Article in Press

Total Page:16

File Type:pdf, Size:1020Kb

Article in Press ARTICLE IN PRESS Decision Support Systems 992 (2002) xxx–xxx www.elsevier.com/locate/dsw Complementing search engines with online web mining agents Filippo Menczer Department of Management Sciences, The University of Iowa, Iowa City, IA 52242, USA Abstract While search engines have become the major decision support tools for the Internet, there is a growing disparity between the image of the World Wide Web stored in search engine repositories and the actual dynamic, distributed nature of Web data. We propose to attack this problem using an adaptive population of intelligent agents mining the Web online at query time. We discuss the benefits and shortcomings of using dynamic search strategies versus the traditional static methods in which search and retrieval are disjoint. This paper presents a public Web intelligence tool called MySpiders, a threaded multiagent system designed for information discovery. The performance of the system is evaluated by comparing its effectiveness in locating recent, relevant documents with that of search engines. We present results suggesting that augmenting search engines with adaptive populations of intelligent search agents can lead to a significant competitive advantage. We also discuss some of the challenges of evaluating such a system on current Web data, introduce three novel metrics for this purpose, and outline some of the lessons learned in the process. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Web mining; Search engines; Web intelligence; InfoSpiders; MySpiders; Evaluation metrics; Estimated recency; Precision; Recall 1. Introduction reported only a year earlier [15] and growing at a very fast pace—Google alone reports over 1.6 billion With the increasing amount of information avail- URLs indexed at the time of this writing. Further- able online, the World Wide Web has rapidly become more, the Web has a dynamic nature, with pages being the main source of competitive intelligence for busi- added, deleted, moved, updated, or linked to each nesses, and consequently search engines represent other at a fast rate and in an unprincipled manner. It is invaluable decision support tools. However, disci- also heterogeneous, without imposed restrictions on plines like information retrieval and machine learning document content, language, style, or format. are facing serious difficulties in dealing with the Web Search engines are powered by state-of-the-art in a scalable way. The search technologies employed indexing algorithms, which make use of automated on the Web are faced with several features of this programs, called robots or crawlers, to continuously environment that make the task of indexing the Web a visit large parts of the Web in an exhaustive fashion. formidable challenge. As of February 1999, the size of The pages accessed undergo some performance- the publicly indexable Web was reported to be over enhancing steps, such as the removal of ‘‘noise’’ words 800 million pages [17], more than double that (too frequent to be representative), the conflation of terms via stemming and/or the use of thesauri, and the use of different weighting schemes to represent in- E-mail address: [email protected] (F. Menczer). dexed pages. Then, the pages are stored in inverted URL: http://dollar.biz.uiowa.edu/~fil. index databases. Such indexes map every term from a 0167-9236/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved. PII: S0167-9236(02)00106-9 ARTICLE IN PRESS 2 F. Menczer / Decision Support Systems xx (2002) xxx–xxx controlled vocabulary onto the collection of URLs snapshots represented by search engines’ indexes. containing that term, and are used at query time to Further, such discrepancies can only grow with the return the sets of URLs containing the terms in users’ size of the Web, diminishing the expected level of queries. performance of search engines and hindering their The key idea of all search engines is that the index effectiveness as decision support systems for compet- built by a crawl of the Web can be used many times, so itive intelligence (Web intelligence tools). that the cost of crawling and indexing is amortized over The scalability problem posed by the size and the many queries that are answered by a search engine dynamic nature of the Web may be addressed by by looking up the same static database. The two factors complementing index-based search engines with intel- that differentiate among distinct search engines are the ligent search agents at the user’s end. In this paper, we crawling and ranking algorithms. Crawling strategies discuss a type of agent-based systems inspired by determine which documents are indexed and ulti- ecological and artificial life models. Such agents can mately affect the recall (fraction of relevant pages that browse online on behalf of the user, and evolve an are retrieved) and the recency (fraction of retrieved intelligent behavior that exploits the Web’s linkage pages that are current) of a search engine. Ranking and textual cues [21,23]. algorithms determine how the documents matching a Despite its huge size, the Web forms a small-world query are sorted and ultimately affect the precision network, characteristic of social and biological sys- (fraction of retrieved pages that are relevant) of a tems, in which any two documents on the Web are on search engine. For example, the recent success of the average 19 clicks away from each other [1]. This Google search engine is generally attributed to its result suggests that ‘‘smart’’ browsing agents that can ranking algorithm, which is based on weighted counts distinguish the relevant links inside the pages might of links pointing to pages rather than on lexical be able to find the desired information in a limited similarity between pages and query [13]. time. By using this approach, the relative load of the While the indexing approach is ideal for static col- network may be switched from the blind crawlers lections of documents, in the case of the World Wide employed by search engines to intelligent browsing Web, the sets of relevant pages draw one important agents that can reach beyond search engines and mine characteristic from their environment: they are highly for new, up-to-date information. Online agents search dynamic. The static snapshots of the Web captured in only the current environment and therefore will not search indexes, left to themselves, become less and less return stale information, and will have a better chance accurate and complete. They need to be updated per- to improve the recency of the visited documents. iodically, by having the crawlers revisit the same docu- InfoSpiders [25,26] is the name of a multiagent ments to assess the changes that might have occurred model for online, dynamic information mining on the since the last visit—in addition to looking for new Web, which uses several artificial intelligence techni- URLs. Therefore, as any Web site administrator can ques to adapt to the characteristics of its networked easily verify by inspecting server logs, search engine information environment—heterogeneity, noise, de- crawlers impose a huge load on network resources, centralization, and dynamics. In this approach, each even if this is amortized over multiple queries. agent navigates from page to page following hypertext Search engine users are often faced with very large links, trying to locate new documents relevant to the hit lists, low recall, low precision, and low recency. user’s query, having limited interactions with other Despite increasing computing power and network agents. Agents mimic the intelligent browsing behav- bandwidth, no search engine is able to index more ior of human users, being able to evaluate the relevance than 16% of the Web, and it takes a search engine an of a document’s content with respect to the user’s average of 6 months to index a new document [17]. query, and to reason autonomously about future links These problems are explained by the simple obser- to be followed. In order to improve the performance of vation that the static ‘‘index snapshot’’ approach does the system, adaptation occurs at both individual and not scale with the growing size and rate of change of population levels, by evolutionary and reinforcement the Web. This scalability issue is at the root of the learning. The goal is to maintain diversity at a global discrepancies between the current Web content and its level, trying to achieve a good coverage of all different ARTICLE IN PRESS F. Menczer / Decision Support Systems xx (2002) xxx–xxx 3 aspects related to the query, while capturing the rele- 2. The InfoSpiders model vant features of the local information environment, i.e., the textual hints leading to relevant pages. InfoSpiders are an evolutionary multiagent system The idea of intelligent online crawlers such as in which each agent in a population of peers adapts to InfoSpiders is to complement search engines in order its local information environment by learning to to improve upon their precision, recall, and recency. estimate the value of hyperlinks, while the population Unfortunately, assessing whether one is successful as a whole attempts to cover all promising areas with respect to this goal is a difficult task. Traditional through selective reproduction. Fig. 1 shows the measures used to evaluate the performance of infor- representation of each InfoSpiders agent. The agent mation retrieval systems assume that (i) all systems interacts with the information environment that con- have global knowledge of the information space in the sists of the actual networked collection (the Web) plus form of an index, and (ii) the experimenter has information kept on local data structures. knowledge of the relevant set of documents for each The adaptive representation of InfoSpiders roughly test query. Neither of these assumptions holds in the consists of a list of keywords, initialized with the present case.
Recommended publications
  • Predicting the Political Alignment of Twitter Users
    2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing Predicting the Political Alignment of Twitter Users Michael D. Conover, Bruno Gonc¸alves, Jacob Ratkiewicz, Alessandro Flammini and Filippo Menczer Center for Complex Networks and Systems Research School of Informatics and Computing Indiana University, Bloomington Abstract—The widespread adoption of social media for po- Of particular interest to political campaigns is how the scale litical communication creates unprecedented opportunities to of the Twitter platform creates the potential to monitor political monitor the opinions of large numbers of politically active opinions in real time. For example, imagine a campaign individuals in real time. However, without a way to distinguish between users of opposing political alignments, conflicting signals interested in tracking voter opinion relating to a specific piece at the individual level may, in the aggregate, obscure partisan of legislation. One could easily envision applying sentiment differences in opinion that are important to political strategy. analysis tools to the set of tweets containing keyword relating In this article we describe several methods for predicting the to the bill. However, without the ability to distinguish between political alignment of Twitter users based on the content and users with different political affiliations, aggregation over structure of their political communication in the run-up to the 2010 U.S. midterm elections. Using a data set of 1,000 manually- conflicting partisan signals would likely obscure the nuances annotated individuals, we find that a support vector machine most relevant to political strategy. (SVM) trained on hashtag metadata outperforms an SVM trained Here we explore several different approaches to the problem on the full text of users’ tweets, yielding predictions of political of discriminating between users with left- and right-leaning affiliations with 91% accuracy.
    [Show full text]
  • Topical Web Crawlers: Evaluating Adaptive Algorithms
    Topical Web Crawlers: Evaluating Adaptive Algorithms FILIPPO MENCZER, GAUTAM PANT and PADMINI SRINIVASAN The University of Iowa Topical crawlers are increasingly seen as a way to address the scalability limitations of universal search engines, by distributing the crawling process across users, queries, or even client comput- ers. The context available to such crawlers can guide the navigation of links with the goal of efficiently locating highly relevant target pages. We developed a framework to fairly evaluate top- ical crawling algorithms under a number of performance metrics. Such a framework is employed here to evaluate different algorithms that have proven highly competitive among those proposed in the literature and in our own previous research. In particular we focus on the tradeoff be- tween exploration and exploitation of the cues available to a crawler, and on adaptive crawlers that use machine learning techniques to guide their search. We find that the best performance is achieved by a novel combination of explorative and exploitative bias, and introduce an evolution- ary crawler that surpasses the performance of the best non-adaptive crawler after sufficiently long crawls. We also analyze the computational complexity of the various crawlers and discuss how performance and complexity scale with available resources. Evolutionary crawlers achieve high efficiency and scalability by distributing the work across concurrent agents, resulting in the best performance/cost ratio. Categories and Subject Descriptors: H.3.3 [Information Storage
    [Show full text]
  • Supervised Machine Learning Bot Detection Techniques to Identify
    SMU Data Science Review Volume 1 | Number 2 Article 5 2018 Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Phillip George Efthimion Southern Methodist University, [email protected] Scott aP yne Southern Methodist University, [email protected] Nicholas Proferes University of Kentucky, [email protected] Follow this and additional works at: https://scholar.smu.edu/datasciencereview Part of the Theory and Algorithms Commons Recommended Citation Efthimion, hiP llip George; Payne, Scott; and Proferes, Nicholas (2018) "Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots," SMU Data Science Review: Vol. 1 : No. 2 , Article 5. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss2/5 This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots Phillip G. Efthimion1, Scott Payne1, Nick Proferes2 1Master of Science in Data Science, Southern Methodist University 6425 Boaz Lane, Dallas, TX 75205 {pefthimion, mspayne}@smu.edu [email protected] Abstract. In this paper, we present novel bot detection algorithms to identify Twitter bot accounts and to determine their prevalence in current online discourse. On social media, bots are ubiquitous. Bot accounts are problematic because they can manipulate information, spread misinformation, and promote unverified information, which can adversely affect public opinion on various topics, such as product sales and political campaigns.
    [Show full text]
  • Right and Left, Partisanship Predicts (Asymmetric) Vulnerability to Misinformation
    Harvard Kennedy School Misinformation Review1 February 2021, Volume 1, Issue 7 Creative Commons Attribution 4.0 International (CC BY 4.0) Reprints and permissions: [email protected] DOI: https://doi.org/10.37016/mr-2020-55 Website: misinforeview.hks.harvard.edu Research Article Right and left, partisanship predicts (asymmetric) vulnerability to misinformation We analyze the relationship between partisanship, echo chambers, and vulnerability to online misinformation by studying news sharing behavior on Twitter. While our results confirm prior findings that online misinformation sharing is strongly correlated with right-leaning partisanship, we also uncover a similar, though weaker, trend among left-leaning users. Because of the correlation between a user’s partisanship and their position within a partisan echo chamber, these types of influence are confounded. To disentangle their effects, we performed a regression analysis and found that vulnerability to misinformation is most strongly influenced by partisanship for both left- and right-leaning users. Authors: Dimitar Nikolov (1), Alessandro Flammini (1), Filippo Menczer (1) Affiliations: (1) Observatory on Social Media, Indiana University, USA How to cite: Nikolov, D., Flammini, A., & Menczer, F. (2021). Right and left, partisanship predicts (asymmetric) vulnerability to misinformation. Harvard Kennedy School (HKS) Misinformation Review, 1(7). Received: October 12th, 2020. Accepted: December 15th, 2020. Published: February 15th, 2021. Research questions • Is exposure to more
    [Show full text]
  • 1Evolving Heterogeneous Neural
    MIT Press Math6X9/1999/09/30:19:43 Page 1 1 Evolving Heterogeneous Neural Agents by Local Selection Filippo Menczer, W. Nick Street, and Melania Degeratu Evolutionary algorithms have been applied to the synthesis of neural architec- tures, but they normally lead to uniform populations. Homogeneous solutions, however, are inadequate for certain applications and models. For these cases, local selection may produce the desired heterogeneity in the evolving neural networks. This chapter describes algorithms based on local selection, and dis- cusses the main differences distinguishing them from standard evolutionary algorithms. The use of local selection to evolve neural networks is illustrated by surveying previous work in three domains (simulations of adaptive behav- ior, realistic ecological models, and browsing information agents), as well as reporting on new results in feature selection for classification. 1.1 Introduction The synthesis of neural architectures has been among the earliest applications of evolutionary computation [60, 1, 50, 13]. Evolutionary algorithms have been used to adjust the weights of neural networks without supervision [51, 46], to design neural architectures [49, 28, 20, 48], and to find learning rules [5]. Evolutionary algorithms, however, typically lead to uniform populations. This was appropriate in the above applications, since some optimal solution was assumed to exist. However, homogeneous solutions — neural or otherwise — are inadequate for certain applications and models, such as those requiring cover [14, 36] or Pareto [58, 24] optimization. Typical examples stem from expensive or multi-criteria fitness functions; in these cases, an evolutionary algorithm can be used to quickly find a set of alternative solutions using a simplified fitness function.
    [Show full text]
  • Vulnerable to Misinformation? Verifi!
    Vulnerable to Misinformation? Verifi! Alireza Karduni Svitlana Volkova Samira Shaikh Isaac Cho Dustin L Arendt Wenwen Dou Ryan Wesslen Pacific Northwest National UNC-Charlotte, Department of Sashank Santhanam Labarotory Computer Science UNC-Charlotte, Department of Richland, Washington Charlotte, North Carolina Computer Science {svitlana.volkova,dustin.arendt}@ {sshaikh2,wdou1}@uncc.edu Charlotte, North Carolina pnnl.gov {akarduni,icho1,rwesslen,ssantha1}@ uncc.edu ABSTRACT practitioners from multiple disciplines including political science, We present Verifi2, a visual analytic system to support the inves- psychology and computer science are grappling with the effects of tigation of misinformation on social media. Various models and misinformation and devising means to combat it [14, 44, 52, 53, 63]. studies have emerged from multiple disciplines to detect or un- Although hardly a new phenomenon, both anecdotal evidence derstand the effects of misinformation. However, there is still a and systematic studies that emerged recently have demonstrated lack of intuitive and accessible tools that help social media users real consequences of misinformation on people’s attitudes and distinguish misinformation from verified news. Verifi2 uses state- actions [2, 46]. There are multiple factors contributing to the wide- of-the-art computational methods to highlight linguistic, network, spread prevalence of misinformation online. On the content gen- and image features that can distinguish suspicious news accounts. eration end, misleading or fabricated content can be created by By exploring news on a source and document level in Verifi2, users actors with malicious intent. In addition, the spread of such mis- can interact with the complex dimensions that characterize mis- information can be aggravated by social bots.
    [Show full text]
  • Fake News,” by M
    Correction NEWS FEATURE Correction for “News Feature: The genuine problem of fake news,” by M. Mitchell Waldrop, which was first published November 16, 2017; 10.1073/pnas.1719005114 (Proc Natl Acad Sci USA 114:12631–12634). The editors note that on page 12632, right column, first para- graph, lines 4–7, “Dan Gillmor, a technology writer who heads the Knight Center for Digital Media Entrepreneurship at Arizona State University” should have instead appeared as “Dan Gillmor, professor of practice and director of the News Co/Lab at Arizona State University.” The online version has been corrected. Published under the PNAS license. www.pnas.org/cgi/doi/10.1073/pnas.1721073115 CORRECTION www.pnas.org PNAS | December 26, 2017 | vol. 114 | no. 52 | E11333 Downloaded by guest on September 24, 2021 NEWS FEATURE The genuine problem of fake news NEWS FEATURE Intentionally deceptive news has co-opted social media to go viral and influence millions. Science and technology can suggest why and how. But can they offer solutions? M. Mitchell Waldrop, Science Writer In 2010 computer scientist Filippo Menczer heard a carrying the Ebola virus. “Some politicians wanted to conference talk about some phony news reports that close the airports,” he says, “and I think a lot of that was had gone viral during a special Senate election in motivated by the efforts to sow panic.” Massachusetts. “I was struck,” says Menczer. He and his By the 2016 US presidential election, the trickle team at Indiana University Bloomington had been track- had become a tsunami. Social spam had evolved into ing early forms of spam since 2005, looking mainly at “political clickbait”: fabricated money-making posts then-new social bookmarking sites such as https://del.
    [Show full text]
  • Fake News Detection on Social Media: a Data Mining Perspective
    Fake News Detection on Social Media: A Data Mining Perspective Kai Shuy, Amy Slivaz, Suhang Wangy, Jiliang Tang \, and Huan Liuy yComputer Science & Engineering, Arizona State University, Tempe, AZ, USA zCharles River Analytics, Cambridge, MA, USA \Computer Science & Engineering, Michigan State University, East Lansing, MI, USA yfkai.shu,suhang.wang,[email protected], [email protected], \ [email protected] ABSTRACT on, and discuss the news with friends or other readers on social media. For example, 62 percent of U.S. adults get Social media for news consumption is a double-edged sword. news on social media in 2016, while in 2012, only 49 per- On the one hand, its low cost, easy access, and rapid dissem- cent reported seeing news on social media1. It was also ination of information lead people to seek out and consume found that social media now outperforms television as the news from social media. On the other hand, it enables the major news source2. Despite the advantages provided by wide spread of \fake news", i.e., low quality news with in- social media, the quality of news on social media is lower tentionally false information. The extensive spread of fake than traditional news organizations. However, because it news has the potential for extremely negative impacts on is cheap to provide news online and much faster and easier individuals and society. Therefore, fake news detection on to disseminate through social media, large volumes of fake social media has recently become an emerging research that news, i.e., those news articles with intentionally false infor- is attracting tremendous attention.
    [Show full text]
  • Friendship Prediction and Homophily in Social Media Luca Maria Aiello, Alain Barrat, Rossano Schifanella, C
    Friendship prediction and homophily in social media Luca Maria Aiello, Alain Barrat, Rossano Schifanella, C. Cattuto, Benjamin Markines, Filippo Menczer To cite this version: Luca Maria Aiello, Alain Barrat, Rossano Schifanella, C. Cattuto, Benjamin Markines, et al.. Friend- ship prediction and homophily in social media. ACM Transactions on the Web, http://tweb.acm.org/, 2012, 6 (2), pp.9. 10.1145/2180861.2180866. hal-00718085 HAL Id: hal-00718085 https://hal.archives-ouvertes.fr/hal-00718085 Submitted on 16 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Friendship prediction and homophily in social media LUCA MARIA AIELLO Department of Computer Science, University of Turin, Italy ALAIN BARRAT Centre de Physique Th´eorique (CNRS UMR 6207), Marseille, France Complex Networks and Systems Laboratory, ISI Foundation, Turin, Italy ROSSANO SCHIFANELLA Department of Computer Science, University of Turin, Italy CIRO CATTUTO Complex Networks and Systems Laboratory, ISI Foundation, Turin, Italy BENJAMIN MARKINES FILIPPO MENCZER School of Informatics and Computing, Indiana University, Bloomington, IN, USA Web 2.0 applications have attracted considerable attention because their open-ended nature allows users to create lightweight semantic scaffolding to organize and share content.
    [Show full text]
  • Combating Fake News: an Agenda for Research and Action May 2017
    Combating Fake News: An Agenda for Research and Action May 2017 Conference held February 17–18, 2017 Organized by Matthew Baum (Harvard), David Lazer (Northeastern), and Nicco Mele (Harvard) Sponsored by Final report written by David Lazer †‡, Matthew Baum ‡, Nir Grinberg †‡, Lisa Friedland †‡, Kenneth Joseph†‡, Will Hobbs †‡, and Carolina Mattsson † Drawn from presentations by Yochai Benkler (Harvard), Adam Berinsky (MIT), Helen Boaden (BBC), Katherine Brown (Council on Foreign Relations), Kelly Greenhill (Tufts and Harvard), David Lazer (Northeastern), Filippo Menczer (Indiana), Miriam Metzger (UC Santa Barbara), Brendan Nyhan (Dartmouth), Eli Pariser (UpWorthy), Gordon Pennycook (Yale), Lori Robertson (FactCheck.org), David Rothschild (Microsoft Research), Michael Schudson (Columbia), Adam Sharp (formerly Twitter), Steven Sloman (Brown), Cass Sunstein (Harvard), Emily Thorson (Boston College), and Duncan Watts (Microsoft Research). † Northeastern University ‡ Harvard University Table of Contents 1. Executive Summary 3 2. Section 1 | The State of Misinformation 4 3. Section 2 | Foundations of Fake News 6 The Psychology of Fake News 6 How Fake News Spreads 7 4. Section 3 | Action: Stemming Fake news 9 Making the Discussion Bipartisan 9 Making the Truth “Louder” 9 Building a Shared Infrastructure for Social Media Research 11 5. Section 4 | Research Directions: What We Need to Find Out 12 6. Conclusion 13 7. References 14 8. Appendix: Conference Schedule 17 2 Executive Summary Recent shifts in the media ecosystem raise new concerns about the vulnerability of democratic societies to fake news and the public’s limited ability to contain it. Fake news as a form of misinformation benefits from the fast pace that information travels in today’s media ecosystem, in particular across social media platforms.
    [Show full text]
  • A Decade of Social Bot Detection∗
    A Decade of Social Bot Detection∗ STEFANO CRESCI, Institute of Informatics and Telematics, National Research Council (IIT-CNR) ACM Reference Format: Stefano Cresci. 2020. A Decade of Social Bot Detection. Commun. ACM 1, 1 (July 2020), 16 pages. https://doi.org/10.1145/ nnnnnnn.nnnnnnn On the morning of November 9th 2016, the world woke up to the shocking outcome of the US Presidential elections: Donald Trump was the 45th President of the United States of America. An unexpected event that still has tremendous consequences all over the world. Today, we know that a minority of social bots – automated social media accounts mimicking humans – played a central role in spreading divisive messages and disinformation, possibly contributing to Trump’s victory [16, 19]. In the aftermath of the 2016 US elections, the world started to realize the gravity of widespread deception in social media. Following Trump’s exploit, we witnessed to the emergence of a strident dissonance between the multitude of efforts for detecting and removing bots, and the increasing effects that these malicious actorsseem to have on our societies [27, 29]. This paradox opens a burning question: What strategies should we enforce in order to stop this social bot pandemic? In these times – during the run-up to the 2020 US elections – the question appears as more crucial than ever. Particularly so, also in light of the recent reported tampering of the electoral debate by thousands of AI-powered accounts1. What stroke social, political and economic analysts after 2016 – deception and automation – has been however a matter of study for computer scientists since at least 2010.
    [Show full text]
  • Informatics Researchers Throttle Notion of Search Engine Dominance 7 August 2006
    Informatics researchers throttle notion of search engine dominance 7 August 2006 Search engines are not biased toward popular explained through rich-get-richer models that Web sites, and may even be egalitarian in the way require knowledge of the prestige of each node in they direct traffic, say Indiana University School of the network. However, those who create and link Informatics researchers. Their study, "Topical Web pages may not know the prestige values of interests and the mitigation of search engine bias," target pages. in the Aug. 7-11 issue of the Proceedings of the National Academy of Sciences, challenges the In another study, "Scale-Free Network Growth by view of a Web-dominating "Googlearchy" in which Ranking," (May 27 Physical Review Letters), the search engines like Google push all Web traffic to Menczer, Fortunato, and Flammini showed that for established, mainstream Web sites. a search engine to give rise to a long tail network, it must simply sort nodes according to any prestige "Empirical data do not support the idea of a vicious measure, even if the exact values are unknown. If cycle amplifying the rich-get-richer dynamic of the new nodes are linked to old ones according to their Web," said Filippo Menczer, associate professor of ranking order, a long tail emerges. informatics and computer science. "Our study demonstrates that popular sites receive on "By sorting results, search engines give us a simple average far less traffic than predicted by the mechanism to interpret how the Web grows and Googlearchy theory and that the playing field is how traffic is distributed among Web sites," said more even." Menczer.
    [Show full text]