ACM Press. [4] First Conference on Computer-Supported Cooperative Work, 1986. [5] 1987 ACM Conference on Hypertext, Chapel Hill, North Carolina, November 1987. ACM Press. [6] 18th IEEE International Symposium on Fault-Tolerant Computing, Tokyo, Japan, 1988. IEEE Computer Society Press. [7] Conference on Computer-Supported Cooperative Work, Portland, Oregon, 1988. ACM Press. [8] Conference on Office Information Systems, Palo Alto, California, March 1988. [9] 1989 ACM Conference on Hypertext, Pittsburgh, Pennsylvania, November 1989. ACM Press. [10] UNIX | The Legend Evolves. Summer 1990 UKUUG Conference, Buntingford, UK, 1990. UKUUG. [11] Fourth ACM Symposium on User Interface Software and Technology, Hilton Head, South Carolina, November 1991. [12] GLOBECOM'91 Conference, Phoenix, Arizona, 1991. IEEE Computer Society Press. [13] IEEE INFOCOM '91 Conference on Computer Communications, Bal Harbour, Florida, 1991. IEEE Computer Society Press. [14] IEEE International Conference on Communications, Denver, Colorado, June 1991. [15] International Workshop on CSCW, Berlin, Germany, April 1991. [16] Third ACM Conference on Hypertext, San Antonio, Texas, December 1991. ACM Press. [17] 11th Symposium on Reliable Distributed Systems, Houston, Texas, 1992. IEEE Computer Society Press. [18] 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992. [19] Fourth ACM Conference on Hypertext, Milano, Italy, November 1992. ACM Press. [20] GLOBECOM'92 Conference, Orlando, Florida, December 1992. IEEE Computer Society Press. http://github.com/dret/biblio (August 29, 2018) 1 dretbiblio [21] IEEE INFOCOM '92 Conference on Computer Communications, Florence, Italy, 1992. -
Putting DDI in the Driver's Seat
Putting DDI in the driver’s seat Using Metadata to control data capture Samuel Spencer Australian Bureau of Statistics 2010: XForms and DDI January: XForms transform demonstrated within ABS June: XForms live-demo at IASSIST 2010 July: XForms research put on hold October: Commercial Census web-form tool investigated ABS DDI Data Collection Projects Internet Activity Survey Agricultural Census Questionnaire Design Tool (QDT) Internet Activity Survey Then: Survey used in DDI/XForms research eForms solution using ABS developed technology Custom tool creates XForms, rendered using Orbeon Internet Activity Survey Then: Survey used in DDI/XForms research eForms solution using ABS developed technology Custom tool creates XForms, rendered using Orbeon Now: Candidate for migration to custom IBM web-form solution Agricultural Census Now: Currently running on IBM web-form solution Forms displayed using AJAX which interprets proprietary hand-crafted XML Agricultural Census Now: Currently running on IBM web-form solution Forms displayed using AJAX which interprets proprietary hand-crafted XML Future: Research into DDI to XML transforms Questionnaire Design Tool Then: Online app for questionnaire metadata management Manages creation of Blaise and paper forms Uses ABS-built proprietary XML (QDT-ML) Now: Investigations into replacing QDT-ML with DDI Research into using QDT to create web-forms How can it made simpler? The XForms standard describes a structured format for capturing form questions, control structures and complex data structures needed for accurate information capture. However, to be useful it needs to be transformed, as its not able to be displayed natively in current generation browsers. The DDI 3.0 standard describes a structured format for capturing form questions, control structures and complex data structures needed for accurate information capture. -
Jørn Klungsøyr & Remi Andre Valvik (University of Bergen)
DESIGN www.openXdata.org COLLECT www.openxdata.org MANAGE DESIGN Video tutorials available at: doc.openXdata.org www.openXdata.org [email protected] Usable data for informed decision making Jørn Klungsøyr ([email protected]) Remi Andre Valvik ([email protected]) Usable data for informed decision making Security Ease of Use Costs Scalability Integration Topics of this presentation • Functionalities • Ease of use • Change management • Security • Integration • Costs • Scalability • Open source community • Demonstrations Functionalities Design – Collect - Manage Design • Design complex forms in graphical interface • Supported question types include e.g.: Text, Numbers, Date, Time, Single / Multi-select, Multimedia, Geo tagging • Define skip logic & answer validation criteria Collect – Mobile phones <30$ Structured SMS – manually coded forms – for any phone eCollect – Android/iPhone/Pads/Laptops eCollect is a mini version openXdata web interface. • Stores data locally for offline functionality. • Users use regular browsers. • Android packag for native features like camera. Collect – Android with ODK-collect / JR Users can use ODK-collect due to a OpenROSA / JavaROSA standards API plugin. Collect - Web • Web-based forms can be accessed through desktop computer, laptop, netbook, pads/tabs and smartphones with access to the internet and JavaScript support Manage • Own your data - host on your own servers • Define roles for different types of users (e.g. administrator, study manager, mobile data collector) • Export data to CSV or direct to a relational database • Manage data and forms using a standard web-browser Ease of use Case reports from MoTeCH implementations MoTeCH – summary from interviews • Initial assumption to use structured SMS by health workers to create and update medical records using their own phones using "free" SMS. -
Exposing Native Device Apis to Web Apps
Exposing Native Device APIs to Web Apps Arno Puder Nikolai Tillmann Michał Moskal San Francisco State University Microsoft Research Microsoft Research Computer Science One Microsoft Way One Microsoft Way Department Redmond, WA 98052 Redmond, WA 98052 1600 Holloway Avenue [email protected] [email protected] San Francisco, CA 94132 [email protected] ABSTRACT language of the respective platform, HTML5 technologies A recent survey among developers revealed that half plan to gain traction for the development of mobile apps [12, 4]. use HTML5 for mobile apps in the future. An earlier survey A recent survey among developers revealed that more than showed that access to native device APIs is the biggest short- half (52%) are using HTML5 technologies for developing mo- coming of HTML5 compared to native apps. Several dif- bile apps [22]. HTML5 technologies enable the reuse of the ferent approaches exist to overcome this limitation, among presentation layer and high-level logic across multiple plat- them cross-compilation and packaging the HTML5 as a na- forms. However, an earlier survey [21] on cross-platform tive app. In this paper we propose a novel approach by using developer tools revealed that access to native device APIs a device-local service that runs on the smartphone and that is the biggest shortcoming of HTML5 compared to native acts as a gateway to the native layer for HTML5-based apps apps. Several different approaches exist to overcome this running inside the standard browser. WebSockets are used limitation. Besides the development of native apps for spe- for bi-directional communication between the web apps and cific platforms, popular approaches include cross-platform the device-local service. -
Interactive Topographic Web Mapping Using Scalable Vector Graphics
University of Nebraska at Omaha DigitalCommons@UNO Student Work 12-1-2003 Interactive topographic web mapping using scalable vector graphics Peter Pavlicko University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Pavlicko, Peter, "Interactive topographic web mapping using scalable vector graphics" (2003). Student Work. 589. https://digitalcommons.unomaha.edu/studentwork/589 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. INTERACTIVE TOPOGRAPHIC WEB MAPPING USING SCALABLE VECTOR GRAPHICS A Thesis Presented to the Department of Geography-Geology and the Faculty of the Graduate College University of Nebraska in Partial Fulfillment of the Requirements for the Degree Master of Arts University of Nebraska at Omaha by Peter Pavlicko December, 2003 UMI Number: EP73227 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation WWisMng UMI EP73227 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ACCEPTANCE Acceptance for the faculty of the Graduate College, University of Nebraska, in Partial fulfillment of the requirements for the degree Master of Arts University of Nebraska Omaha Committee ----------- Uf.A [JL___ Chairperson. -
Microsoft, Adobe & W3C to Shake up Electronic Forms Market
Vol. 11, No, 8 October 2003 www.gilbane.com Published by: Bluebill Advisors, Inc. 763 Massachusetts Ave. Cambridge, MA 02139 USA (617) 497.9443 Fax (617) 497.5256 www.bluebilladvisors.com Editor: Frank Gilbane [email protected] (617) 497.9443 Content Technology Works! Editors Emeriti: Tim Bray [email protected] (604) 708.9592 MICROSOFT, ADOBE & XFORMS TO David Weinberger [email protected] (617) 738.8323 SHAKE UP ELECTRONIC FORMS MARKET Senior Editors: Sebastian Holst [email protected] Our title this month reads like a news headline on purpose. There are a number Bill Trippe [email protected] of new, and upcoming, developments in electronic forms (eForms) technology (617) 497.9443 that should be grabbing your attention. Some of these are of major importance Recent Contributors: on their own, but taken together, they signal the start of a major improvement Kathleen Reidy in businesses’ ability to easily collect, integrate, and process information. [email protected] Bob Doyle [email protected] “Electronic forms” have been around for years, but the term refers to a wide variety of technologies – from scanned image applications to HTML forms – Production Assistant: Sarah G. Dionne that are not at all similar and far from equal in their ability to accelerate and [email protected] smooth business processes. What eForm technology has shared is: a level of (617) 497.9443 difficulty that kept it out of the reach of office professionals who were com- Subscriptions: fortable enough with documents and spreadsheets, but scared-off by forms, [email protected] (617) 497.9443 and proprietary data formats that made information integration costly and complex. -
Jump Start Html5 by Tiffany B
Summary of Contents Preface . xix 1. Basics: What is HTML5? . 1 2. Basics: The Anatomy of HTML5 . 7 3. Basics: Structuring Documents . 17 4. Basics: HTML5 Forms . 33 5. Basics: Multimedia, Audio and Video . 51 6. Multimedia: Preparing Your Media . 59 7. Multimedia: Using Native HTML5 Audio . 69 8. Multimedia: Using Native HTML5 Video . 77 9. Multimedia: The source Element . 87 10. Mutimedia: The track Element . 93 11. Multimedia: Scripting Media Players . 111 12. Canvas & SVG: An Introduction to Canvas . 123 13. Canvas & SVG: Canvas Basics . 127 14. Canvas & SVG: Handling Non-supporting Browsers . 137 15. Canvas & SVG: Canvas Gradients . 139 16. Canvas & SVG: Canvas Images and Videos . 145 17. Canvas & SVG: An Introduction to SVG . 149 18. Canvas & SVG: Using SVG . 159 19. Canvas & SVG: SVG Bézier Curves . 163 20. Canvas & SVG: SVG Filter Effects . 169 21. Canvas & SVG: Canvas or SVG? . 175 22. Offline Apps: Detecting When the User Is Connected . 179 23. Offline Apps: Application Cache . 185 24. Offline Apps: Web Storage . 197 25. Offline Apps: Storing Data With Client-side Databases . 215 26. APIs: Overview . 233 27. APIs: Web Workers . 239 28. APIs: The Geolocation API . 249 29. APIs: Server Sent Events . 255 30. APIs: The WebSocket API . 263 31. APIs: The Cross-document Messaging API . 269 JUMP START HTML5 BY TIFFANY B. BROWN KERRY BUTTERS SANDEEP PANDA iv Jump Start HTML5 by Tiffany B. Brown, Kerry Butters, and Sandeep Panda Copyright © 2014 SitePoint Pty. Ltd. Product Manager: Simon Mackie English Editor: Paul Fitzpatrick Technical Editor: Craig Buckler Cover Designer: Alex Walker Notice of Rights All rights reserved. -
A Declarative Approach Based on Xforms
Helsinki University of Technology Publications in Telecommunications Software and Multimedia Teknillisen korkeakoulun tietoliikenneohjelmistojen ja multimedian julkaisuja Espoo 2006 TML-A16 WEB USER INTERACTION - A DECLARATIVE APPROACH BASED ON XFORMS Mikko Honkala Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Computer Science and Engineering, for pub- lic examination and debate in Auditorium T2 at Helsinki University of Technology (Espoo, Finland) on the 12th of January, 2007, at 12 noon. Helsinki University of Technology Department of Computer Science and Engineering Telecommunications Software and Multimedia Laboratory Teknillinen korkeakoulu Tietotekniikan osasto Tietoliikenneohjelmistojen ja multimedian laboratorio Distribution: Helsinki University of Technology Telecommunications Software and Multimedia Laboratory P.O.Box 5400 FIN-02015 HUT Tel. +358-9-451 2870 Fax. +358-9-451 5014 c Mikko Honkala ISBN-13 978-951-22-8565-5 ISBN-10 951-22-8565-7 ISSN 1456-7911 ISBN-13 978-951-22-8566-2 (PDF) ISBN-10 951-22-8566-5 (PDF) ISSN 1455 9722 (PDF) URL: http://lib.tkk.fi/Diss/ Otamedia Oy Espoo 2006 ABSTRACT Author Mikko Honkala Title Web User Interaction - a Declarative Approach Based on XForms Published Doctoral thesis, Helsinki University of Technology, 2006 Keywords XML, User Interfaces, User Interaction, XForms, UIDL, XHTML This thesis studies next-generation web user interaction definition languages, as well as browser software architectures. The motivation comes from new end-user requirements for web applications: demand for higher interaction, adaptation for mobile and multimodal usage, and rich multimedia content. At the same time, there is a requirement for non- programmers to be able to author, customize, and maintain web user interfaces. -
Introduction to Websphere MQ
Introduction to WebSphere MQ Chris J Andrews IBM Monday 12th August, 2013 Session 13787 2 Agenda ● Introduction – why use messaging? ● Fundamentals of WebSphere MQ ● Using the WebSphere MQ API ● Example Architectures ● Other Key Features ● Related Products ● Summary 3 Why use messaging...? From the simplest pairs of applications… Public Cloud Sensors and Devices Mainframe Workstations and Terminals Data Center Mobile ...to the most complex business processes. Messaging simplifies the challenges of connecting systems: • Extended Reach – Connecting anywhere to anywhere • Reliability – Assured delivery of data, securly and performant • Flexibility – Ease of application change • Scalability – Incremental growth of applications and capacity 4 Extended Reach - Universal Connectivity Payroll have a HR calculate employees program to run to performance bonus based add a one-time on their annual review score payment to an Sales have a employee’s pay program to calculate packet annual review scores Engineers monitor Research have a problem program to reports calculate annual review scores Sensors monitor stock temperature and ambient humidity Tills report sales of goods These applications run on different hardware and OS and be written in different programming languages. We want to connect the applications together in a time and cost efficient manner. 5 Reliability As systems become more tightly coupled, their reliance on each other increases. The cost of failure of a process increases. • The risk of failure can be reduced by: – Removing dependencies – Introducing redundancy – Assuring data delivery – Providing robust security • . s n o i t c e (n-1)n n n Maximum number o 2 C of connections . m goes up with the u n square of the m u number of systems m i x a Number of Systems M 6 Flexibility ● A process was originally designed for one purpose.. -
Survey Research Using Emerging Technologies
Survey Research using Emerging Technologies: Considerations for Design, Data Collection, Sampling and Recruitment for Smartphone and Tablet Based Surveys JOS Conference June 10 and 11, 2015 Trent D. Buskirk, Ph.D. 1 JOS AAPOR30th Anniversary Short Course, Conference 2014 Short Course: Survey Research Using Emerging Technologies Trent D. Buskirk, Ph.D. 6/10/15 Instructor: Trent D. Buskirk, Ph.D. Current Position: Vice President of Statistics and Methodology @ Marketing Systems Group Lives in: Saint Louis, MO Focus on: Use of new technologies for data collection Mobile Phone Sampling Dual Frame Designs and Weighting Mobile Analytics and Paradata Collection and Analysis Addicted to: Playing Prince to my little Princesses APPS and iPhones SAS, SUDAAN and R http://www.m-s-g.com/Web/Index.aspx Tennis Boost 101.9 (www.boost1019.com) 2 JOS 30th Anniversary Conference Short Course: Survey Research Using Emerging Technologies Trent D. Buskirk, Ph.D. 6/10/15 Acknowledgements and Thanks! Colleagues at MSG for their assistance and support and for providing thumb drives for participants My Family for their patience as I persisted through course prep JOS Conference Organizing Committee for the Invitation to Present 3 3 JOS 30th Anniversary Conference Short Course: Survey Research Using Emerging Technologies Trent D. Buskirk, Ph.D. 6/10/15 Day Agenda & Goals 1 Background: Nuts and Bolts of our new Mobile Universe Understanding the landscape that is before us to set the stage New types of data available – burden, privacy and availability Framework for Data Collection on Mobile Devices Active versus Passive data collection methods Developing Emerging Best Practices: A blend of old and new Types of Mobile Surveys (and what we know now from the Literature) Free Resources for Mobile Web Surveys Recommendations for Internet/App based survey solutions (Top 14 EBPs) 4 JOS 30th Anniversary Conference Short Course: Survey Research Using Emerging Technologies Trent D. -
SMIL and SVG in Teaching
SMIL and SVG in teaching Horst Eidenberger* Vienna University of Technology, Institute of Software Technology and Interactive Systems, Favoritenstrasse 9-11, 1040 Vienna, Austria ABSTRACT This paper describes how the web standards Synchronized Multimedia Integration Language (SMIL) and Scalable Vector Graphics (SVG) are used in teaching at the Vienna University of Technology. SMIL and SVG are used in courses on multimedia authoring. Didactically, the goal is to teach students how to use media objects and timing concepts to build interactive media applications. Additionally, SMIL is applied to generate multimedia content from a database using a content management system. The paper gives background information on the SMIL and SVG standards and sketches how teaching multimedia is organised at the Vienna University of Technology. Courses from the summer term 2003 are described and illustrated in two case studies. General design problems of SMIL-based presentations are modelled as patterns. Additionally, suggestions for improvement in the standards are given and shortcomings of existing user agents are summarised. Our conclusion is that SMIL and SVG are very well suited for teaching multimedia. Currently, the main problem is that all existing SMIL players lack some properties desired for teaching applications (stability, correctness, etc.). Keywords: Multimedia authoring, Synchronized Multimedia Integration Language, SMIL, Scalable Vector Graphics, SVG, content management, CMS, education, case study, personalisation, CC/PP 1. INTRODUCTION In recent years universities all over the world and, especially, in the German-speaking countries, that offer computer engineering studies have established courses on multimedia and temporal media processing. So at the Vienna University of Technology. Since the year 2000 it offers a very popular media informatics curriculum (about 350 beginners per year).