A Variant Hereditary Coproporphyria

Total Page:16

File Type:pdf, Size:1020Kb

A Variant Hereditary Coproporphyria Harderoporphyria: a variant hereditary coproporphyria. Y Nordmann, … , B Cartigny, G Fontaine J Clin Invest. 1983;72(3):1139-1149. https://doi.org/10.1172/JCI111039. Research Article Three siblings with intense jaundice and hemolytic anemia at birth were found to excrete a high level of coproporphyrin in their urine and feces; the pattern of fecal porphyrin excretion was atypical for hereditary coproporphyria because the major porphyrin was harderoporphyrin (greater than 60%; normal value is less than 20%). The lymphocyte coproporphyrinogen III oxidase activity of each patient was 10% of control values, which suggests a homozygous state. Both parents showed only mild abnormalities in porphyrin excretion and lymphocyte coproporphyrinogen III oxidase activity decreased to 50% of normal values, as is expected in heterozygous cases of hereditary coproporphyria. Kinetic parameters of coproporphyrinogen III oxidase from these patients were clearly modified, with a Michaelis constant 15-20- fold higher than normal values when using coproporphyrinogen or harderoporphyrinogen as substrates. Maximal velocity was half the normal value, and we also observed a marked sensitivity to thermal denaturation. The possibility that a mutation affecting the enzyme on the active center which is specifically involved in the second decarboxylation (from harderoporphyrinogen to protoporphyrinogen) was eliminated by experiments on rat liver that showed that coproporphyrinogen and harderoporphyrinogen were metabolized at the same active center. The pattern of porphyrin excretion and the coproporphyrinogen oxidase from the three patients exhibited abnormalities that were different from the abnormalities found in another recently described homozygous case of hereditary coproporphyria. We […] Find the latest version: https://jci.me/111039/pdf Harderoporphyria: A Variant Hereditary Coproporphyria YVES NORDMANN, BERNARD GRANDCHAMP, HUBERT DE VERNEUIL, and LIEM PHUNG, University Paris VII (Faculty of Medicine X. Bichat), Department of Biochemistry, Hospital Louis Mourier, F-92701 Colombes, France BERNARD CARTIGNY and GuY FONTAINE, Centre Hospitalier Regional de Lille, Department of Pediatrics and Medical Genetics, F-59037 Lille, France A B S T R A C T Three siblings with intense jaundice INTRODUCTION and hemolytic anemia at birth were found to excrete Coproporphyrinogen III oxidase (EC 1.3.3.3.) is the a high level of coproporphyrin in their urine and feces; enzyme of the heme pathway that catalyzes the se- the pattern of fecal porphyrin excretion was atypical quential decarboxylation of coproporphyrinogen to for hereditary coproporphyria because the major por- protoporphyrinogen. The reaction is shown in Fig. 1: phyrin was harderoporphyrin (>60%; normal value is 4 of <20%). The lymphocyte coproporphyrinogen III oxi- The propionyl groups in position 2 and copro- dase activity of each patient was 10% of control values, porphyrinogen are decarboxylated and oxidized to which suggests a homozygous state. Both parents yield the two vinyl groups of protoporphyrinogen. Sev- showed only mild abnormalities in porphyrin excretion eral lines of evidence imply that the tricarboxylic in- and lymphocyte coproporphyrinogen III oxidase ac- termediate is harderoporphyrinogen; the propionyl tivity decreased to 50% of normal values, as is expected group on position 2 of coproporphyrinogen is decar- in heterozygous cases of hereditary coproporphyria. boxylated first (1). Kinetic parameters of coproporphyrinogen III oxidase Hereditary coproporphyria (HC)' is a genetic dis- from these patients were clearly modified, with a Mi- order of heme and porphyrin biosynthesis and is in- chaelis constant 15-20-fold higher than normal values herited as an autosomal dominant disorder clinically when using coproporphyrinogen or harderoporphy- resembling two other forms of inherited hepatic por- rinogen as substrates. Maximal velocity was half the phyria, intermittent acute porphyria and porphyria normal value, and we also observed a marked sensi- variegata (2). This disorder is characterized biochem- tivity to thermal denaturation. The possibility that a ically by the excretion of large amounts of copropor- mutation affecting the enzyme on the active center phyrin III, mainly in feces. Data from several inves- which is specifically involved in the second decarbox- tigations (3-5) support the idea that coproporphy- to protoporphy- rinogen III oxidase deficiency (50%) is the primary ylation (from harderoporphyrinogen gene defect in HC. Although it is usually expressed in rinogen) was eliminated by experiments on rat liver the heterozygous state, a case of homozygous HC was that showed that coproporphyrinogen and hardero- recently described (6, 7). The patient in this case was porphyrinogen were metabolized at the same active found to excrete very large amounts of coproporphyrin center. The pattern of porphyrin excretion and the in the urine and feces; lymphocyte coproporphyrino- coproporphyrinogen oxidase from the three patients gen III oxidase activity was only 2% of the control exhibited abnormalities that were different from the level. abnormalities found in another recently described ho- This paper describes a previously unreported variant mozygous case of hereditary coproporphyria. We sug- is characterized the accumulation gest naming this variant of coproporphyrinogen oxi- of porphyria that by dase defect "harderoporphyria." of harderoporphyrin in feces of homozygous patients. ' Abbreviations used in this paper: ALA, 5-aminolevulinic Received for publication 1 December 1982 and in revised acid; HC, hereditary coproporphyria; HPLC, high pressure form 11 May 1983. liquid chromatography. J. Clin. Invest. ©D The American Society for Clinical Investigation, Inc. * 0021-9738/83/09/1139/11 $1.00 1139 Volume 72 September 1983 1139-1149 COPROPORPHYRINOGEN HARDEROPORPHYRINOGEN PROTOPORPHYRINOCEN FIGURE 1 Biosynthesis of protoporphyrinogen from coproporphyrinogen III. This stepwise reaction is catalyzed by coproporphyrinogen oxidase. Harderoporphyrinogen is the natural intermediate between copro- and protoporphyrinogen. Isoharderoporphyrinogen (vinyl group on pyrrole B instead of pyrrole A) has not been isolated from tissues synthesizing protoporphyrin IX; however, isoharderoporphyrinogen is a known substrate of coproporphyrinogen oxidase (17). Me, methyl (-CH3); Pr, propionyl (-CH2-CH2-COOH); V, vinyl (-CH=CH2). The molecular basis of this disease is shown to be a S.M., at the Department of Pediatrics of Lille Hospital when he developed an intense jaundice shortly after his birth. The mutation leading to the presence (at least in lympho- perinatal history revealed normal pregnancy and delivery. cytes) of a coproporphyrinogen III oxidase with mod- Physical findings in addition to jaundice included hepato- ified kinetic properties; this indicates a structural ab- splenomegaly. The total serum bilirubin level was 16.7 mg/ normality of the enzyme which is distinct from a case dl with an unconjugated bilirubin value of 12.1 mg/dl. The previously described. blood group of the baby was the same as that of the mother (O Rh negative). Hematologic data are shown on Table I; the erythrocyte morphology was normal. Exchange trans- METHODS fusion was immediately performed and followed by pho- Case reports. The patients are three siblings born in 1973, totherapy. Soon afterwards, the baby showed a rash with 1975, and 1980 from healthy, nonconsanguineous French vesicles and blisters and a diagnosis of pemphigus was con- parents. Porphyria was first discovered in the second child, sidered. A second rash appeared a few days later when the TABLE I Representative Hematologic Values of the Patients and Their Parents Patients Date RBC Hb Retics Ht Platelets X lo/sll gIl/O ml % X 1031/p S.M. 25 August 1975° 4.0 12.4 10.0 38 83 25 November 1975 2.7 6 15 25 - 10 July 1977 3.7 9.1 3.5 31 396 1 February 1978 4.3 8.5 2.6 31 350 D.M. 11 October 1973' 4.3 10.8 12 40 82 2 November 1973 3.0 8.0 25 24 - 10 July 1977 4.0 9.2 5 30 230 A.M. 13 October 1980° 5.1 12.0 10.0 43 85 22 October 1980 4.00 8.8 16.0 30 - 28 September 1981 3.85 9.7 5.5 32 600 Parents Mother 2 March 1983 4.50 13.4 1.0 41.0 486 Father 2 March 1983 4.88 14.7 1.2 46.5 311 Abbreviations used in this table: RBC, erythrocytes; Retics, reticulocytes; Ht, hematocrit; Hb, hemoglobin. e Date of birth. 1140 Nordmann, Grandchamp, de Verneuil, Phung, Cartigny, and Fontaine primary blisters were not yet completely healed. At this time, tracts obtained by solvent extraction were adjusted to pH a red discoloration of the urine was observed, and the di- 3-4 and extracted in ethylacetate-acetic acid (3:1, vol/vol). agnosis of inherited porphyria was confirmed by the high The mixture was evaporated under reduced pressure at 45°C levels of uro- and coproporphyrin found in the urine (Table and porphyrins were treated overnight with 50 ml of meth- II). No further biological investigation was done in 1975 on anol-sulfuric acid (95:5, vol/vol). Porphyrin esters were ex- this child. tracted into chloroform as previously described (15) and an The elder brother, D.M., had presented similar symptoms aliquot was then injected into a Perkin-Elmer high pressure on the day of his birth. However, like his younger brother, liquid chromatograph (model 604, Perkin-Elmer Corp., Nor- he was sent home with the diagnosis of hemolytic anemia; walk, CT). The column used was a 30 X 0.4 cm (10 Arm) the cause remains unknown at this time. During the next Porasil (Waters Instruments, Inc., Rochester, MN). The chro- two years, his hepatosplenomegaly disappeared and a com- matogram was recorded at 404 nm using an LC 55 Perkin- pensating hemolytic process persisted. His growth and de- Elmer detector. Peak areas were determined with a com- velopment remained normal; neither abnormal cutaneous puting integrator (icap 5, LTT, Paris, France). Analysis was features nor red discolorations of the urine or teeth were carried out successively in two different solvent systems at noticed. However, in 1975, when urine porphyrins were a flow rate of 1.5 ml/mn. The first one (ethylacetate/cyclo- studied, a very high level of coproporphyrin was found hexane, 55:45, vol/vol) separated porphyrin esters with 2 to (Table II).
Recommended publications
  • Spectroscopy of Porphyrins
    BORIS F. KIM and JOSEPH BOHANDY SPECTROSCOPY OF PORPHYRINS Porphyrins are an important class of compounds that are of interest in molecular biology because of the important roles they play in vital biochemical systems such as biochemical energy conversion in animals, oxygen transport in blood, and photosynthetic energy conversion in plants. We are studying the physical properties of the energy states of porphyrins using the techniques of ex­ perimental and theoretical spectroscopy with the aim of contributing to a basic understanding of their biochemical behavior. INTRODUCTION Metalloporphin Porphyrins are a class of complex organic chemical compounds found in such diverse places as crude oil, plants, and human beings. They are, in most cases, tailored to carry out vital chemical transformations in intricate biochemical or biophysical systems. They are the key constituents of chlorophyll in plants and of hemoglobin in animals. Without them, life would y be impossible. t Free base porphin These molecules display a wide range of chemical and physical properties that depend on the structural details of the particular porphyrin molecule. All por­ ~x phyrins are vividly colored and absorb light in the visible and ultraviolet regions of the spectrum. Some exhibit luminescence, paramagnetism, photoconduc­ tion, or semiconduction. Spme are photosensitizers Wavelength (nanometers) or catalysts. Scientists from several disciplines have been interested in unraveling the principles that cause Fig. 1-The chemical structures for the two forms of por· this diversity of properties. phin are shown on the left. A carbon atom and a hydrogen The simplest compound of all porphyrins is por­ atom are understood to be at each apex not attached to a nitrogen atom.
    [Show full text]
  • Hyperbilirubinemia
    Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole.
    [Show full text]
  • RLIN1, Encoding a Putative Coproporphyrinogen III Oxidase, Is Involved in Lesion Initiation in Rice
    Available online at www.sciencedirect.com Journal of Genetics and Genomics 38 (2011) 29e37 www.jgenetgenomics.org RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice Changhui Sun a,b,d,1, Linchuan Liu b,c,1, Jiuyou Tang b, Aihong Lin b,c, Fantao Zhang b,d, Jun Fang b, Genfa Zhang a,*, Chengcai Chu a,b,c,* a Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China b The State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China c Graduate School of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China d Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China Received 11 October 2010; revised 17 October 2010; accepted 20 October 2010 Abstract Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen III oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype.
    [Show full text]
  • Electronic Spectroscopy of Free Base Porphyrins and Metalloporphyrins
    Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin Introduction The word porphyrin is derived from the Greek porphura meaning purple, and all porphyrins are intensely coloured1. Porphyrins comprise an important class of molecules that serve nature in a variety of ways. The Metalloporphyrin ring is found in a variety of important biological system where it is the active component of the system or in some ways intimately connected with the activity of the system. Many of these porphyrins synthesized are the basic structure of biological porphyrins which are the active sites of numerous proteins, whose functions range from oxygen transfer and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome oxidase) to energy conversion (chlorophyll). They also have been proven to be efficient sensitizers and catalyst in a number of chemical and photochemical processes especially photodynamic therapy (PDT). The diversity of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring system (Fig. 1). Figure 1. Metallated Tetraphenylporphyrin Upon metalation the porphyrin ring system deprotonates, forming a dianionic ligand (Fig. 2). The metal ions behave as Lewis acids, accepting lone pairs of electrons ________________________________ § We all need to thank Jay Stephens for synthesizing the H2TPP 2 from the dianionic porphyrin ligand. Unlike most transition metal complexes, their color is due to absorption(s) within the porphyrin ligand involving the excitation of electrons from π to π* porphyrin ring orbitals. Figure 2. Synthesis of Zn(TPP) The electronic absorption spectrum of a typical porphyrin consists of a strong transition to the second excited state (S0 S2) at about 400 nm (the Soret or B band) and a weak transition to the first excited state (S0 S1) at about 550 nm (the Q band).
    [Show full text]
  • Porphyrins & Bile Pigments
    Bio. 2. ASPU. Lectu.6. Prof. Dr. F. ALQuobaili Porphyrins & Bile Pigments • Biomedical Importance These topics are closely related, because heme is synthesized from porphyrins and iron, and the products of degradation of heme are the bile pigments and iron. Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma, due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. • Metalloporphyrins & Hemoproteins Are Important in Nature Porphyrins are cyclic compounds formed by the linkage of four pyrrole rings through methyne (==HC—) bridges. A characteristic property of the porphyrins is the formation of complexes with metal ions bound to the nitrogen atom of the pyrrole rings. Examples are the iron porphyrins such as heme of hemoglobin and the magnesium‐containing porphyrin chlorophyll, the photosynthetic pigment of plants. • Natural Porphyrins Have Substituent Side Chains on the Porphin Nucleus The porphyrins found in nature are compounds in which various side chains are substituted for the eight hydrogen atoms numbered in the porphyrin nucleus. As a simple means of showing these substitutions, Fischer proposed a shorthand formula in which the methyne bridges are omitted and a porphyrin with this type of asymmetric substitution is classified as a type III porphyrin.
    [Show full text]
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • Published Version (PDF 2MB)
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Harris, Tegan M., Price, Erin P., Sarovich, Derek S., Nørskov-Lauritsen, Niels, Beissbarth, Jemima, Chang, Anne B., & Smith-Vaughan, Heidi C. (2020) Comparative genomic analysis identifies x-factor (Haemin)-independent haemophilus haemolyticus:A formal re-classification of ’haemophilus in- termedius’. Microbial Genomics, 6(1), Article number: 000303. This file was downloaded from: https://eprints.qut.edu.au/211802/ c 2020 The Authors This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution 4.0 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1099/mgen.0.000303 RESEARCH ARTICLE Harris et al., Microbial Genomics 2020;6 DOI 10.1099/mgen.0.000303 Comparative genomic analysis identifies X- factor (haemin)- independent Haemophilus haemolyticus: a formal re-classification of 'Haemophilus intermedius' Tegan M.
    [Show full text]
  • Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging
    biosensors Review Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging Muhammad Imran 1,*, Muhammad Ramzan 2,*, Ahmad Kaleem Qureshi 1, Muhammad Azhar Khan 2 and Muhammad Tariq 3 1 Department of Chemistry, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; [email protected] 2 Department of Physics, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; [email protected] 3 Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; [email protected] * Correspondence: [email protected] (M.I.); [email protected] (M.R.) Received: 26 September 2018; Accepted: 17 October 2018; Published: 19 October 2018 Abstract: In recent years, scientific advancements have constantly increased at a significant rate in the field of biomedical science. Keeping this in view, the application of porphyrins and metalloporphyrins in the field of biomedical science is gaining substantial importance. Porphyrins are the most widely studied tetrapyrrole-based compounds because of their important roles in vital biological processes. The cavity of porphyrins containing four pyrrolic nitrogens is well suited for the binding majority of metal ions to form metalloporphyrins. Porphyrins and metalloporphyrins possess peculiar photochemical, photophysical, and photoredox properties which are tunable through structural modifications. Their beneficial photophysical properties, such as the long wavelength of emission and absorption, high singlet oxygen quantum yield, and low in vivo toxicity, have drawn scientists’ interest to discover new dimensions in the biomedical field. Applications of porphyrins and metalloporphyrins have been pursued in the perspective of contrast agents for magnetic resonance imaging (MRI), photodynamic therapy (PDT) of cancer, bio-imaging, and other biomedical applications.
    [Show full text]
  • Phlebotomy As an Efficient Long-Term Treatment of Congenital
    Letters to the Editor after chronic gastrointestinal bleeding that resulted in Phlebotomy as an efficient long-term treatment of iron deficiency.4 They treated her with an iron chelator, congenital erythropoietic porphyria resulting in correction of the hemolysis, decreased por- phyrin levels and improved quality of life with reduced Congenital erythropoietic porphyria (CEP, MIM photosensitivity. We recently identified three CEP sib- 263700) is a rare autosomal recessive disease caused by lings with phenotypes ranging from moderate to asymp- impaired activity of uroporphyrinogen III synthase tomatic which were modulated by iron availability, high- (UROS), the fourth enzyme of the heme biosynthetic lighting the importance of iron metabolism in the disease. 1 pathway. Accumulation of porphyrins in red blood cells, Based on these data, we prospectively treated a CEP mainly uroporphyrinogen I (URO I) and copropor- patient with phlebotomies to investigate the feasibility, phyrinogen I (COPRO I), leads to ineffective erythro- safety and efficacy of this treatment. We observed dis- poiesis and chronic hemolysis. Porphyrin deposition in continuation of hemolysis and a marked decrease in plas- the skin is responsible for severe photosensitivity result- ma and urine porphyrins. The patient reported a major ing in bullous lesions and progressive photomutilation. improvement in photosensitivity. Finally, erythroid cul- Treatment options are scarce, relying mainly on support- tures were performed, demonstrating the role of iron in ive measures and, for severe cases, on bone marrow the rate of porphyrin production. transplantation (BMT). Increased activation of the heme The study was conducted in accordance with the biosynthetic pathway by gain-of-function mutations in World Medical Association Declaration of Helsinki ethi- ALAS2, the first and rate-limiting enzyme, results in a 2 cal principles for medical research involving human sub- more severe phenotype.
    [Show full text]
  • The Function of Pufq in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter Capsulatus
    The Function of PufQ in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter capsulatus Himani Rajeshwar Utkhede B.Sc. Simon Fraser University, 200 1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE in the Department of Molecular Biology and Biochemistry O Himani R. Utkhede 2004 SIMON FRASER UNIVERSITY March, 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval I Name: Himani R. Utkhede Degree: Master of Science Title of Thesis: The Function of PufQ in the Regulation of Bacteriochlorophyll Synthesis in Rhodobacter capsulatus. Examining Committee: Dr. W.S. Davidson, Chair Dr. William R. Richards, Senior Supervisor Professor Emeritus, Molecular Biology and Biochemistry Simon Fraser University Dr. Michel Leroux, Supervisor Assistzt Prcfessor, ?v!s!ec.dzr Eic!ca.;- - 2~2L3.icche~isty Simon Fraser University Dr. Erika Plettner, Supervisor Assistant Professor, Chemistry Simon Fraser University Dr. Lynne Quarmby, Internal Examiner Assistant Professor, Biology Simon Fraser University Date Approved: Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further agreed that permission for multiple copying of ths work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.
    [Show full text]
  • Module 01: Classification of Porphyria
    MODULE 01 Classification of Porphyria Do not reprint, reproduce, modify or distribute this material without the prior written permission of Alnylam Pharmaceuticals. © 20120199 Alnylam PharmaceuticalsPharmaceuticals,, Inc.Inc. All rights reserved. -USA-00001-092018 1 Porphyria—A Rare Disease of Clinical Consequence • Porphyria is a group of at least 8 metabolic disorders1,2 – Each subtype of porphyria involves a genetic defect in a heme biosynthesis pathway enzyme1,2 – The subtypes of porphyria are associated with distinct signs and symptoms in patient populations that can differ by gender and age1,3 • Prevalence of some subtypes of porphyria may be higher than generally assumed3 Estimated Prevalence of Most Common Subtypes of Porphyria1,4 Estimated Prevalence Based on European Subtype of Porphyria and US Data Porphyria cutanea tarda (PCT) 1/10,000 (EU)1 0.118-1/20,000 (EU)1,4 Acute intermittent porphyria (AIP) 5/100,000 (US)1 Erythropoietic protoporphyria (EPP) 1/50,000-75,000 (EU)1 1. Ramanujam V-MS, Anderson KE. Curr Protoc Hum Genet. 2015;86:17.20.1-17.20.26. 2. Puy H et al. Lancet. 2010;375:924-937. 3. Bissell DM et al. N Engl J Med. 2017;377:862-872. 4. Elder G et al. J Inherit Metab Dis. 2013;36:848-857. Do not reprint, reproduce, modify or distribute this material without the prior written permission of Alnylam Pharmaceuticals. © 2019 Alnylam Pharmaceuticals, Inc. All rights reserved. -USA-00001-092018 2 Classification of Porphyria Porphyria can be classified in 2 major ways1,2: 1 According to major physiological sites: liver or 2 According to major clinical manifestations1,2 bone marrow1,2 • Heme precursors originate in either the liver or Acute Versus Photocutaneous Porphyria bone marrow, which are the tissues most • Major clinical manifestations are either neurovisceral active in heme biosynthesis1,2 symptoms (eg, severe, diffuse abdominal pain) associated with acute exacerbations or cutaneous lesions resulting from phototoxicity1,2 • Acute hepatic porphyria may be somewhat of a misnomer since the clinical features may be prolonged and chronic3 1.
    [Show full text]
  • A Primitive Pathway of Porphyrin Biosynthesis and Enzymology in Desulfovibrio Vulgaris
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4853–4858, April 1998 Biochemistry A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris TETSUO ISHIDA*, LING YU*, HIDEO AKUTSU†,KIYOSHI OZAWA†,SHOSUKE KAWANISHI‡,AKIRA SETO§, i TOSHIRO INUBUSHI¶, AND SEIYO SANO* Departments of *Biochemistry and §Microbiology and ¶Division of Biophysics, Molecular Neurobiology Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-21, Japan; †Department of Bioengineering, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan; and ‡Department of Public Health, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto 606, Japan Communicated by Rudi Schmid, University of California, San Francisco, CA, February 23, 1998 (received for review March 15, 1998) ABSTRACT Culture of Desulfovibrio vulgaris in a medium billion years ago (3). Therefore, it is important to establish the supplemented with 5-aminolevulinic acid and L-methionine- biosynthetic pathway of porphyrins in D. vulgaris, not only methyl-d3 resulted in the formation of porphyrins (sirohydro- from the biochemical point of view, but also from the view- chlorin, coproporphyrin III, and protoporphyrin IX) in which point of molecular evolution. In this paper, we describe a the methyl groups at the C-2 and C-7 positions were deuter- sequence of intermediates in the conversion of uroporphy- ated. A previously unknown hexacarboxylic acid was also rinogen III to coproporphyrinogen III and their stepwise isolated, and its structure was determined to be 12,18- enzymic conversion. didecarboxysirohydrochlorin by mass spectrometry and 1H NMR. These results indicate a primitive pathway of heme biosynthesis in D. vulgaris consisting of the following enzy- MATERIALS AND METHODS matic steps: (i) methylation of the C-2 and C-7 positions of Materials.
    [Show full text]