Species Diversity and Distribution of the Genus Colpomenia (Scytosiphonaceae, Phaeophyceae) Along the Coast of China

Total Page:16

File Type:pdf, Size:1020Kb

Species Diversity and Distribution of the Genus Colpomenia (Scytosiphonaceae, Phaeophyceae) Along the Coast of China Research Article Algae 2019, 34(3): 217-228 https://doi.org/10.4490/algae.2019.34.7.22 Open Access Species diversity and distribution of the genus Colpomenia (Scytosiphonaceae, Phaeophyceae) along the coast of China Xiao-Han Song1,2,3, Zi-Min Hu1,2,*, Zhong-Min Sun4, Stefano G. A. Draisma5, Pablo Fresia6 and De-Lin Duan1,2 1Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Acad- emy of Sciences, Qingdao 266071, China 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 3University of Chinese Academy Sciences, Beijing 100094, China 4Laboratory of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 5Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, 15 Karnjana- vit Road, 90112, Hat Yai, Songkhla, Thailand 6Unidad de Bioinformatica, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay The marine brown algal genus Colpomenia has a worldwide distribution, with five species reported in Korea and Ja- pan. However, no studies to date attempted to identify the number of species and geographical distribution of Colpome- nia along Chinese coast. To fill the biodiversity knowledge gap, we analyzed 63 mitochondrial cox3 and 62 mitochondrial atp6 sequences of Colpomenia specimens collected from 30 localities along the Chinese coast. Maximum likelihood and Bayesian inference trees suggest the presence of at least three Colpomenia species (i.e., C. peregrina, C. claytoniae, and C. sinuosa) in China. C. peregrina and C. claytoniae are documented for the first time. C. sinuosa was only found in the South China Sea and its distribution didn’t overlap with that of C. peregrina which was found in the Yellow-Bohai Sea and the East China Sea. C. claytoniae appears to be confined to three isolated islands in the East and the South China Sea, where it occurs in sympatry with, respectively, C. peregrina and C. sinuosa. Future study can focus on comparing eco- physiological differences of Colpomenia species in response to environmental variables and exploring possible genetic hybridization / introgression at inter-specific contact zones. Key Words: distribution range; genetic variation; new record species; phylogenetic diversity INTRODUCTION Colpomenia (Endlicher) Derbès et Solier (Scytosi- or lower intertidal zone. Due to developmental varia- phonaceae, Phaeophyceae) is a cosmopolitan brown al- tion, Colpomenia has been traditionally divided into two gal genus frequently found attached to rock with gentle morphological groups: (1) globular species producing slopes or attached to other marine macroalgae at middle plurilocular and unilocular zoidangia on crustose spo- This is an Open Access article distributed under the Received January 12, 2019, Accepted July 22, 2019 terms of the Creative Commons Attribution Non-Com- Corresponding Author mercial License (http://creativecommons.org/licenses/by-nc/3.0/) which * permits unrestricted non-commercial use, distribution, and reproduction E-mail: [email protected] in any medium, provided the original work is properly cited. Tel: +86-532-8289-8783, Fax: +86-532-8289-8556 Copyright © 2019 The Korean Society of Phycology 217 http://e-algae.org pISSN: 1226-2617 eISSN: 2093-0860 Algae 2019, 34(3): 217-228 rophytes, and (2) species with elongate or tubular thalli multiple introductions might occur among Australasia, producing only unilocular zoidangia on sporophytes Europe, and America. (Kogame et al. 1999, Boo et al. 2011, Lee et al. 2012). Chinese coast, in particular the Yellow-Bohai Sea However, Santiañez et al. (2018) recently removed the tu- (YBS), geographically adjoins and shares homologous bular species [i.e., Colpomenia bullosa (D. A. Saunders) coastal marine environments with the Korean Peninsula Yamada, Colpomenia durvillei (Bory) M. E. Ramírez, and and the Japanese Archipelago (Tyberghein et al. 2012). Colpomenia wynnei K. M. Lee, R. Riosmena-Rodriguez, Similar coastal configurations in those neighboring areas K. Kogame et S. M. Boo] from Colpomenia and proposed during the LGM (Wang 1999), produced seaweed floras them as a new genus Dactylosiphon Santiañez, K. M. Lee, that are closely related taxonomically (Tseng 1983, Yoshi- S. M. Boo et Kogame based on combined mitochondrial da et al. 2015). In addition, the Kuroshio Current can con- and chloroplast phylogenies. nect populations of marine species, including seaweeds, The globular Colpomenia species usually contain oxy- along the coasts of East Asia (Barkley 1970, Hu et al. 2013, gen generated by photosynthesis, making them buoyant. Li et al. 2017). The coastal currents in China (e.g., the Bo- When oysters are the substrate, they can become buoy- hai Sea coastal current, the Yellow Sea coastal current and ant and drift with the current, earning members of the the East China Sea coastal current) in different seasons globular species the moniker “oyster thieves” (Black- can also contribute to multiple dispersal to a great ex- ler 1967, Vandermeulen 1984). Adding to such mischief tent. Taken together, these historical climate change and caused by the globular species, floating thalli can travel oceanic currents can interplay and ultimately affect the long distances and spread Colpomenia species in oyster richness, diversity and distribution patterns of present- mariculture (Lee et al. 2014a). Therefore, the behavior day seaweeds in China, Korea, and Japan (e.g., Chondrus and mobility of globular Colpomenia species make them ocellatus Holmes, Hu et al. 2015, Sargassum fusiforme ideal for studying how maritime transportation affects (Harvey) Setchel, Hu et al. 2017). biodiversity trends, population genetic structure and Colpomenia species have broad latitudinal distribu- biogeographical patterns of seaweeds. tions in the West Pacific (Guiry and Guiry 2019). For ex- Ten Colpomenia species have been recognized (Guiry ample, C. peregrina appears in coastal temperate waters and Guiry 2019). Five species have been recorded from in the northern hemisphere of Japan, Korea, and Rus- the coasts of Korea and Japan, i.e., C. claytoniae S. M. sia (e.g., Perestenko 1980, Lee et al. 2014a, Yoshida et al. Boo, K. M. Lee, G. Y. Cho et W. Nelson (Boo et al. 2011), C. 2015) and in the southern hemisphere of southern Aus- ecuticulata M. J. Parsons (Lee and Kang 2001), C. expansa tralia and New Zealand (e.g., Harper et al. 2012, Nelson (D. A. Saunders) Y. -P. Lee (Lee 2008, Lee et al. 2012), C. 2013, Scott 2017), respectively. Similar patterns have peregrina Sauvageau (Kogame et al. 1999, Boo 2010), and been reported for C. claytoniae (e.g., Boo and Ko 2012, C. sinuosa (Mertens ex Roth) Derbès et Solier (Boo 2010, Nelson 2013). China, which stretches over some 18,000 Yoshida et al. 2015). These studies indicate that Colpo- kilometers of coastlines and has considerable environ- menia species diversity in the northwest Pacific is rich. mental shifts (e.g., the significantly different sea surface C. sinuosa is common in Korea, Japan, and China (e.g., temperature, annual precipitation and solar radiation Okamura 1936, Tseng 1983, Kogame 1997, Cho et al. 2005, between northern and southern coast) (Ma et al. 2017), Lee et al. 2013). Cho et al. (2009) presented a first glimpse is the main component of the China Sea Coastal Province at genetic diversity of C. sinuosa on a global scale. They (Longhurst 2007) and geographically located near Japan analyzed nuclear internal transcribed spacers of the ri- and Korea. However, for the genus Colpomenia, only C. bosomal cistron (ITS) and chloroplast encoded large sinuosa has been reported in the past few decades (Tseng subunit of the ribulose-1,5-bisphosphate carboxylase 1983, 2008, Liu 2008), and there has been no study of gene (rbcL) and found that the unique tandem repeats the quantity and distribution of Colpomenia species. We in the ITS region correspond to the geographical distri- thus speculate that previous studies (Tseng 1983) may bution of C. sinuosa. Lee et al. (2013) observed three ge- have underestimated the number of Colpomenia species netic lineages within C. sinuosa around the world using along the coast of mainland China. Furthermore, climate mitochondrial cytochrome c oxidase subunit III (cox3) change induced a northward shift of temperature zones and chloroplast rbcL. They suggested that C. sinuosa had in China, together with ocean acidification and coastal broad and complicated biogeographical patterns in the erosion, have exerted the necessary obligation of pro- Indo-Pacific Ocean region where the Red Sea was likely tecting seaweed species diversity (Zheng et al. 2018). The a refugium before the Last Glacial Maximum (LGM), and present study focuses on Colpomenia specimens collect- https://doi.org/10.4490/algae.2019.34.7.22 218 Song et al. Colpomenia Diversity in China nomic DNA were checked by OD260 / OD280 ratios and 1% agarose gel electrophoresis. Polymerase chain reaction amplification and DNA sequencing Based on a recent molecular study of Colpomenia (Lee et al. 2014a), mitochondrial cox3 and atp6 were selected as gene markers. Primer sets F49 / R20 and F25P / R754P (Lee et al. 2014a) were used to amplify, respectively, cox3 and atp6 fragments from 63 specimens. Polymerase chain reaction (PCR) amplification was performed in 50 μL volumes, each containing 25 μL 2× Es Taq Master Mix (+dye) (CWBIO, Beijing, China), 10 pmol of each primer and 6 ng of template DNA. For the cox3 gene, PCR reac- tions consisted of an initial denaturation at 95°C for 4 min, followed by 35 amplification cycles (denaturation at 94°C for 45 s, annealing at 53°C for 1 min, extension at 72°C for 1 min) with a final extension at 72°C for 10 min. Sampling sites and distribution of Colpomenia along the Fig. 1. For the atp6 gene, PCR reactions consisted of an initial coast of China. denaturation at 95°C for 4 min, followed by 35 amplifi- cation cycles (denaturation at 94°C for 30 s, annealing at ed from the entire Chinese coast.
Recommended publications
  • Supplementary Materials: Figure S1
    1 Supplementary materials: Figure S1. Coral reef in Xiaodong Hai locality: (A) The southern part of the locality; (B) Reef slope; (C) Reef-flat, the upper subtidal zone; (D) Reef-flat, the lower intertidal zone. Figure S2. Algal communities in Xiaodong Hai at different seasons of 2016–2019: (A) Community of colonial blue-green algae, transect 1, the splash zone, the dry season of 2019; (B) Monodominant community of the red crust alga Hildenbrandia rubra, transect 3, upper intertidal, the rainy season of 2016; (C) Monodominant community of the red alga Gelidiella bornetii, transect 3, upper intertidal, the rainy season of 2018; (D) Bidominant community of the red alga Laurencia decumbens and the green Ulva clathrata, transect 3, middle intertidal, the dry season of 2019; (E) Polydominant community of algal turf with the mosaic dominance of red algae Tolypiocladia glomerulata (inset a), Palisada papillosa (center), and Centroceras clavulatum (inset b), transect 2, middle intertidal, the dry season of 2019; (F) Polydominant community of algal turf with the mosaic dominance of the red alga Hypnea pannosa and green Caulerpa chemnitzia, transect 1, lower intertidal, the dry season of 2016; (G) Polydominant community of algal turf with the mosaic dominance of brown algae Padina australis (inset a) and Hydroclathrus clathratus (inset b), the red alga Acanthophora spicifera (inset c) and the green alga Caulerpa chemnitzia, transect 1, lower intertidal, the dry season of 2019; (H) Sargassum spp. belt, transect 1, upper subtidal, the dry season of 2016. 2 3 Table S1. List of the seaweeds of Xiaodong Hai in 2016-2019. The abundance of taxa: rare sightings (+); common (++); abundant (+++).
    [Show full text]
  • Colpomenia Sinuosa (Mertens Ex Roth) Derbès & Solier, 1851
    Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier, 1851 AphiaID: 145857 . Chromista (Reino) > Harosa (Subreino) > Heterokonta (Infrareino) > Ochrophyta (Filo) > Phaeista (Subfilo) > Limnista (Infrafilo) > Fucistia (Superclasse) > Phaeophyceae (Classe) > Ectocarpales (Ordem) > Scytosiphonaceae (Familia) © Vasco Ferreira Sinónimos Asperococcus sinuosus (Mertens ex Roth) Bory de Saint-Vincent, 1832 Asperococcus sinuosus (C.Agardh) Zanardini, 1841 Colpomenia sinuosa f. typica Setchell & N.L.Gardner, 1925 Encoelium sinuosum (Mertens ex Roth) C.Agardh, 1820 Encoelium vesicatum (Harvey) Kützing, 1849 1 Hydroclathrus sinuosus (Mertens) ex Roth) Zanardini, 1843 Soranthera leathesiformis P.Crouan & H.Crouan, 1865 Stilophora sinuosa (Mertens ex Roth) C.Agardh, 1827 Stilophora vesicata Harvey, 1834 Tremella cerina Clemente, 1807 Tremella rugosula Clemente, 1807 Ulva sinuosa Mertens ex Roth, 1806 Referências additional source Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. , available online at http://www.algaebase.org [details] basis of record Guiry, M.D. (2001). Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 20-38[details] additional source Silva, P.C.; Basson, P.W.; Moe, R.L. (1996). Catalogue of the Benthic Marine Algae of the Indian Ocean. University of California Publications in Botany. 79, xiv+1259 pp. ISBN 0–520–09810–2., available online athttps://books.google.com/books?id=vuWEemVY8WEC&pg=PA5 [details] additional source Fredericq, S., T. O. Cho, S. A. Earle, C. F. Gurgel, D. M. Krayesky, L.
    [Show full text]
  • Successions of Phytobenthos Species in a Mediterranean Transitional Water System: the Importance of Long Term Observations
    A peer-reviewed open-access journal Nature ConservationSuccessions 34: 217–246 of phytobenthos (2019) species in a Mediterranean transitional water system... 217 doi: 10.3897/natureconservation.34.30055 RESEARCH ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations Antonella Petrocelli1, Ester Cecere1, Fernando Rubino1 1 Water Research Institute (IRSA) – CNR, via Roma 3, 74123 Taranto, Italy Corresponding author: Antonella Petrocelli ([email protected]) Academic editor: A. Lugliè | Received 25 September 2018 | Accepted 28 February 2019 | Published 3 May 2019 http://zoobank.org/5D4206FB-8C06-49C8-9549-F08497EAA296 Citation: Petrocelli A, Cecere E, Rubino F (2019) Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations. In: Mazzocchi MG, Capotondi L, Freppaz M, Lugliè A, Campanaro A (Eds) Italian Long-Term Ecological Research for understanding ecosystem diversity and functioning. Case studies from aquatic, terrestrial and transitional domains. Nature Conservation 34: 217–246. https://doi.org/10.3897/ natureconservation.34.30055 Abstract The availability of quantitative long term datasets on the phytobenthic assemblages of the Mar Piccolo of Taranto (southern Italy, Mediterranean Sea), a lagoon like semi-enclosed coastal basin included in the Italian LTER network, enabled careful analysis of changes occurring in the structure of the community over about thirty years. The total number of taxa differed over the years. Thirteen non-indigenous species in total were found, their number varied over the years, reaching its highest value in 2017. The dominant taxa differed over the years.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • New Records of Benthic Brown Algae (Ochrophyta) from Hainan Island (1990 - 2016)
    Titlyanova TV et al. Ochrophyta from Hainan Data Paper New records of benthic brown algae (Ochrophyta) from Hainan Island (1990 - 2016) Tamara V. Titlyanova1, Eduard A. Titlyanov1, Li Xiubao2, Bangmei Xia3, Inka Bartsch4 1National Scientific Centre of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia; 2Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China; 4Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany Corresponding author: E Titlyanov, e-mail: [email protected] Abstract This study reports on the intertidal and shallow subtidal brown algal flora from Hainan Island in the South China Sea, based on extensive sample collection conducted in 1990, 1992 and 2008−2016. The analysis revealed 27 new records of brown algae for Hainan Island, including 5 species which also constitute new records for China. 21 of these species are de- scribed with photographs and an annotated list of all species with information on life forms, habitat (localities and tidal zones) and their geographical distribution is provided. Keywords: Hainan Island, new records, seaweeds, brown algae Introduction et al. 1994; Hodgson & Yau 1997; Tadashi et al. 2008). Overall, algal species richness also changed. Hainan Island is located on the subtropical northern Partial inventory of the benthic flora of Hainan has periphery of the Pacific Ocean in the South China Sea already been carried out (Titlyanov et al. 2011a, 2015, 2016; (18˚10′-20˚9′ N, 108˚37′-111˚1′ E).
    [Show full text]
  • Taxonomic and Molecular Phylogenetic Studies in The
    Taxonomic and molecular phylogenetic studies in the Scytosiphonaceae (Ectocarpales, Phaeophyceae) [an abstract of Title dissertation and a summary of dissertation review] Author(s) Santiañez, Wilfred John Eria Citation 北海道大学. 博士(理学) 甲第13137号 Issue Date 2018-03-22 Doc URL http://hdl.handle.net/2115/70024 Rights(URL) https://creativecommons.org/licenses/by-nc-sa/4.0/ Type theses (doctoral - abstract and summary of review) Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information Wilfred_John_Eria_Santiañez_abstract.pdf (論文内容の要旨) Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Abstract of Doctoral Dissertation Degree requested Doctor of Science Applicant’s name Wilfred John Eria Santiañez Title of Doctoral Dissertation Taxonomic and molecular phylogenetic studies in the Scytosiphonaceae (Ectocarpales, Phaeophyceae) 【カヤモノリ科(褐藻綱シオミドロ目)の分類学的および分子系統学的研究】 The systematics of the brown algal family Scytosiphonaceae poses an interesting question due to the inconsistencies between the taxonomies and molecular phylogenies of its members. The complexity of the Scytosiphonaceae is also highlighted in the discovery of several new species possessing morphological characters that were intermediate to at least two genera, consequently blurring generic boundaries. As such, it has been widely accepted that traditional characters used to define genera in the family (e.g., thallus morphology, thallus construction, and shape and nature of plurangial sori) were unreliable. In this study, I attempted to resolve some of the glaring problems in the taxonomy and molecular phylogeny of several genera in the Scytosiphonaceae by integrating information on their morphologies, molecular phylogenies, and life histories. I focused my studies on the relatively under-examined representatives from tropical to subtropical regions of the Indo-Pacific as most studies have been conducted on the subtropical to temperate members of the family.
    [Show full text]
  • Ectocarpus: an Evo‑Devo Model for the Brown Algae Susana M
    Coelho et al. EvoDevo (2020) 11:19 https://doi.org/10.1186/s13227-020-00164-9 EvoDevo REVIEW Open Access Ectocarpus: an evo-devo model for the brown algae Susana M. Coelho1* , Akira F. Peters2, Dieter Müller3 and J. Mark Cock1 Abstract Ectocarpus is a genus of flamentous, marine brown algae. Brown algae belong to the stramenopiles, a large super- group of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context. Keywords: Ectocarpus, Life-cycle, Sex determination, Gametophyte, Sporophyte, Brown algae, Marine, Complex multicellularity, Phaeoviruses Natural habitat and life cycle Ectocarpus is a cosmopolitan genus, occurring world- Ectocarpus is a genus of small, flamentous, multicellu- wide in temperate and subtropical regions, and has been lar, marine brown algae within the order Ectocarpales. collected on all continents except Antarctica [1]. It is pre- Brown algae belong to the stramenopiles (or Heter- sent mainly on rocky shores where it grows on abiotic okonta) (Fig. 1a), a large eukaryotic supergroup that (rocks, pebbles, dead shells) and biotic (other algae, sea- is only distantly related to animals, plants and fungi.
    [Show full text]
  • Algae-2019-34-3-217-Suppl2.Pdf
    Algae July 22, 2019 [Epub ahead of print] Supplementary Table S2. Mitochondrial cox3 and atp6 sequences retrieved from GenBank in this study Accession No. Species name Reference cox3 atp6 Colpomenia bullosa JQ918798 - Lee et al. (2012) JQ918799 - C. claytoniae HQ833813 - Boo et al. (2011) HQ833814 - C. ecuticulata HQ833775 - Boo et al. (2011) HQ833776 - C. expansa HQ833780 - Boo et al. (2011) HQ833781 - C. durvillei JQ918811 - Lee et al. (2012) JQ918812 - C. peregrina JX027338 JX027298 JX027362 JX027330 Lee et al. (2014a) JX027370 JX027336 JX027375 JX027337 C. phaeodactyla JQ918814 - Lee et al. (2012) JQ918815 - C. ramosa JQ918789 - Lee et al. (2012) C. sinuosa HQ833777 - Boo et al. (2011) HQ833778 - JX944760 - Lee et al. (2013) JX944761 - C. tuberculata HQ833773 - Boo et al. (2011) HQ833774 - Ectocarpus siliculosus NC030223 NC030223 Cock et al. (2010) Scytosiphon lomentaria NC025240 NC025240 Liu et al. (2016) -, no sequences found in GenBank. REFERENCES M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y. & Wincker, P. 2010. The Boo, S. M., Lee, K. M., Cho, G. Y. & Nelson, W. 2011. Colpome- Ectocarpus genome and the independent evolution of nia claytonii sp. nov. (Scytosiphonaceae, Phaeophyceae) multicellularity in brown algae. Nature 465:617-621. based on morphology and mitochondrial cox3 sequenc- Lee, K. M., Boo, G. H., Coyer, J. A., Nelson, W. W., Miller, K. A. & es. Bot. Mar. 54:159-167. Boo, S. M. 2014a. Distribution patterns and introduction Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., pathways of the cosmopolitan brown alga Colpomenia Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J.
    [Show full text]
  • Genetic Diversity and Distribution of Edible Scytosiphonacean Algae from Ulleungdo Island, Korea
    Research Article Algae 2019, 34(3): 229-236 https://doi.org/10.4490/algae.2019.34.7.8 Open Access Genetic diversity and distribution of edible scytosiphonacean algae from Ulleungdo Island, Korea Ju Il Lee1, Hyeong Seok Jang2, Ga Youn Cho3, Sung Jin Yoon4 and Sung Min Boo1,5,* 1Institute of Environment and Biology, Chungnam National University, Daejeon 34134, Korea 2National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea 3National Institute of Biological Resources, Incheon 22869, Korea 4Ulleungdo-Dokdo Ocean Science Station, Korean Institute of Ocean Science and Technology, Busan 49111, Korea 5Department of Biology, Chungnam National University, Daejeon 34134, Korea Despite the abundance of seaweeds from Ulleungdo Island, genetic diversity and distribution of edible brown al- gae from the island remain unstudied. We analyzed mitochondrial cox3 sequences from 86 specimens collected in the island and from the nearby Korean Peninsula. Our cox3 phylogeny for the first time confirmed the occurrence of fives species from Ulleungdo Island; Petalonia binghamiae, P. fascia, Planosiphon zosterifolius, and two cryptic species previ- ously identified as Scytosiphon lomentaria. P. binghamiae was relatively homogeneous with three haplotypes. P. fascia comprised four haplotypes, which were grouped into two genetic lineages. S. lomentaria was heterogeneous with nine haplotypes and was divided into two cryptic species; one species clustered with taxa from cold waters while the other clustered with taxa from temperate and cold waters. Low genetic diversity in P. binghamiae while high genetic diversity in S. lomentaria from Ulleungdo Island are comparable to patterns observed from other species from the Korean pen- insula. Ulleungdo Island, although small in size, is an ideal field laboratory to investigate genetic diversity and distribu- tions of economic marine algae.
    [Show full text]
  • ``Transcriptional and Epigenetic Regulation in the Marine Diatom
    “Transcriptional and Epigenetic regulation in the marine diatom Phaeodactylum tricornutum” Florian Maumus To cite this version: Florian Maumus. “Transcriptional and Epigenetic regulation in the marine diatom Phaeodactylum tricornutum”. Biochemistry [q-bio.BM]. Ecole Normale Supérieure de Paris - ENS Paris, 2009. English. tel-00475588 HAL Id: tel-00475588 https://tel.archives-ouvertes.fr/tel-00475588 Submitted on 22 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de Doctorat “Transcriptional and Epigenetic regulation in the marine diatom Phaeodactylum tricornutum” Présentée par: Florian Maumus Soutenance le 6 juillet 2009 devant les membres du jury: Prof. Martine Boccara Dr. Chris Bowler Dr. Pascale Lesage Prof. Olivier Panaud Jury présidé par Prof. Pierre Capy Thesis director: Chris Bowler CNRS UMR 8186 Département de Biologie Ecole Normale Supérieure 46 rue d’Ulm, Paris, France External supervisors: Vincent Colot CNRS UMR 8186 Département de Biologie Ecole Normale Supérieure 46 rue d’Ulm, Paris, France David Moreira CNRS UMR 8079 Unité d'Ecologie, Systématique et Evolution Université Paris-Sud, bâtiment 360 91405 Orsay Cedex, France. I would like to dedicate this work to my parents Chantal and Olivier, my sister Laure, and my little princess Diana for their love, comprehension, and support.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • A Review on the Seaweed Resources of Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access A review on the seaweed resources of Myanmar Abstract Volume 10 Issue 4 - 2021 A total of 261species of marine benthic algae under 121genera,comprising 72 taxa 1 2 belonging to 26 genera of Chlorophyta, 45 taxa belonging to 18 genera of Phaeophyta and U Soe-Htun, Soe Pa Pa Kyaw, Mya Kyawt 3 3 3 144 taxa belonging to 77 genera of Rhodophyta growing along the Tanintharyi Coastal Wai, Jar San, SeinMoh Moh Khaing, Chaw 4 Zone, Deltaic Coastal Zone and Rakhine Coastal Zone, were recorded. In general, diversity Thiri Pyae Phyo Aye ratios of seaweeds occur in 3 Coastal Zones is 3:1:4 between the Tanintharyi Coastal Zone 1Marine Science Association, Myanmar (MSAM), Myanmar (146 taxa), Deltaic Coastal Zone (53 taxa) and Rakhine Coastal Zone (224 taxa).Among 2Department of Marine Science, Mawlamyine University, these, 89 species of marine benthic algae, including 25 taxa of green, 9 taxa of brown Myanmar and 55 taxa of red algae, were newly recorded from Myanmar waters. The latitudinal 3Department of Marine Science, Sittway University, Myanmar 4Department of Marine Science, Pathein University, Myanmar distribution of marine benthic algae along the Myanmar Coastal Zones reveals 25 species of marine benthic algae which uniquely occur in low lattitute in the Tanintharyi Coastal Correspondence: U Soe Htun, Marine Science Association, Zone and 111 species which exclusively predominate in high lattitutein the Rakhine Coastal Myanmar (MSAM), Myanmar, Email Zone. Monostroma, Ulva, Caulerpa and Codium of Chlorophyta, Dictyota, Spatoglossum, Hormophysa, Turbinaria and Sargassum of Phaeophyta and Phycocalidia, Dermonema, Received: July 19, 2021 | Published: August 16, 2021 Gelidiella, Halymenia, Solieria, Hypnea, Gracilaria,Gracilariopsis, Hydopuntia, Catenella and Acanthophora of Rhodophyta could be considered as of dependable natural resources of Myanmar to produce the sea-vegetables and phycocolloids.
    [Show full text]