Regulation of Alternative Poly(A) Site Choice by Co

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Alternative Poly(A) Site Choice by Co REGULATION OF ALTERNATIVE POLY(A) SITE CHOICE BY CO- TRANSCRIPTIONAL FACTOR RECRUITMENT, POL II PAUSING AND SPLICING By BECKY ANN FUSBY B.S. University of Nebraska Kearney, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology Program 2016 This thesis for the Doctor of Philosophy degree by Becky Ann Fusby has been approved for the Molecular Biology Program by Mair Churchill, Chair Aaron Johnson Jay Hesselberth Richard Davis Dylan Taatjes David Bentley, Advisor Date 05/20/2016 ii Fusby, Becky Ann (Ph.D. Molecular Biology) Regulation of Alternative Poly(A) Site Choice by Co-Transcriptional Factor Recruitment, Pol II Pausing, and Splicing Thesis directed by Professor David L. Bentley ABSTRACT The majority of mammalian genes undergo alternative polyadenylation resulting in production of alternate mRNA isoforms. Aberrant mRNA length due to alternative poly(A) site choice has been associated with numerous diseases, including cancer. For this reason, understanding the mechanistic regulation of poly(A) site choice is critical. The work in this thesis specifically addresses numerous aspects of transcription and mRNA processing that regulate poly(A) site choice. The relationship between a CTD-ligand, its ability to promote Ser2P, and the functional consequence of reduced Ser2P on 3’ UTR poly(A) site choice is examined. Additionally, the importance of poly(A) site processing in promoting pol II pausing, Ser2P, and processing factor recruitment is investigated. Lastly, the regulation of intronic poly(A) sites by splicing factors and functional splicing is analyzed. I find that the extent of Ser2P is not closely coupled to poly(A) site use as predicted, but pol II pausing and processing factor recruitment are directly coupled with poly(A) site utilization. Furthermore, I find that splicing is the major regulator of intronic poly(A) site usage in contradiction to a model of U1 snRNP- specific protection. This research further enhances the understanding of how poly(A) sites are regulated by identifying critical factors that ultimately influence iii alternative polyadenylation. The form and content of this abstract are approved. I recommend its publication. Approved: David Bentley iv To the people who kept me going when I wanted to give up. Thank you for believing in me. v ACKNOWLEDGEMENTS I would like to thank my family and friends for their unconditional love, support, encouragement and sacrifice. I would like to especially thank my parents who gave me the freedom to be myself and pursue my dreams. Their only wish for me has always been my happiness, and for that, I am truly grateful. To my life-partner Jesse, thank you for your love, unwavering support and patience. Thank you for teaching me to worry less and for reminding me to live in the moment. Your love of science and quest for knowledge remind me daily why I pursued this degree. To Stella, thank you for being my support system while finishing my thesis and for being my reality check when I needed it most. I would also like to thank all the people who have helped me along my academic journey. Thank you to my college mentor, Kim Carlson, who taught me not to apologize for who I am and encouraged me to go to graduate school. David, thank you for letting me join your lab and investing your time and energy in training me. I would also like to thank all the present and past members of the Bentley lab for their help and support. To Roberto and Kris, thank you for your friendship both inside and outside the lab. To Tassa, thank you for bringing your cheerfulness and knowledge into the lab. I learned so much from you in a short time. To Michael and Ryan, it has been a pleasure learning and training along side you and I wish you all the luck in your futures. I would also like to thank the BMG department, the Molecular Biology program, and my committee for being passionate and insightful colleagues. vi TABLE OF CONTENTS CHAPTER I. INTRODUCTION…………………………………………………………………….1 1.1 Mechanism of 3’-End Processing……………………………………….... 2 1.1A Properties of Poly(A) Sites………………………………………. 2 CPSF and AAUAAA…………………………………………. 3 CstF and DSE…………………………………………………5 CFI and UGUA……………………………………………….. 6 Additional Cleavage/Polyadenylation Factors……………..7 1.1B APA and Mechanisms of Regulation…………………………… 7 “First Come, First Served” Model…………………………... 8 Survival of the Fittest Model………………………………. 10 Agonist/Antagonist Model…………………………………. 12 1.2 APA Regulation by RNA Polymerase II………………………………… 13 1.2A Regulation by RNA Polymerase II Pausing…………………...14 Promoter Proximal Pause…………………………………. 15 3’-End Pol II Pause………………………………………… 16 1.2B Ser2-CTD Phosphorylation and APA…………………………. 17 Ser2-CTD Kinases and Phosphatases…………………... 18 Phospho-Ser2-CTD Ligands……………………………….21 Integration of Phospho-Ser2-CTD with 3’-End Processing…………………………………………………...22 vii 1.3 Integration of APA and Splicing…………………………………………. 22 1.3A Mechanism of Splicing………………………………………….. 23 Major Spliceosome…………………………………………. 23 1.3B Splicing and Cleavage/Polyadenylation………………………. 25 Interaction of Splicing and Cleavage/Polyadenylation Factors………………………………………………………. 26 IgM Gene: A Balance of Splicing and Polyadenylation …27 U1 snRNP and Polyadenylation.…………………………. 29 1.4 Specific Questions…………………………………………………………30 II. MATERIALS AND METHODS………………………………………………….. 36 2.1 ChIP………………………………………………………………………... 36 2.2 ChIP-seq…………….…………………………………………………….. 37 2.3 Antibodies………………………………………………………………….. 38 2.4 Mini-Gene Transfection…………………………………………………... 38 2.5 RNA Extraction……………………………………………………………. 39 2.6 Poly(A)+ RNA-seq………………………………………………………… 39 2.7 Cell Lines and Growth Conditions………………………………………. 39 2.8 Protein Extractions and Immunoblotting………………………………...40 2.9 3’ RACE……………………………………………………………………. 40 2.10 Real-Time PCR………………………………………………………….. 41 2.11 ASO Transfection………………………………………………………...41 2.12 shRNA-Mediated Spt6 Knockdown……………………………………. 41 viii 2.13 ChIP-seq Pipeline……………………………………………………….. 42 III. THE ROLE OF SPT6 IN REGULATING TRANSCRIPTION, SER2-CTD PHOSPHORYLATION AND MRNA PROCESSING……………44 3.1 Introduction………………………………………………………………… 44 3.2 Results……………………………………………………………………... 48 3.2A Spt6 is Localized at 3’-Ends of Genes in Correlation with Ser2P-CTD………………………………………………………. 48 3.2B Knockdown of Spt6 Through an Inducible shRNA…………... 50 3.2C Spt6 Affects Pol II Distribution at the 5’- and 3’-Ends of Genes…………………………………………………………….. 50 3.2D Spt6 Does Not Generally Affect Pol II Distribution Genome-Wide…………………………………………………… 52 3.2E Spt6 Promotes Ser2-CTD Phosphorylation at 3’-Ends of Genes…………………………………………………………. 52 3.2F Spt6 Does Not Affect Other Phospho-CTD Isoforms……….. 53 3.2G Spt6 Regulates Elongation Complex Factor but Not Ser2 Kinase……………………………………………………… 54 3.2H Spt6 Affects 3’ UTR Alternative Poly(A) Site Choice……….. 56 3.2I Spt6 Alters H3K36me3 on Gene Bodies………………………. 57 3.3 Discussion…………………………………………………………………. 58 IV. COORDINATION OF RNA POLYMERASE II PAUSING AND 3’-END PROCESSING FACTOR RECRUITMENT WITH ALTERNATIVE POLYADENYLATION…………………………………………………………... 74 4.1 Introduction………………………………………………………………… 74 4.2 Results……………………………………………………………………... 77 4.2A Pol II Pause Correlates with Poly(A) Site Usage……………..77 ix 4.2B The μS Poly(A) Site is Necessary for the μS+500 Pause….. 80 4.2C The μS Poly(A) Site is Not Sufficient to Induce Pausing…….81 4.2D CTD Ser2 Phosphorylation is Uncoupled from Pol II Pausing at the μS+500 Site……………………………………. 82 4.2E The β-Globin Poly(A) Site is Necessary for Ser2-CTD Hyperphosphorylation…………………………………………... 83 4.2F Alternative Poly(A) Site Use and CstF Recruitment…………. 84 4.3 Discussion…………………………………………………………………. 85 V. REGULATION OF ALTERNATIVE POLY(A) SITE CHOICE BY SPLICING……..…………………………………………………………………... 98 5.1 Introduction………………………………………………………………… 98 5.2 Results……………………………………………………………………. 103 5.2A snRNA ASOs Attenuate Splicing…………………………….. 103 5.2B Reduction of Splicing Alters Poly(A) Site Use Within Gene Bodies……………………………………………………. 104 5.2C Different Mechanisms of Splicing Inhibition Alternatively Regulate Poly(A) Site Use……………………………………. 106 5.2D U1, U4, and U6 snRNPs Protect Poly(A) Sites Near the TSS…………………………………………………………. 108 5.2E Splicing Preferentially Regulates Use of Intronic Poly(A) Sites……………………………………………………. 109 5.2F snRNP Depletion Favors Intronic Poly(A) Site Use on NR3C1 Mini-Gene……………………………………………... 110 5.2G Attenuation of Splicing by Alternative Mechanisms Increases Intronic Poly(A) Site Use……………………………………… 112 5.2H snRNPs Regulate APA on Integrator Genes in a Potential Negative-Feedback Loop……………………………………... 114 x 5.3 Discussion……………………………………………………………….. 116 VI. CONCLUSIONS………………………………………………………………...128 REFERENCES……………………………………………………………………….. 136 APPENDIX A. CHAPTER III SEQUENCING LIBRARIES…………………………………… 168 B. SPT6 AFFECTED POLY(A) SITES…………………………………………... 169 C.CHAPTER IV SEQUENCING LIBRARIES…………………………………… 172 D. CHAPTER IV PRIMERS………………………………………………………..173 E. CHAPTER V SEQUENCING LIBRARIES…………………………………… 174 F. CHAPTER V PRIMERS………………………………………………………... 175 G. SNRNP AND SSA AFFECTED POLY(A) SITES…………………………… 176 xi LIST OF FIGURES FIGURE 1-1: Diagram of pre-mRNA poly(A) site cis-elements and corresponding factors……………………………………………………………………………… 32 1-2: Density of total pol II, Ser2P- and Ser5P-CTD on a typical mammalian gene…………………………………………………………………. 33 1-3: Schematic of the step-wise major spliceosome reaction……………………. 34 1-4: Diagram of poly(A) site use on the IgM gene and relevant mutants……….
Recommended publications
  • Recombinant Human ARFIP2 Protein Catalog Number: ATGP1695
    Recombinant human ARFIP2 protein Catalog Number: ATGP1695 PRODUCT INPORMATION Expression system E.coli Domain 1-341aa UniProt No. P53365 NCBI Accession No. NP_036534 Alternative Names Arfaptin 2, POR1 PRODUCT SPECIFICATION Molecular Weight 40.2 kDa (364aa) confirmed by MALDI-TOF Concentration 0.25mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 0.2M NaCl, 40% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description Arfaptin 2, also known as ARFIP2, is a Rac1 binding protein necessary for Rac-mediated actin polymerization and the subsequent formation of membrane ruffles and lamellipodia. ARFIP2 has also been shown to interact with the ADP ribosylation factor ARF6, a GTPase that associates with the plasma membrane and intracellular endosome vesicles, in a GTP dependent manner. Arfaptin 2 also regulates the aggregation of mutant Huntingtin protein by possibly impairing proteasome function. Expression of ARFIP2 was shown to be increased at sites of neurodegeneration. Recombinant human ARFIP2 protein, fused to His-tag at N-terminus, was expressed in E. coli 1 Recombinant human ARFIP2 protein Catalog Number: ATGP1695 and purified by using conventional chromatography techniques. Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSMTDGILG KAATMEIPIH GNGEARQLPE DDGLEQDLQQ VMVSGPNLNE TSIVSGGYGG SGDGLIPTGS GRHPSHSTTP SGPGDEVARG IAGEKFDIVK KWGINTYKCT KQLLSERFGR GSRTVDLELE LQIELLRETK RKYESVLQLG RALTAHLYSL LQTQHALGDA FADLSQKSPE LQEEFGYNAE TQKLLCKNGE TLLGAVNFFV SSINTLVTKT MEDTLMTVKQ YEAARLEYDA YRTDLEELSL GPRDAGTRGR LESAQATFQA HRDKYEKLRG DVAIKLKFLE ENKIKVMHKQ LLLFHNAVSA YFAGNQKQLE QTLQQFNIKL RPPGAEKPSW LEEQ General References D'Souza Schorey C., et al.
    [Show full text]
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood
    pathogens Article Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection Lila M. Zarski 1, Patty Sue D. Weber 2, Yao Lee 1 and Gisela Soboll Hussey 1,* 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; [email protected] (L.M.Z.); [email protected] (Y.L.) 2 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory dis- ease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell- associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathol- ogy results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at Citation: Zarski, L.M.; Weber, P.S.D.; micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were Lee, Y.; Soboll Hussey, G.
    [Show full text]
  • ANP32A and ANP32B Are Key Factors in the Rev Dependent CRM1 Pathway
    bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ANP32A and ANP32B are key factors in the Rev dependent CRM1 pathway 2 for nuclear export of HIV-1 unspliced mRNA 3 Yujie Wang1, Haili Zhang1, Lei Na 1, Cheng Du1, Zhenyu Zhang1, Yong-Hui Zheng1,2, Xiaojun Wang1* 4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese 5 Academy of Agricultural Sciences, Harbin 150069, China 6 2Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 7 USA. 8 * Address correspondence to Xiaojun Wang, [email protected]. 9 10 11 12 13 14 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular 24 and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of 25 HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, the 26 knowledge of cellular factors that are involved in the CRM1-dependent viral RNA nuclear export remains 27 inadequate. Here, we identified that ANP32A and ANP32B mediate the export of unspliced or partially spliced 28 viral mRNA via interacting with Rev and CRM1.
    [Show full text]
  • Multiple Activities of Arl1 Gtpase in the Trans-Golgi Network Chia-Jung Yu1,2 and Fang-Jen S
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1691-1699 doi:10.1242/jcs.201319 COMMENTARY Multiple activities of Arl1 GTPase in the trans-Golgi network Chia-Jung Yu1,2 and Fang-Jen S. Lee3,4,* ABSTRACT typical features of an Arf-family GTPase, including an amphipathic ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like N-terminal helix and a consensus site for N-myristoylation (Lu et al., proteins (Arls) are highly conserved small GTPases that function 2001; Price et al., 2005). In yeast, recruitment of Arl1 to the Golgi as main regulators of vesicular trafficking and cytoskeletal complex requires a second Arf-like GTPase, Arl3 (Behnia et al., reorganization. Arl1, the first identified member of the large Arl family, 2004; Setty et al., 2003). Yeast Arl3 lacks a myristoylation site and is an important regulator of Golgi complex structure and function in is, instead, N-terminally acetylated; this modification is required for organisms ranging from yeast to mammals. Together with its effectors, its recruitment to the Golgi complex by Sys1. In mammalian cells, Arl1 has been shown to be involved in several cellular processes, ADP-ribosylation-factor-related protein 1 (Arfrp1), a mammalian including endosomal trans-Golgi network and secretory trafficking, lipid ortholog of yeast Arl3, plays a pivotal role in the recruitment of Arl1 droplet and salivary granule formation, innate immunity and neuronal to the trans-Golgi network (TGN) (Behnia et al., 2004; Panic et al., development, stress tolerance, as well as the response of the unfolded 2003b; Setty et al., 2003; Zahn et al., 2006).
    [Show full text]
  • Structural Characterization of Polysaccharides from Cordyceps Militaris and Their Hypolipidemic Effects Cite This: RSC Adv.,2018,8,41012 in High Fat Diet Fed Mice†
    RSC Advances View Article Online PAPER View Journal | View Issue Structural characterization of polysaccharides from Cordyceps militaris and their hypolipidemic effects Cite this: RSC Adv.,2018,8,41012 in high fat diet fed mice† Zhen-feng Huang, ‡ Ming-long Zhang,‡ Song Zhang,* Ya-hui Wang and Xue-wen Jiang Cordyceps militaris is a crude dietary therapeutic mushroom with high nutritional and medicinal values. Mushroom-derived polysaccharides have been found to possess antihyperglycemic and antihyperlipidemic activities. This study aimed to partially clarify the structural characterization and comparatively evaluate hypolipidemic potentials of intracellular- (IPCM) and extracellular polysaccharides of C. militaris (EPCM) in high fat diet fed mice. Results indicated that IPCM-2 is a-pyran polysaccharide with an average molecular weight of 32.5 kDa, was mainly composed of mannose, glucose and galactose with mass percentages of 51.94%, 10.54%, and 37.25%, respectively. EPCM-2 is an a-pyran Creative Commons Attribution 3.0 Unported Licence. polysaccharide with an average molecular weight of 20 kDa that is mainly composed of mannose, glucose and galactose with mass percentages of 44.51%, 18.33%, and 35.38%, respectively. In in vivo study, EPCM-1 treatment (100 mg kgÀ1 dÀ1) showed potential effects on improving serum lipid profiles of hyperlipidemic mice, reflected by decreasing serum total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C) levels by 20.05%, 45.45% and 52.63%, respectively, while IPCM-1 treatment
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Gpr161 Anchoring of PKA Consolidates GPCR and Camp Signaling
    Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling Verena A. Bachmanna,1, Johanna E. Mayrhofera,1, Ronit Ilouzb, Philipp Tschaiknerc, Philipp Raffeinera, Ruth Röcka, Mathieu Courcellesd,e, Federico Apeltf, Tsan-Wen Lub,g, George S. Baillieh, Pierre Thibaultd,i, Pia Aanstadc, Ulrich Stelzlf,j, Susan S. Taylorb,g,2, and Eduard Stefana,2 aInstitute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria; bDepartment of Chemistry and Biochemistry, University of California, San Diego, CA 92093; cInstitute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria; dInstitute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7; eDépartement de Biochimie, Université de Montréal, Montreal, QC, Canada H3C 3J7; fOtto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; gDepartment of Pharmacology, University of California, San Diego, CA 92093; hInstitute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; iDepartment of Chemistry, Université de Montréal, Montreal, QC, Canada H3C 3J7; and jInstitute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria Contributed by Susan S. Taylor, May 24, 2016 (sent for review February 18, 2016; reviewed by John J. G. Tesmer and Mark von Zastrow) Scaffolding proteins organize the information flow from activated G accounts for nanomolar binding affinities to PKA R subunit dimers protein-coupled receptors (GPCRs) to intracellular effector cascades (12, 13). Moreover, additional components of the cAMP signaling both spatially and temporally. By this means, signaling scaffolds, such machinery, such as GPCRs, adenylyl cyclases, and phosphodiester- as A-kinase anchoring proteins (AKAPs), compartmentalize kinase ases, physically interact with AKAPs (1, 5, 11, 14).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification and Characterization of RHOA-Interacting Proteins in Bovine Spermatozoa1
    BIOLOGY OF REPRODUCTION 78, 184–192 (2008) Published online before print 10 October 2007. DOI 10.1095/biolreprod.107.062943 Identification and Characterization of RHOA-Interacting Proteins in Bovine Spermatozoa1 Sarah E. Fiedler, Malini Bajpai, and Daniel W. Carr2 Department of Medicine, Oregon Health & Sciences University and Veterans Affairs Medical Center, Portland, Oregon 97239 ABSTRACT Guanine nucleotide exchange factors (GEFs) catalyze the GDP for GTP exchange [2]. Activation is negatively regulated by In somatic cells, RHOA mediates actin dynamics through a both guanine nucleotide dissociation inhibitors (RHO GDIs) GNA13-mediated signaling cascade involving RHO kinase and GTPase-activating proteins (GAPs) [1, 2]. Endogenous (ROCK), LIM kinase (LIMK), and cofilin. RHOA can be RHO can be inactivated via C3 exoenzyme ADP-ribosylation, negatively regulated by protein kinase A (PRKA), and it and studies have demonstrated RHO involvement in actin-based interacts with members of the A-kinase anchoring (AKAP) cytoskeletal response to extracellular signals, including lyso- family via intermediary proteins. In spermatozoa, actin poly- merization precedes the acrosome reaction, which is necessary phosphatidic acid (LPA) [2–4]. LPA is known to signal through for normal fertility. The present study was undertaken to G-protein-coupled receptors (GPCRs) [4, 5]; specifically, LPA- determine whether the GNA13-mediated RHOA signaling activated GNA13 (formerly Ga13) promotes RHO activation pathway may be involved in acrosome reaction in bovine through GEFs [4, 6]. Activated RHO-GTP then signals RHO caudal sperm, and whether AKAPs may be involved in its kinase (ROCK), resulting in the phosphorylation and activation targeting and regulation. GNA13, RHOA, ROCK2, LIMK2, and of LIM-kinase (LIMK), which in turn phosphorylates and cofilin were all detected by Western blot in bovine caudal inactivates cofilin, an actin depolymerizer, the end result being sperm.
    [Show full text]
  • B4GALT2 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science B4GALT2 Rabbit pAb Catalog No.: A17573 Basic Information Background Catalog No. This gene is one of seven beta-1,4-galactosyltransferase (beta4GalT) genes. They A17573 encode type II membrane-bound glycoproteins that appear to have exclusive specificity for the donor substrate UDP-galactose; all transfer galactose in a beta1,4 linkage to Observed MW similar acceptor sugars: GlcNAc, Glc, and Xyl. Each beta4GalT has a distinct function in 42kDa the biosynthesis of different glycoconjugates and saccharide structures. As type II membrane proteins, they have an N-terminal hydrophobic signal sequence that directs Calculated MW the protein to the Golgi apparatus and which then remains uncleaved to function as a transmembrane anchor. By sequence similarity, the beta4GalTs form four groups: Category beta4GalT1 and beta4GalT2, beta4GalT3 and beta4GalT4, beta4GalT5 and beta4GalT6, and beta4GalT7. The enzyme encoded by this gene synthesizes N-acetyllactosamine in Primary antibody glycolipids and glycoproteins. Its substrate specificity is affected by alpha-lactalbumin but it is not expressed in lactating mammary tissue. Three transcript variants encoding Applications two different isoforms have been found for this gene. [provided by RefSeq, Jul 2011] WB,IHC Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 8704 O60909 IHC 1:100 - 1:200 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 155-271 of human B4GALT2 (NP_085076.2). Synonyms B4Gal-T2;B4Gal-T3;beta4Gal-T2;B4GALT2 Contact Product Information 400-999-6126 Source Isotype Purification Rabbit IgG Affinity purification [email protected] www.abclonal.com.cn Storage Store at -20℃.
    [Show full text]