Discovering and Proving Polygon Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Build a Tetrahedral Kite
Aeronautics Research Mission Directorate Build a Tetrahedral Kite Suggested Grades: 8-12 Activity Overview Time: 90-120 minutes In this activity, you will build a tetrahedral kite from Materials household supplies. • 24 straws (8 inches or less) - NOTE: The straws need to be Steps straight and the same length. If only flexible straws are available, 1. Cut a length of yarn/string 4 feet long. then cut off the flexible portion. • Two or three large spools of 2. Take six straws and place them on a flat surface. cotton string or yarn (approximately 100 feet total) 3. Use your piece of string to join three straws • Scissors together in a triangular shape. On the side where • Hot glue gun and hot glue sticks the two strings are extending from it, one end • Ruler or dowel rod for kite bridle should be approximately 20 inches long, and the • Four pieces of tissue paper (24 x other should be approximately 4 inches long. 18 inches or larger) See Figure 1. • All-purpose glue stick Figure 1 4. Tie these two ends of the string tightly together. Make sure there is no room for the triangle to wiggle. 5. The three straws should form a tight triangle. 6. Cut another 4-inch piece of string. 7. Take one end of the 4-inch string, and tie that end to a corner of the triangle that does not have the string ends extending from it. Figure 2. 8. Add two more straws onto the longest piece of string. 9. Next, take the string that holds the two additional straws and tie it to the end of one of the 4-inch strings to make another tight triangle. -
Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1
Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1. Acute angle: Angle whose measure is greater than 0° and less than 90°. 2. Adjacent angles: Two angles that have a common side and a common vertex. 3. Alternate interior angles: A pair of angles in the interior of a figure formed by two lines and a transversal, lying on alternate sides of the transversal and having different vertices. 4. Altitude: Perpendicular segment from a vertex of a triangle to the opposite side or the line containing the opposite side. 5. Angle: A figure formed by two rays with a common endpoint. 6. Angle bisector: Ray that divides an angle into two congruent angles and bisects the angle. 7. Base Angles: Two angles not included in the legs of an isosceles triangle. 8. Bisect: To divide a segment or an angle into two congruent parts. 9. Coincide: To lie on top of the other. A line can coincide another line. 10. Collinear: Lying on the same line. 11. Complimentary: Two angle’s whose sum is 90°. 12. Concave Polygon: Polygon in which at least one interior angle measures more than 180° (at least one segment connecting two vertices is outside the polygon). 13. Conclusion: A result of summary of all the work that has been completed. The part of a conditional statement that occurs after the word “then”. 14. Congruent parts: Two or more parts that only have the same measure. In CPCTC, the parts of the congruent triangles are congruent. 15. Congruent triangles: Two triangles are congruent if and only if all of their corresponding parts are congruent. -
Chapter 6: Things to Know
MAT 222 Chapter 6: Things To Know Section 6.1 Polygons Objectives Vocabulary 1. Define and Name Polygons. • polygon 2. Find the Sum of the Measures of the Interior • vertex Angles of a Quadrilateral. • n-gon • concave polygon • convex polygon • quadrilateral • regular polygon • diagonal • equilateral polygon • equiangular polygon Polygon Definition A figure is a polygon if it meets the following three conditions: 1. 2. 3. The endpoints of the sides of a polygon are called the ________________________ (Singular form: _______________ ). Polygons must be named by listing all of the vertices in order. Write two different ways of naming the polygon to the right below: _______________________ , _______________________ Example Identifying Polygons Identify the polygons. If not a polygon, state why. a. b. c. d. e. MAT 222 Chapter 6 Things To Know Number of Sides Name of Polygon 3 4 5 6 7 8 9 10 12 n Definitions In general, a polygon with n sides is called an __________________________. A polygon is __________________________ if no line containing a side contains a point within the interior of the polygon. Otherwise, a polygon is _________________________________. Example Identifying Convex and Concave Polygons. Identify the polygons. If not a polygon, state why. a. b. c. Definition An ________________________________________ is a polygon with all sides congruent. An ________________________________________ is a polygon with all angles congruent. A _________________________________________ is a polygon that is both equilateral and equiangular. MAT 222 Chapter 6 Things To Know Example Identifying Regular Polygons Determine if each polygon is regular or not. Explain your reasoning. a. b. c. Definition A segment joining to nonconsecutive vertices of a convex polygon is called a _______________________________ of the polygon. -
The Graphics Gems Series a Collection of Practical Techniques for the Computer Graphics Programmer
GRAPHICS GEMS IV This is a volume in The Graphics Gems Series A Collection of Practical Techniques for the Computer Graphics Programmer Series Editor Andrew Glassner Xerox Palo Alto Research Center Palo Alto, California GRAPHICS GEMS IV Edited by Paul S. Heckbert Computer Science Department Carnegie Mellon University Pittsburgh, Pennsylvania AP PROFESSIONAL Boston San Diego New York London Sydney Tokyo Toronto This book is printed on acid-free paper © Copyright © 1994 by Academic Press, Inc. All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. AP PROFESSIONAL 955 Massachusetts Avenue, Cambridge, MA 02139 An imprint of ACADEMIC PRESS, INC. A Division of HARCOURT BRACE & COMPANY United Kingdom Edition published by ACADEMIC PRESS LIMITED 24-28 Oval Road, London NW1 7DX Library of Congress Cataloging-in-Publication Data Graphics gems IV / edited by Paul S. Heckbert. p. cm. - (The Graphics gems series) Includes bibliographical references and index. ISBN 0-12-336156-7 (with Macintosh disk). —ISBN 0-12-336155-9 (with IBM disk) 1. Computer graphics. I. Heckbert, Paul S., 1958— II. Title: Graphics gems 4. III. Title: Graphics gems four. IV. Series. T385.G6974 1994 006.6'6-dc20 93-46995 CIP Printed in the United States of America 94 95 96 97 MV 9 8 7 6 5 4 3 2 1 Contents Author Index ix Foreword by Andrew Glassner xi Preface xv About the Cover xvii I. Polygons and Polyhedra 1 1.1. -
Classifying Polygons
Elementary Classifying Polygons Common Core: Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. (5.G.B.3) Classify two-dimensional figures in a hierarchy based on properties. (5.G.B.4) Objectives: 1) Students will learn vocabulary related to polygons. 2) Students will use that vocabulary to classify polygons. Materials: Classifying Polygons worksheet Internet access (for looking up definitions) Procedure: 1) Students search the Internet for the definitions and record them on the Classifying Polygons worksheet. 2) Students share and compare their definitions since they may find alternative definitions. 3) Introduce or review prefixes and suffixes. 4) Students fill in the Prefixes section, and share answers. 5) Students classify the polygons found on page 2 of the worksheet. 6) With time remaining, have students explore some extension questions: *Can a polygon be regular and concave? Show or explain your reasoning. *Can a triangle be concave? Show or explain your reasoning. *Could we simplify the definition of regular to just… All sides congruent? or All angles congruent? Show or explain your reasoning. *Can you construct a pentagon with 5 congruent angles but is not considered regular? Show or explain your reasoning. *Can you construct a pentagon with 5 congruent sides but is not considered regular? Show or explain your reasoning. Notes to Teacher: I have my students search for these answers and definitions online, however I am sure that some math textbook glossaries -
PESIT Bangalore South Campus Hosur Road, 1Km Before Electronic City, Bengaluru -100 Department of Computer Science and Engineering
USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science and Engineering INTERNAL ASSESSMENT TEST – 2 Solution Date : 03-04-18 Max Marks: 40 Subject & Code : Computer Graphics and Visualization (15CS62) Section: VI CSE A,B,C Name of faculty: Dr.Sarasvathi V / Ms. Evlin Time: 08.30 - 10.00AM Note: Answer FIVE full Questions 1 Explain the scan line polygon fill algorithm with necessary diagram. 8 Determine the intersection positions of the boundaries. For each scanline that crosses the polygon, edge-intersection are sorted from left to right, then pixel positions, b/w including each intersection pair is filled. Solving pair of simultaneous linear equations. Whenever a scan line passes through a vertex, it intersects two polygon edges at that point. Scan line y’- even number of edges – two pair correctly identify interior pixels Scanline y- five edges. Here we must count vertex intersection as one point. For scanline y, the two edges sharing an intersection vertex are on opposite sides of the scan line.For scan line y’, the two intersecting edges are both above the scan line. vertex that has adjoining edges on opposite sides of an intersecting scan line should be counted as just one. Trace around clockwise or counter clockwise and observing the relative changes in y values. VI CSE A, B &C USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science and Engineering Adjustment to vertex intersection count shorten some polygon edges to split those vertices that should be counted as one intersection. -
Unit 8 – Geometry QUADRILATERALS
Unit 8 – Geometry QUADRILATERALS NAME _____________________________ Period ____________ 1 Geometry Chapter 8 – Quadrilaterals ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1.____ (8-1) Angles of Polygons – Day 1- Pages 407-408 13-16, 20-22, 27-32, 35-43 odd 2. ____ (8-2) Parallelograms – Day 1- Pages 415 16-31, 37-39 3. ____ (8-3) Test for Parallelograms – Day 1- Pages 421-422 13-23 odd, 25 -31 odd 4. ____ (8-4) Rectangles – Day 1- Pages 428-429 10, 11, 13, 16-26, 30-32, 36 5. ____ (8-5) Rhombi and Squares – Day 1 – Pages 434-435 12-19, 20, 22, 26 - 31 6.____ (8-6) Trapezoids – Day 1– Pages 10, 13-19, 22-25 7. _____ Chapter 8 Review 2 (Reminder!) A little background… Polygon is the generic term for _____________________________________________. Depending on the number, the first part of the word - “Poly” - is replaced by a prefix. The prefix used is from Greek. The Greek term for 5 is Penta, so a 5-sided figure is called a _____________. We can draw figures with as many sides as we want, but most of us don’t remember all that Greek, so when the number is over 12, or if we are talking about a general polygon, many mathematicians call the figure an “n-gon.” So a figure with 46 sides would be called a “46-gon.” Vocabulary – Types of Polygons Regular - ______________________________________________________________ _____________________________________________________________________ Irregular – _____________________________________________________________ _____________________________________________________________________ Equiangular - ___________________________________________________________ Equilateral - ____________________________________________________________ Convex - a straight line drawn through a convex polygon crosses at most two sides . -
Performance Based Learning and Assessment Task Kite Project
Performance Based Learning and Assessment Task Kite Project I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The students are instructed to: research the history, science, and design of kites; design a blueprint of their kite and find the measurements, scale factor, area, and perimeter of their blueprint; and construct and fly their kite. II. UNIT AUTHOR: Leslie Hindman, Washington-Lee High School, Arlington Public Schools III. COURSE: Geometry IV. CONTENT STRAND: Geometry, Measurement V. OBJECTIVES: Students will be able to • Design a scale model of a kite • Measure the dimensions and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model • Construct and fly a kite VI. REFERENCE/RESOURCE MATERIALS: For Research: computer access For Scale Model Drawing: ruler, protractor, graph paper, calculator, Geometry SOL formula sheet For Kites: tissue paper, plastic table cloths, small wooden dowels, straws, yarn, fishing wire, markers, scissors, tape, glue VII. PRIMARY ASSESSMENT STRATEGIES: The task includes an assessment component that performs two functions: (1) for the student it will be a checklist and provide a self-assessment and (2) for the teacher it will be used as a rubric. The attached assessment list will assess the research section, scale model drawing, and kite construction. VIII. EVALUATION CRITERIA: Assessment List, corresponding rubric. IX. INSTRUCTIONAL TIME: 2 ninety minute class periods for research, scale model drawings, and kite construction. 1/2 ninety minute class period for flying kites. Kite Project Strand Geometry, Measurement Mathematical Objective(s) Students will be able to: • Design a scale model of a kite • Find the measures of the sides and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model Related SOL • G.12 The student will make a model of a three-dimensional figure from a two- dimensional drawing and make a two-dimensional representation of a three- dimensional object. -
INTRODUCTION to QUADRILATERALS Square Rectangle Rhombus Parallelogram
INTRODUCTION TO QUADRILATERALS square rectangle rhombus parallelogram trapezoid kite Mathematicians define regular quadrilaterals according to their attributes. a) Quadrilaterals are two-dimensional closed figures that have four sides and four angles. b) The sum of their four angles is 360 degrees. c) When we trace diagonals from one opposite corner to another in a quadrilateral, these lines always intersect (pass it through) and in some cases they bisect (cut the other line in half). d) Regular quadrilaterals are named square, rectangle, parallelogram, rhombus, trapezoid, and kite. e) VERY IMPORTANT TO REMEMBER THIS! : Although these are the names of the quadrilaterals, these words are also the names of groups of quadrilaterals. Each group has its own characteristics or attributes that distinguish them from the others. For instance, the figure square belongs obviously to the group of squares, but also belongs to the groups of trapezoids, parallelograms, rectangles, rhombuses, and kites, because it shares similar attributes with them. However, the group of squares has only one figure: square. This is because no other quadrilateral shares the attributes of the squares, which are having four equal sides and four right angles. TRAPEZOIDS a) Trapezoids form the largest group of quadrilaterals. They include the figures of square, rectangle, parallelogram, rhombus, and of course, trapezoid. (the figure kite does not belong to the group of trapezoids) b) Trapezoids have only one attribute: they have at least one parallel line. Also, a. They may or may not have two or even four equal in length sides. b. They may or may not have opposite sides of the same length c. -
Solutions Key 6 Polygons and Quadrilaterals ARE YOU READY? PAGE 377 19
CHAPTER Solutions Key 6 Polygons and Quadrilaterals ARE YOU READY? PAGE 377 19. F (counterexample: with side lengths 5, 6, 10); if a triangle is an acute triangle, then it is a scalene 1. F 2. B triangle; F (counterexample: any equilateral 3. A 4. D triangle). 5. E 6-1 PROPERTIES AND ATTRIBUTES OF 6. Use Sum Thm. POLYGONS, PAGES 382–388 x ° + 42° + 32° = 180° x ° = 180° - 42° - 32° CHECK IT OUT! x ° = 106° 1a. not a polygon b. polygon, nonagon 7. Use Sum Thm. x ° + 53° + 90° = 180° c. not a polygon x ° = 180° - 53° - 90° 2a. regular, convex b. irregular, concave x ° = 37° 3a. Think: Use Polygon ∠ Sum Thm. 8. Use Sum Thm. (n - 2)180° x ° + x ° + 32° = 180° (15 - 2)180° 2 x ° = 180° - 34° 2340° 2 x ° = 146° b. (10 - 2)180° = 1440° x ° = 73° m∠1 + m∠2 + … + m∠10 = 1440° 9. Use Sum Thm. 10m∠1 = 1440° 2 x ° + x ° + 57° = 180° m∠1 = 144° 3 x ° = 180° - 57° 4a. Think: Use Polygon Ext. ∠ Sum Thm. 3 x ° = 123° m∠1 + m∠2 + … + m∠12 = 360° x ° = 41° 12m∠1 = 360° 10. By Lin. Pair Thm., 11. By Alt. Ext. Thm., m∠1 = 30° m∠1 + 56 = 180 m∠2 = 101° b. 4r + 7r + 5r + 8r = 360 m∠1 = 124° By Lin. Pair Thm., 24r = 360 By Vert. Thm., m∠1 + m∠2 = 180 r = 15 m∠2 = 56° m∠1 + 101 = 180 By Corr. Post., m∠1 = 79° 5. By Polygon Ext. ∠ Sum Thm., sum of ext. ∠ m∠3 = m∠1 = 124° Since ⊥ m, m n measures is 360°. -
When Is a Tangential Quadrilateral a Kite?
Forum Geometricorum b Volume 11 (2011) 165–174. b b FORUM GEOM ISSN 1534-1178 When is a Tangential Quadrilateral a Kite? Martin Josefsson Abstract. We prove 13 necessary and sufficient conditions for a tangential quadri- lateral to be a kite. 1. Introduction A tangential quadrilateral is a quadrilateral that has an incircle. A convex quadrilateral with the sides a, b, c, d is tangential if and only if a + c = b + d (1) according to the Pitot theorem [1, pp.65–67]. A kite is a quadrilateral that has two pairs of congruent adjacent sides. Thus all kites has an incircle since its sides satisfy (1). The question we will answer here concerns the converse, that is, what additional property a tangential quadrilateral must have to be a kite? We shall prove 13 such conditions. To prove two of them we will use a formula for the area of a tangential quadrilateral that is not so well known, so we prove it here first. It is given as a problem in [4, p.29]. Theorem 1. A tangential quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 K = 2 (pq) − (ac − bd) . p Proof. A convex quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 2 2 2 2 2 K = 4 4p q − (a − b + c − d ) (2) p according to [6] and [14]. Squaring the Pitot theorem (1) yields 2 2 2 2 a + c + 2ac = b + d + 2bd. (3) Using this in (2), we get 1 2 2 K = 4 4(pq) − (2bd − 2ac) p and the formula follows. -
Cyclic and Bicentric Quadrilaterals G
Cyclic and Bicentric Quadrilaterals G. T. Springer Email: [email protected] Hewlett-Packard Calculators and Educational Software Abstract. In this hands-on workshop, participants will use the HP Prime graphing calculator and its dynamic geometry app to explore some of the many properties of cyclic and bicentric quadrilaterals. The workshop will start with a brief introduction to the HP Prime and an overview of its features to get novice participants oriented. Participants will then use ready-to-hand constructions of cyclic and bicentric quadrilaterals to explore. Part 1: Cyclic Quadrilaterals The instructor will send you an HP Prime app called CyclicQuad for this part of the activity. A cyclic quadrilateral is a convex quadrilateral that has a circumscribed circle. 1. Press ! to open the App Library and select the CyclicQuad app. The construction consists DEGH, a cyclic quadrilateral circumscribed by circle A. 2. Tap and drag any of the points D, E, G, or H to change the quadrilateral. Which of the following can DEGH never be? • Square • Rhombus (non-square) • Rectangle (non-square) • Parallelogram (non-rhombus) • Isosceles trapezoid • Kite Just move the points of the quadrilateral around enough to convince yourself for each one. Notice HDE and HE are both inscribed angles that subtend the entirety of the circle; ≮ ≮ likewise with DHG and DEG. This leads us to a defining characteristic of cyclic ≮ ≮ quadrilaterals. Make a conjecture. A quadrilateral is cyclic if and only if… 3. Make DEGH into a kite, similar to that shown to the right. Tap segment HE and press E to select it. Now use U and D to move the diagonal vertically.