The Symmetric Group

Total Page:16

File Type:pdf, Size:1020Kb

The Symmetric Group Appendix A The Symmetric Group Il faut, lorsque vous étudiez les propriétés du cercle, de la sphère et des sections coniques, que vous vous sentiez frères par l’esprit d’Euclide et d’Archimède et que, comme eux vous voyiez avec ravissement se développer le monde idéal des figures et des proportions dont les harmonies enchanteresses se retrouvent ensuite dans le monde réel. Jean Jaurès, Toulouse (1914) The purpose of this appendix is essentially to fix the notations and to recall some elementary facts about the representations of the symmetric group that are needed in this book. The main result is the Schur Lemma which says that in characteristic zero any homogeneous polynomial functor is completely determined by a representation of the symmetric group. For more details the reader can consult any book on the subject, for instance [Mac95, Sag01]. A.1 Action of Groups A.1.1 Group Algebra, Representation The group algebra K[G] of a group G over a commutative algebra K is the free module with basis the elements of G. The product is induced by the product in the group: aigi aj gj = (aiaj )(gigj ). i j i,j The tensor product of modules over K[G] is often denoted by −⊗G − instead of −⊗K[G] −. J.-L. Loday, B. Vallette, Algebraic Operads, 567 Grundlehren der mathematischen Wissenschaften 346, DOI 10.1007/978-3-642-30362-3, © Springer-Verlag Berlin Heidelberg 2012 568 A The Symmetric Group A representation of the group G is a left module M over K[G]. The action of g ∈ G on m ∈ M is denoted either by g · m or by gm if there is no ambiguity. The algebra K[G] is called the regular representation of G when viewed as a left module over itself. A.1.2 Invariants and Coinvariants To any representation M of G is associated its space of invariants MG and its space of coinvariants MG defined as follows: MG := {m ∈ M | g · m = m, ∀g ∈ G}, MG := M/{g · m − m | g ∈ G, m ∈ M}. G The notation follows the usual convention since M is contravariant in G and MG is covariant in G. There is a natural map from invariants to coinvariants: G M M MG. Whenever G is finite and #G is invertible in the ground ring, then this map is an [ ]→ 1 · [ ] isomorphism. Indeed an inverse is given by m #G g∈G g m, where m is the class of m ∈ M in MG. A.1.3 Restriction and Induction Let H be a subgroup of G.Therestriction of a representation of G to H is simply the same space but viewed as a module over H .IfM is a right H -module, then the induced representation is the following representation of G: G := ⊗ K[ ] IndH M M H G , where K[G] is viewed as a left module over K[H ] through the multiplication in K[ ] G ⊗ G . Observe that the space IndH M can be identified with the space M K K[H \G]. A.1.4 Equivariance Let M and N be two (left) G-modules. A linear map f : M → N is said to be G- equivariant,orsimplyequivariant, if, for any g ∈ G, m ∈ M one has f(g· m) = g ·f(m). In other words f is a morphism in the category of G-modules. The space of A.2 Representations of the Symmetric Group Sn 569 G-equivariant maps is denoted by HomG(M, N) since it is made of the morphisms which are invariant for the action of G by (g · f )(m) := g−1 · f(g· m).IfL is another G-module, one has a natural isomorphism G ∼ Hom M,Hom(N, L) = Hom(M ⊗G N,L). A.2 Representations of the Symmetric Group Sn A.2.1 The Symmetric Group Sn By definition the symmetric group Sn is the group of automorphisms of the set {1, 2,...,n}. Its elements are called permutations. The image of the permutation σ is denoted either by (σ (1),...,σ(n))or, sometimes, by [σ(1)...σ(n)]. The neutral element is denoted either by 1 or 1n or even idn. Let us denote by si the permutation which exchanges the elements i and i + 1 and leaves the others fixed. It is called a transposition and sometimes denoted by (i i + 1) (cycle notation). The transposi- tions generate Sn. In fact Sn is presented by the set of generators {s1,...,sn−1} and the set of relations ⎧ ⎨ 2 = = − si 1, for i 1,...,n 1, = | − |≥ ⎩sisj sj si, for i j 2, sisi+1si = si+1sisi+1, for i = 1,...,n− 2. This is called the Coxeter presentation of the symmetric group. In general there is no preferred way of writing a permutation in terms of the Coxeter generators. However, for any permutation σ there is a minimum number of generators in such a writing. It is called the length of the permutation and is denoted by (σ ).For instance we have ([321]) = 3 since [321]=s1s2s1. A.2.2 Irreducible Representations A representation of Sn is said to be irreducible if it is not isomorphic to the direct sum of two nonzero representations. It can be shown that the isomorphism classes of representations of the symmetric group Sn are in one-to-one correspondence with = the partitions of the integern, that is the sequence of integers λ (λ1,...,λr ) such ≥···≥ ≥ = that λ1 λr 1 and i λi n. It is often helpful to represent such a sequence by a Young diagram. For instance the Young diagram of (4, 2, 1) is 570 A The Symmetric Group The irreducible representation associated to λ is denoted by Sλ and called the Specht module. Any finite dimensional representation M of Sn is isomorphic to the sum of its isotypic components Mλ, one for each irreducible representation: M = Mλ λ where Mλ is isomorphic to the sum of a finite number of copies of Sλ. This number is called the multiplicity of Sλ in M. For instance the multiplicity of Sλ in the regular representation is equal to the dimension of Sλ. From this result follows the formula: dim Sλ 2 = n!. λ EXAMPLES. n = 1. The unique irreducible representation of S1 is one-dimensional. n = 2. There are two partitions of 2: λ = (2) and λ = (1, 1): The representation S2 is the one-dimensional trivial representation, so S2 = Kx and [21]·x = x. The representation S1,1 is the one-dimensional signature represen- tation, so S1,1 = Kx and [21]·x =−x. n = 3. There are three partitions of 3: λ = (3), λ = (2, 1) and λ = (1, 1, 1): The associated representations are the trivial representation for λ = (3) and the signature representation for λ = (1, 1, 1).Forλ = (2, 1) it is the hook representation which can be described as follows. Consider the three-dimensional space Kx1 ⊕ Kx2 ⊕ Kx3 on which S3 acts by permutation of the indices. The kernel of the linear map Kx1 ⊕Kx2 ⊕Kx3 → K,xi → 1 is clearly invariant under the action of S3.This is the two-dimensional hook representation S2,1. Observe that the three elements x1 − x2,x2 − x3,x3 − x1 lie in the kernel, but are not linearly independent since 2,1 their sum is zero. Any two of them form a basis of S . The vector x1 + x2 + x3 3 is invariant under the action of S3, hence it is isomorphic to S and there is an isomorphism ∼ 2,1 3 Kx1 ⊕ Kx2 ⊕ Kx3 = S ⊕ S . A.2 Representations of the Symmetric Group Sn 571 n = 4. There are five partitions of 4: λ = (4), λ = (3, 1), λ = (2, 2), λ = (2, 1, 1) and λ = (1, 1, 1, 1): The associated irreducible representations are as follows: S4 is the one-dimensional trivial representation, 3,1 ⊕i=4K → K → S is the hook representation, that is the kernel of i=1 xi ,xi 1, S2,2 is described below, 2,1,1 ⊕i=4K → K → S S is the kernel of i=1 xi ,xi 1, where we let 4 act on the four- dimensional space by permutation of the indices and multiplication by the signa- ture, S1,1,1,1 is the one-dimensional signature representation. In the set of four elements {a,b,c,d} we consider the non-ordered subsets of non-ordered pairs. So we have only three elements: {a,b}, {c,d} ; {a,c}, {b,d} ; {a,d}, {b,c} . We let S4 act on the ordered set {a,b,c,d} as usual, hence the three-dimensional vector space K3 spanned by the aforementioned subsets of pairs is a representation 3 of S4. Consider the map K → K which sends each generator to 1. The kernel is a 2,2 two-dimensional representation of S4.ThisisS . A.2.3 The Schur Lemma The following result, called the Schur Lemma, says that, for an infinite field, any → ⊗ ⊗n homogeneous polynomial functor of degree n is of the form V M(n) Sn V for some Sn-module M(n). It justifies the choice of S-modules to define an operad in characteristic zero. Lemma A.2.1. If K is an infinite field, then any natural transformation θ : V ⊗n → ⊗n V is of the form θn · (v1,...,vn) for some θn ∈ K[Sn]. Proof. Let GL(V ) be the group of isomorphisms of the space V (general linear group). Let α ∈ GL(V ) act on End(V ) by conjugation: α · f := αf α −1. 572 A The Symmetric Group We let GL(V ) act on End(V ⊗n) diagonally, and we denote by End(V ⊗n)GL(V ) the space of invariants.
Recommended publications
  • Stable Homology of Automorphism Groups of Free Groups
    Annals of Mathematics 173 (2011), 705{768 doi: 10.4007/annals.2011.173.2.3 Stable homology of automorphism groups of free groups By Søren Galatius Abstract Homology of the group Aut(Fn) of automorphisms of a free group on n generators is known to be independent of n in a certain stable range. Using tools from homotopy theory, we prove that in this range it agrees with homology of symmetric groups. In particular we confirm the conjecture that stable rational homology of Aut(Fn) vanishes. Contents 1. Introduction 706 1.1. Results 706 1.2. Outline of proof 708 1.3. Acknowledgements 710 2. The sheaf of graphs 710 2.1. Definitions 710 2.2. Point-set topological properties 714 3. Homotopy types of graph spaces 718 3.1. Graphs in compact sets 718 3.2. Spaces of graph embeddings 721 3.3. Abstract graphs 727 3.4. BOut(Fn) and the graph spectrum 730 4. The graph cobordism category 733 4.1. Poset model of the graph cobordism category 735 4.2. The positive boundary subcategory 743 5. Homotopy type of the graph spectrum 750 5.1. A pushout diagram 751 5.2. A homotopy colimit decomposition 755 5.3. Hatcher's splitting 762 6. Remarks on manifolds 764 References 766 S. Galatius was supported by NSF grants DMS-0505740 and DMS-0805843, and the Clay Mathematics Institute. 705 706 SØREN GALATIUS 1. Introduction 1.1. Results. Let F = x ; : : : ; x be the free group on n generators n h 1 ni and let Aut(Fn) be its automorphism group.
    [Show full text]
  • Functor Homology and Operadic Homology
    FUNCTOR HOMOLOGY AND OPERADIC HOMOLOGY BENOIT FRESSE Abstract. The purpose of these notes is to define an equivalence between the natural homology theories associated to operads and the homology of functors over certain categories of operators (PROPs) related to operads. Introduction The aim of these notes is to prove that the natural homology theory associated to an operad is equivalent the homology of a category of functors over a certain category of operators associated to our operad. Recall that an operad P in a symmetric monoidal category C basically consists of a sequence of objects P(n) 2 C, n 2 N, of which elements p 2 P(n) (whenever the notion of an element makes sense) intuitively represent operations on n inputs and with 1 output: p A⊗n = A ⊗ · · · ⊗ A −! A; | {z } n for any n 2 N. In short, an operad is defined axiomatically as such a sequence of objects P = fP(n); n 2 Ng equipped with an action of the symmetric group Σn on the term P(n), for each n 2 N, together with composition products which are shaped on composition schemes associate with such operations. The notion of an operad is mostly used to define a category of algebras, which basically consists of objects A 2 C on which the operations of our operad p 2 P(n) act. We use the term of a P-algebra, and the notation P C, to refer to this category of algebras associated to any given operad P. Recall simply that the usual category of associative algebras in a category of modules over a ring k, the category of (associative and) commutative algebras, and the category of Lie algebras, are associated to operads, which we respectively denote by P = As; Com; Lie.
    [Show full text]
  • Arxiv:2010.00369V6 [Math.KT] 29 Jun 2021 H Uco Faeinzto Se[8 H II, Derived Simplicial Ch
    ON HOMOLOGY OF LIE ALGEBRAS OVER COMMUTATIVE RINGS SERGEI O. IVANOV, FEDOR PAVUTNITSKIY, VLADISLAV ROMANOVSKII, AND ANATOLII ZAIKOVSKII Abstract. We study five different types of the homology of a Lie algebra over a commutative ring which are naturally isomorphic over fields. We show that they are not isomorphic over commutative rings, even over Z, and study connections between them. In particular, we show that they are naturally isomorphic in the case of a Lie algebra which is flat as a module. As an auxiliary result we prove that the Koszul complex of a module M over a principal ideal domain that connects the exterior and the symmetric powers n n−1 n−1 n 0 → Λ M → M ⊗ Λ M → ⋅⋅⋅ → S M ⊗ M → S M → 0 is purely acyclic. Introduction There are several equivalent purely algebraic definitions of group homology of a group G. Namely one can define it using Tor functor over the group ring; or the relative Tor functor; or in the simplicial manner, as a simplicial derived functor of the functor of abelianization (see [28, Ch. II, §5]). For Lie algebras over a field we can also define homology in several equivalent ways, including the homology of the Chevalley–Eilenberg complex. Moreover, for a Lie algebra g over a commutative ring k, which is free as a k-module we also have several equivalent definitions (see [7, Ch. XIII]). However, in general, even in the case k = Z, these definitions are not equivalent. For example, if we consider g = Z 2 as an abelian Lie algebra over Z, the / Ug Z Z higher homology of the Chevalley–Eilenberg complex vanishes but Tor2n+1 , = Z 2 for any n ≥ 0.
    [Show full text]
  • Homotopy Algebra of Open–Closed Strings 1 Introduction
    eometry & opology onographs 13 (2008) 229–259 229 G T M arXiv version: fonts, pagination and layout may vary from GTM published version Homotopy algebra of open–closed strings HIROSHIGE KAJIURA JIM STASHEFF This paper is a survey of our previous works on open–closed homotopy algebras, together with geometrical background, especially in terms of compactifications of configuration spaces (one of Fred’s specialities) of Riemann surfaces, structures on loop spaces, etc. We newly present Merkulov’s geometric A1 –structure [49] as a special example of an OCHA. We also recall the relation of open–closed homotopy algebras to various aspects of deformation theory. 18G55; 81T18 Dedicated to Fred Cohen in honor of his 60th birthday 1 Introduction Open–closed homotopy algebras (OCHAs) (Kajiura and Stasheff [37]) are inspired by Zwiebach’s open–closed string field theory [62], which is presented in terms of decompositions of moduli spaces of the corresponding Riemann surfaces. The Riemann surfaces are (respectively) spheres with (closed string) punctures and disks with (open string) punctures on the boundaries. That is, from the viewpoint of conformal field theory, classical closed string field theory is related to the conformal plane C with punctures and classical open string field theory is related to the upper half plane H with punctures on the boundary. Thus classical closed string field theory has an L1 –structure (Zwiebach [61], Stasheff [57], Kimura, Stasheff and Voronov [40]) and classical open string field theory has an A1 –structure (Gaberdiel and Zwiebach [13], Zwiebach [62], Nakatsu [51] and Kajiura [35]). The algebraic structure, we call it an OCHA, that the classical open–closed string field theory has is similarly interesting since it is related to the upper half plane H with punctures both in the bulk and on the boundary.
    [Show full text]
  • Homological Algebra
    Homological Algebra Department of Mathematics The University of Auckland Acknowledgements 2 Contents 1 Introduction 4 2 Rings and Modules 5 2.1 Rings . 5 2.2 Modules . 6 3 Homology and Cohomology 16 3.1 Exact Sequences . 16 3.2 Exact Functors . 19 3.3 Projective and Injective Modules . 21 3.4 Chain Complexes and Homologies . 21 3.5 Cochains and Cohomology . 24 3.6 Recap of Chain Complexes and Maps . 24 3.7 Homotopy of Chain Complexes . 25 3.8 Resolutions . 26 3.9 Double complexes, and the Ext and Tor functors . 27 3.10 The K¨unneth Formula . 34 3.11 Group cohomology . 38 3.12 Simplicial cohomology . 38 4 Abelian Categories and Derived Functors 39 4.1 Categories and functors . 39 4.2 Abelian categories . 39 4.3 Derived functors . 41 4.4 Sheaf cohomology . 41 4.5 Derived categories . 41 5 Spectral Sequences 42 5.1 Motivation . 42 5.2 Serre spectral sequence . 42 5.3 Grothendieck spectral sequence . 42 3 Chapter 1 Introduction Bo's take This is a short exact sequence (SES): 0 ! A ! B ! C ! 0 : To see why this plays a central role in algebra, suppose that A and C are subspaces of B, then, by going through the definitions of a SES in 3.1, one can notice that this line arrows encodes information about the decomposition of B into A its orthogonal compliment C. If B is a module and A and C are now submodules of B, we would like to be able to describe how A and C can \span" B in a similar way.
    [Show full text]
  • Annual Reports 2002
    CENTRE DE RECERCA MATEMÀTICA REPORT OF ACTIVITIES 2002 Apartat 50 E-08193 Bellaterra [email protected] Graphic design: Teresa Sabater Printing: Limpergraf S.L. Legal Deposit: B. 9505-2003 PRESENTATION This year 2002 one must point out two events that have taken place in the Centre de Recerca Matemàtica, that should have immediate and long term consequences: the chan- ge in the legal status of the CRM and the increase of adminis- trative and secretarial personnel. The III Research Plan for Catalonia 2001-2004 con- templates the assignment of the title Centres Homologats de Recerca (Accredited Research Centres), to those centres with proved research excellence in subjects considered of strategic importance. Accordingly, the Catalan Government approved last month of July the constitution of the Consortium Centre de Recerca Matemàtica, with its own legal status, formed by the Institut d’Estudis Catalans (institution to which the CRM belonged since its creation in 1984) and the Catalan Govern- ment, which takes part in the Consortium through its Depart- ment of Universities, Research and the Information Society. With this new legal structure, the Catalan Government acquires a stronger commitment with the CRM. On one hand by setting the main guidelines of the CRM, and on the other hand by ensuring an appropriate and stable financial support that will make possible to carry out the activities planned for the quadrennial period 2003-2006. Among the innovative tools of this new stage, at the 18th anniversary of the creation of the CRM, one must point out the annual call for Research Programmes among the Cata- lan mathematical community.
    [Show full text]
  • View This Volume's Front and Back Matter
    CONTEMPORARY MATHEMATICS 227 Higher Homotopy Structures in Topology and Mathematical Physics Proceedings of an International Conference June 13-15, 1996 at Vassar College, Poughkeepsie, New York, to honor the sixtieth birthday of Jim Stasheff John McCleary Editor http://dx.doi.org/10.1090/conm/227 Selected Titles in This Series 227 John McCleary, Editor, Higher homotopy structures in topology and mathematical physics, 1999 226 Luis A. Caffarelli and Mario Milman, Editors, Monge Ampere equation: Applications to geometry and optimization, 1999 225 Ronald C. Mullin and Gary L. Mullen, Editors, Finite fields: Theory, applications, and algorithms, 1999 224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent progress in algebra, 1999 223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances in discrete and computational geometry, 1999 222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in Pohang, 1999 221 J. Robert Dorroh, Gisele Ruiz Goldstein, Jerome A. Goldstein, and Michael Mudi Tom, Editors, Applied analysis, 1999 220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998 219 Marc Henneaux, Joseph Krasil'shchik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998 218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998 217 Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential equations and mathematical physics, 1998 216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998 215 M. G. Nerurkar, D. P. Dokken, and D. B. Ellis, Editors, Topological dynamics and applications, 1998 214 Lewis A.
    [Show full text]
  • Math 99R - Representations and Cohomology of Groups
    Math 99r - Representations and Cohomology of Groups Taught by Meng Geuo Notes by Dongryul Kim Spring 2017 This course was taught by Meng Guo, a graduate student. The lectures were given at TF 4:30-6 in Science Center 232. There were no textbooks, and there were 7 undergraduates enrolled in our section. The grading was solely based on the final presentation, with no course assistants. Contents 1 February 1, 2017 3 1.1 Chain complexes . .3 1.2 Projective resolution . .4 2 February 8, 2017 6 2.1 Left derived functors . .6 2.2 Injective resolutions and right derived functors . .8 3 February 14, 2017 10 3.1 Long exact sequence . 10 4 February 17, 2017 13 4.1 Ext as extensions . 13 4.2 Low-dimensional group cohomology . 14 5 February 21, 2017 15 5.1 Computing the first cohomology and homology . 15 6 February 24, 2017 17 6.1 Bar resolution . 17 6.2 Computing cohomology using the bar resolution . 18 7 February 28, 2017 19 7.1 Computing the second cohomology . 19 1 Last Update: August 27, 2018 8 March 3, 2017 21 8.1 Group action on a CW-complex . 21 9 March 7, 2017 22 9.1 Induction and restriction . 22 10 March 21, 2017 24 10.1 Double coset formula . 24 10.2 Transfer maps . 25 11 March 24, 2017 27 11.1 Another way of defining transfer maps . 27 12 March 28, 2017 29 12.1 Spectral sequence from a filtration . 29 13 March 31, 2017 31 13.1 Spectral sequence from an exact couple .
    [Show full text]
  • Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021For Download from IP 128.151.13.58
    Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58. License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms MEMOIRS of the American Mathematical Society This journal is designed particularly for long research papers (and groups of cognate papers) in pure and applied mathematics. It includes, in general, longer papers than those in the TRANSACTIONS. Mathematical papers intended for publication in the Memoirs should be addressed to one of the editors. Subjects, and the editors associated with them, follow: Real analysis (excluding harmonic analysis) and applied mathematics to ROBERT T. SEELEY, Department of Mathematics, University of Massachusetts-Boston, Harbor Campus, Boston, MA 02125. Harmonic and complex analysis to R. O. WELLS, Jr., School of Mathematics, Institute for Advanced Study, Princeton, N. J. 08540 Abstract analysis to W.A.J. LUXEMBURG, Department of Mathematics 253 -37, California Institute of Technology, Pasadena, CA 91125. Algebra and number theory (excluding universal algebras) to MICHAEL ARTIN, Department of Mathematics, Room 2—239, Massachusetts Institute of Technology, Cambridge, MA 02139. Logic, foundations, universal algebras and combinatorics to SOLOMON FEFERMAN, Department of Mathematics, Stanford University, Stanford, CA 94305. Topology to JAMES D. STASHEFF, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27514. Global analysis and differential geometry to ALAN D. WEINSTEIN, Department of Mathematics, California Institute of Technology, Pasadena, CA 91125. Probability and statistics to STEVEN OREY, School of Mathematics, University of Minnesota, Minneapolis, MN 55455. All other communications to the editors should be addressed to the Managing Editor, JAMES D.
    [Show full text]
  • Hossein Abbaspour William Abikoff Mohammed Abouzaid MIT Joe
    Geometric and Algebraic Structures in Mathematics Participants, page 1 Hossein Abbaspour University of Nantes, France [email protected] William Abikoff University of Connecticut [email protected] Mohammed Abouzaid MIT [email protected] Joe Adams Stony Brook University [email protected] Seyed Ali Aleyasin Stony Brook [email protected] Michael Anderson Stony Brook [email protected] Stergios Antonakoudis Harvard University [email protected] Nikos Apostolakis Bronx Community College, CUNY [email protected] Alexander Atwood SUNY SCCC [email protected] Chris Atwood Nassau Community College [email protected] Anant Atyam Stony Brook [email protected] Artur Avila CNRS/IMPA [email protected] David Ayala Harvard University [email protected] Benjamin Balsam Stony Brook University [email protected] Claude Bardos University of Paris [email protected] Ara Basmajian Graduate Center and Hunter College, [email protected] CUNY Somnath Basu Stony Brook University [email protected] Jason Behrstock Lehman College, CUNY [email protected] Charlie Beil SCGP, Stony Brook [email protected] Olivia Bellier University of Nice [email protected] James Benn University of Notre Dame [email protected] Daniel Berwick-Evans UC Berkeley [email protected] Renato Bettiol University of Notre Dame [email protected] Chris Bishop Stony Brook University [email protected] Jonathan Bloom Columbia University [email protected] Mike Bonanno SUNY SCCC [email protected] Araceli
    [Show full text]
  • Homology Equivalences Inducing an Epimorphism on the Fundamental Group and Quillen’S Plus Construction
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 3, Pages 891{898 S 0002-9939(03)07221-6 Article electronically published on October 21, 2003 HOMOLOGY EQUIVALENCES INDUCING AN EPIMORPHISM ON THE FUNDAMENTAL GROUP AND QUILLEN'S PLUS CONSTRUCTION JOSEL.RODR´ ´IGUEZ AND DIRK SCEVENELS (Communicated by Paul Goerss) Abstract. Quillen's plus construction is a topological construction that kills the maximal perfect subgroup of the fundamental group of a space without changing the integral homology of the space. In this paper we show that there is a topological construction that, while leaving the integral homology of a space unaltered, kills even the intersection of the transfinite lower central series of its fundamental group. Moreover, we show that this is the maximal subgroup that can be factored out of the fundamental group without changing the integral homology of a space. 0. Introduction As explained in [8], [9], Bousfield's HZ-localization XHZ of a space X ([2]) is homotopy equivalent to its localization with respect to a map of classifying spaces Bf : BF1 ! BF2 induced by a certain homomorphism f : F1 !F2 between free groups. This means that a space X is HZ-local if and only if the induced ∗ map Bf :map(BF2;X) ! map(BF1;X) is a weak homotopy equivalence. More- over, the effect of Bf-localization on the fundamental group produces precisely the group-theoretical HZ-localization (i.e., f-localization) of the fundamental group, ∼ ∼ i.e., π1LBf X = Lf (π1X) = (π1X)HZ for all spaces X. A universal acyclic space for HZ-localization (i.e., Bf-localization), in the sense of Bousfield ([4]), was studied by Berrick and Casacuberta in [1].
    [Show full text]
  • 1. Basic Properties of the Tor Functor for Exercises 24–26 on Pages 34
    1. Basic properties of the tor functor For exercises 24–26 on pages 34–35 of Atiyah-Macdonald, let us review the definition and basic properties of the Tor functor. Let M and N be A-modules and consider a free resolution of M, say d3 d2 d1 d0 · · · −−−−→ F2 −−−−→ F1 −−−−→ F0 −−−−→ M −−−−→ 0. Consider the complex d3 d2 d1 · · · −−−−→ F2 −−−−→ F1 −−−−→ F0 −−−−→ 0 obtained by deleting M. A The A-modules Torn (M, N) may be defined as the homology modules of the complex obtained by tensoring with N. Thus A (ker dn ⊗ 1) Torn (M, N) = . (im dn+1 ⊗ 1) An important fact is that one gets the same modules no matter what free (or projective) resolution one takes A ∼ A of M. It is also the case that Torn (M, N) = Torn (N,M). A basic property of the Tor functor is that if 0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0 is a short exact sequence of A-modules, then tensoring this sequence over A with N induces a long exact sequence A ′′ A ′ A · · · −−−−→ Tor2 (M , N) −−−−→ Tor1 (M , N) −−−−→ Tor1 (M, N) −−−−→ A ′′ ′ ′′ Tor1 (M , N) −−−−→ M ⊗A N −−−−→ M ⊗A N −−−−→ M ⊗A N −−−−→ 0. In particular, if F is a free A-module and 0 −−−−→ K −−−−→ F −−−−→ M −−−−→ 0 A ∼ A is a short exact sequence, then we have Tori+1(M, N) = Tori (K, N) for each positive integer i and A Tor1 (M, N) measures how far tensoring with N fails to preserve exactness of the given sequence. Let I and J be ideals in a ring A.
    [Show full text]