Green Shorelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Armoring the Coast: the Effects of Bulkheads on Salt Marsh Habitats
Armoring the Coast: The Effects of Bulkheads on Salt Marsh Habitats Presented by the Carolina Environmental Program Morehead City Field Site Students: Joseph Hester, Alison Kitto, Elizabeth Newland, Erika Poarch, Ashley Smyth and Zachary Williams Under the direction of Institute of Marine Sciences faculty members: Rachel T. Noble Michael F. Piehler Charles “Pete” Peterson Capstone Project: Carolina Environmental Program, Morehead City Field Site University of North Carolina at Chapel Hill Fall 2006 Acknowledgements This project was successful due to the combined efforts of many people. We would like to thank Rachel Noble for her words of wisdom and encouragement through the tough spots. Without Mike Piehler, this project would not have been successful. Mike was always available to answer questions and provide guidance. We thank Charles “Pete” Peterson, for just being Pete. Thanks to Reagan Converse for help in organizing this project and sorting through aerial photographs. Denene Blackwood is deserving of an extra special recognition. Her help in the field, on the boat, in the lab, and with questions was the reason this project was successful. Thanks to Suzanne Thompson for help with laboratory analysis. We would also like to thank everyone at UNC-IMS for their support and help throughout the semester. ii Abstract Shoreline hardening structures, such as bulkheads, are becoming an increasingly popular method of mitigating shoreline erosion. However, few studies have examined the ecological impacts of such structures. Salt marshes are highly productive ecosystems that act as a medium of exchange between marine and terrestrial environments. Bulkheads are thought to disrupt the natural processes associated with salt marshes. -
Analysis of Existing Data on Lake Union/Ship Canal
Water Quality Assessment and Monitoring Study: Analysis of Existing Data on Lake Union/Ship Canal October 2017 Alternative Formats Available Water Quality Assessment and Monitoring Study: Analysis of Existing Data on Lake Union/Ship Canal Prepared for: King County Department of Natural Resources and Parks Wastewater Treatment Division Submitted by: Timothy Clark, Wendy Eash-Loucks, and Dean Wilson King County Water and Land Resources Division Department of Natural Resources and Parks Water Quality Assessment and Monitoring Study: Analysis of Existing Data on Lake Union/Ship Canal Acknowledgements The authors would like to thank for following people for their contributions to this report: Staff at the King County Environmental Laboratory for field and analytical support. Dawn Duddleson (King County) for her help in completing the literature review. The King County Water Quality and Quantity Group for their insights, especially Sally Abella for her thorough and thoughtful review. Lauran Warner, Frederick Goetz, and Kent Easthouse of the U.S. Army Corps of Engineers. Judy Pickar (project manager), Dean Wilson (science lead), and King County project team members (Bob Bernhard, Mark Buscher, Timothy Clark, Betsy Cooper, Wendy Eash‐Loucks, Elizabeth Gaskill, Martin Grassley, Erica Jacobs, Susan Kaufman‐Una, Lester, Deborah, Kate Macneale, Chris Magan, Bruce Nairn, Sarah Ogier, Erika Peterson, John Phillips, Cathie Scott, Jim Simmonds, Jeff Stern, Dave White, Mary Wohleb, and Olivia Wright). The project’s Science and Technical Review Team members—Virgil Adderley, Mike Brett, Jay Davis, Ken Schiff, and John Stark—for guidance and review of this report. Citation King County. 2017. Water Quality Assessment and Monitoring Study: Analysis of Existing Data on Lake Union/Ship Canal. -
Coast Salish Culture – 70 Min
Lesson 2: The Big Picture: Coast Salish Culture – 70 min. Short Description: By analyzing and comparing maps and photographs from the Renton History Museum’s collection and other sources, students will gain a better understanding of Coast Salish daily life through mini lessons. These activities will include information on both life during the time of first contact with White explorers and settlers and current cultural traditions. Supported Standards: ● 3rd Grade Social Studies ○ 3.1.1 Understands and applies how maps and globes are used to display the regions of North America in the past and present. ○ 3.2.2 Understands the cultural universals of place, time, family life, economics, communication, arts, recreation, food, clothing, shelter, transportation, government, and education. ○ 4.2.2 Understands how contributions made by various cultural groups have shaped the history of the community and the world. Learning Objectives -- Students will be able to: ● Inspect maps to understand where Native Americans lived at the time of contact in Washington State. ● Describe elements of traditional daily life of Coast Salish peoples; including food, shelter, and transportation. ● Categorize similarities and differences between Coast Salish pre-contact culture and modern Coast Salish culture. Time: 70 min. Materials: ● Laminated and bound set of Photo Set 2 Warm-Up 15 min.: Ask students to get out a piece of paper and fold it into thirds. 5 min.: In the top third, ask them to write: What do you already know about Native Americans (from the artifacts you looked at in the last lesson)? Give them 5 min to brainstorm. 5 min.: In the middle, ask them to write: What do you still want to know? Give them 5min to brainstorm answers to this. -
7 Lake Union & Ship Canal 34-43.P65
Seattle’s Aquatic Environments: Lake Union/Lake Washington Ship Canal System Lake Union/Lake Washington Ship Canal System The following write-up relies heavily on the Lake Union/Lake Washington Ship Canal Subarea Chapter by Douglas Houck (with substantial contributions by Deb Lester and Scott Brewer) of the Draft Reconnaissance Assessment – Habitat Factors that Contribute to the Decline of Salmonids by the Greater Lake Washington Technical Committee (2001). Overview Lake Union and the Lake Washington Ship Canal Washington to Puget Sound. are located in the city of Seattle and combine to In 1916, the 8.6 mile long Lake Washington Ship serve as the primary outlet of Lake Washington Canal was completed, which included the construc- into Puget Sound. In 1916, drainage from Lake tion of the Montlake Cut, the Fremont Cut, and Washington into the Black River was blocked and the Chittenden Locks. The new Ship Canal the Ship Canal and Hiram M. Chittenden Locks provided navigable passage for commercial vessels, were constructed to allow navigable passage barges, and recreational boaters between Lake between Puget Sound, Lake Union, and Lake Washington and Puget Sound. Washington and provide better flushing in Lake Washington. In a 1943 report published by the Washington State Pollution Commission, 45 industries were listed The Lake Union/Lake Washington Ship Canal adjoining Lake Union (Tomlinson 1977). Along system is comprised of the Montlake Cut, Portage with the marinas, houseboats, and commercial Bay, Lake Union, the Fremont Cut, and the Salmon Bay Waterway. The Montlake Cut is an approximately 100-foot wide channel with con- crete bulkheads extending along the length of the channel. -
Lake Washington Ship Canal and Lake Washington NOAA Chart 18447
BookletChart™ Lake Washington Ship Canal and Lake Washington NOAA Chart 18447 A reduced-scale NOAA nautical chart for small boaters When possible, use the full-size NOAA chart for navigation. Included Area Published by the Magnolia Bluff and Duwamish Head, has a width of about 2 miles and extends SE for nearly the same distance. The bay is deep throughout National Oceanic and Atmospheric Administration most of its area. National Ocean Service A speed limit of 4 knots is enforced within the guide piers of the Hiram Office of Coast Survey M. Chittenden Locks. A speed limit of 7 knots is enforced elsewhere in the Lake Washington Ship Canal, except in an area marked by four www.NauticalCharts.NOAA.gov private buoys in the N part of Lake Union. 888-990-NOAA The Hiram M. Chittenden Locks, a double lock, and a fixed dam are at the narrows of the entrance to Salmon Bay, 1.2 miles in from the sound. What are Nautical Charts? The large lock, a two-chamber structure, has a clear length of 760 feet, width of 80 feet, lift of 26 feet, and depth over the lower miter sill of 29 Nautical charts are a fundamental tool of marine navigation. They show feet. The small lock has a clear length of 123 feet, width of 28 feet, lift of water depths, obstructions, buoys, other aids to navigation, and much 26 feet, and depth over the lower sill of 16 feet. Passage time is less more. The information is shown in a way that promotes safe and than 30 minutes for large vessels and 5 to 10 minutes for small vessels. -
Indigenous People and the Transformation of Seattle's
05-C3737 1/19/06 11:43 AM Page 89 City of the Changers: Indigenous People and the Transformation of Seattle’s Watersheds COLL THRUSH The author is a member of the history department at the University of British Columbia. Between the 1880s and the 1930s indigenous people continued to eke out traditional livings along the waterways and shorelines of Seattle’s urbanizing and industrializing landscape. During those same years, however, the city’s civic leaders and urban plan- ners oversaw massive transformations of that landscape, including the creation of a ship canal linking Puget Sound with Lake Washington and the straightening of the Duwamish River. These transformations typified the modernizing ethos that sought to improve nature to ameliorate or even end social conflict. The struggle of the Duwamish and other local indigenous people to survive urban change, as well as the efforts by residents of nearby Indian reservations to maintain connections to places within the city, illustrate the complex, ironic legacies of Seattle’s environmental his- tory. They also show the ways in which urban and Native history are linked through both material and discursive practices. Seattle was a bad place to build a city. Steep sand slopes crumbled atop slippery clay; a river wound through its wide, marshy estuary and bled out onto expansive tidal flats; kettle lakes and cranberried peat bogs recalled the retreat of the great ice sheets; unpredictable creeks plunged into deep ravines—all among seven (or, depending on whom you ask, nine or fifteen) hills sandwiched between the vast, deep waters of Puget Sound and of Lake Wash- ington. -
Landslide Study
Department of Planning and Development Seattle Landslide Study TABLE OF CONTENTS VOLUME 1. GEOTECHNICAL REPORT EXECUTIVE SUMMARY PREFACE 1.0 INTRODUCTION 1.1 Purpose 1.2 Scope of Services 1.3 Report Organization 1.4 Authorization 1.5 Limitations PART 1. LANDSLIDE INVENTORY AND ANALYSES 2.0 GEOLOGIC CONDITIONS 2.1 Topography 2.2 Stratigraphy 2.2.1 Tertiary Bedrock 2.2.2 Pre-Vashon Deposits 2.2.3 Vashon Glacial Deposits 2.2.4 Holocene Deposits 2.3 Groundwater and Wet Weather 3.0 METHODOLOGY 3.1 Data Sources 3.2 Data Description 3.2.1 Landslide Identification 3.2.2 Landslide Characteristics 3.2.3 Stratigraphy (Geology) 3.2.4 Landslide Trigger Mechanisms 3.2.5 Roads and Public Utility Impact 3.2.6 Damage and Repair (Mitigation) 3.3 Data Processing 4.0 LANDSLIDES 4.1 Landslide Types 4.1.1 High Bluff Peeloff 4.1.2 Groundwater Blowout 4.1.3 Deep-Seated Landslides 4.1.4 Shallow Colluvial (Skin Slide) 4.2 Timing of Landslides 4.3 Landslide Areas 4.4 Causes of Landslides 4.5 Potential Slide and Steep Slope Areas PART 2. GEOTECHNICAL EVALUATIONS 5.0 PURPOSE AND SCOPE 5.1 Purpose of Geotechnical Evaluations 5.2 Scope of Geotechnical Evaluations 6.0 TYPICAL IMPROVEMENTS RELATED TO LANDSLIDE TYPE 6.1 Geologic Conditions that Contribute to Landsliding and Instability 6.2 Typical Approaches to Improve Stability 6.3 High Bluff Peeloff Landslides 6.4 Groundwater Blowout Landslides 6.5 Deep-Seated Landslides 6.6 Shallow Colluvial Landslides 7.0 DETAILS REGARDING IMPROVEMENTS 7.1 Surface Water Improvements 7.1.1 Tightlines 7.1.2 Surface Water Systems - Maintenance -
Seattle Design Commission Project Overview and Update
SR 520 Montlake to Lake Washington I/C | July 18, 2019 Seattle Design Commission Project Overview and Update SR 520 Montlake to Lake Washington I/C Presentation Overview PART 1: • Team Introduction • Background/Purpose • Update: Pedestrian Land Bridge and Approach Areas • Comments/ Discussion BREAK PART 2: • Montlake Lid to 24th Avenue E • Comments/ Discussion FOLLOW UP/SUMMARY • Proposed Timeline for SDC Formal Review • Next SR 520 Montlake to Lake Washington I/C SR 520 Montlake to Lake Washington Project Overview • WSDOT / City of Seattle – Community Engagement (2012 – 2018) – City Departments and SDC engagement with RFP – Section 106 Concurring Parties • RFP – Design Build – Process – Graham Awarded Design/Build Contract – December 2018 • Status – Implementation Design In Progress – Task Force Meetings – Construction start – Sequencing SR 520 Montlake to Lake Washington I/C Building the “Rest of the West” in Seattle Note: project dates are estimated and subject to change SR 520 Montlake to Lake Washington I/C Team Introduction SR 520 Montlake to Lake Washington I/C SR 520 Montlake to Lake Washington Schedule SR 520 Montlake to Lake Washington I/C Background/Purpose Seattle Design Commission Engagement • SDC 2010 - 2018 • SDC Design/Build Review #1 – February 21, 2019 – Contract Overview and Comparisons of Design – Prescriptive Requirements: Materials and Elements • SDC Design/Build Review #2 – July 18, 2019 – Design/Build Overview – Pedestrian Land Bridge Update – Lid and Neighborhood Open Space • SDC Design/Build Review #3 – Fall, -
Self-Taught Education Unit Coastal Shoreline Defense Structures by Thomas Barnard
Self-Taught Education Unit Coastal Shoreline Defense Structures By Thomas Barnard Objectives The purpose of this self-taught education unit is to acquaint the reader with the various types of shoreline defense structures which are employed in the Chesapeake Bay region and the U.S. in general. There are more erosion control measures than those explained here but these are the most generally used and accepted within the marine community. Each structure will be defined and its use along the shoreline will be described. General design and location considerations will be discussed as well as the general definitions and terminology neces- sary for each type of structure. Following completion of this study unit, the reader will be generally acquainted with: 1. Shoreline erosion and its causes; 2. The types of structures most often employed to address shoreline erosion; 3. General design considerations for each shoreline structure; 4. Specific definitions and terminology for each structure. Introduction At the present time the Chesapeake Bay and most areas of the east and gulf coasts are experiencing varying degrees of relative sea level rise. This is defined as the net change in water elevation due to the combined influence of local land movement (subsidence) and the absolute change in water level. The primary result of sea level rise is shoreline retreat (erosion) along with other secondary shoreline changes. Chesapeake Bay sea level rise is approximately one foot per century at present. There is some evidence that sea level rise is accelerating due to global climate change. This factor has not been completely documented however, primarily due to the difficulty involved with modelling weather and climate features on a global scale and determining long term trends in the absence of adequate data. -
Prisoners Harbor Coastal Wetland Restoration Project
Channel Islands National Park National Park Service U.S. Department of the Interior Prisoners Harbor Coastal Wetland Restoration Project Final Environmental Impact Statement February 2010 Channel Islands National Park 1901 Spinnaker Drive Ventura, California 93001 This entire publication is available in PDF format at: http://www.nps.gov/chis/parkmgmt/planning.htm Front cover photo: Mouth of Cañada del Puerto creek, Prisoners Harbor, Channel Islands National Park (Power, 2006) Citation: National Park Service. 2010. Prisoners Harbor Coastal Wetland Restoration Plan. Channel Islands National Park, Ventura, CA. PRISONERS HARBOR COASTAL WETLAND RESTORATION PLAN FINAL ENVIRONMENTAL IMPACT STATEMENT Channel Islands National Park Santa Cruz Island, Santa Barbara County, California February, 2010 ABSTRACT This Final Environmental Impact Statement (FEIS) was prepared in accordance with the Department of Interior National Environmental Policy Act (NEPA), the National Park Service NEPA guidelines (DO-12), and the California Environmental Quality Act (CEQA). This document has been prepared because actions proposed as part of this Final EIS may be a major federal action significantly affecting the quality of the human environment. The National Park Service (NPS) proposes to restore a functional, self-sustaining ecosystem at a coastal wetland site known as Prisoners Harbor and a 40-acre associated stream corridor in the lower Cañada del Puerto Creek on Santa Cruz Island. The project seeks to: (1) recreate a more natural topography and hydrology by reconnecting the Cañada del Puerto stream with its floodplain and removing non-native eucalyptus trees and other vegetation which have proliferated in the lower drainage; (2) increase biological diversity and productivity by removing fill and restoring the historic wetland; (3) provide an enhanced visitor experience by installing viewing benches and additional interpretive displays; and (4) protect significant cultural and historic resources. -
Synthesis of Salmon Research and Monitoring: Investigations
Synthesis of Salmon Research and Monitoring 1 Acknowledgements Contributors The following persons contributed to the production of this report: Mike Cooksey Peter N. Johnson Paul DeVries Michele Koehler Charles J. Ebel Lynne Melder Frederick A. Goetz Jim Muck Julie Hall Eva Weaver Funding Sources of Lake Washington General Investigation study funding and personnel: • U.S. Army Corps of Engineers Seattle District • Seattle Public Utilities • King Conservation District • King County/Metro • National Marine Fisheries Service • Washington Department of Fish and Wildlife Participants The following persons and organizations participated substantively in the research projects that contributed to this report: • U.S. Army Corps of Engineers: Linda Smith, Chuck Ebel, Fred Goetz, Lynne Melder, Rebecca Jahns, Marian Valentine, Amy Reese, Jeff Dillon, David VanRijn, Bill Nagy, Larry Lawrence, Jim Sadler, John Post, Bill Livermore, and most of the other Hiram M. Chittenden Locks staff • Seattle Public Utilities: Melinda Jones, Jean White, Keith Kurko, Julie Hall, Gail Arnold, Bruce Bachen, Alan Chinn, Rand Little • U.S. Fish and Wildlife Service: Roger Tabor, Mark Celedonia, Howard Gearns, Charles McCoy, Sergio Camacho, and other USFWS staff • King County: Doug Houck, Hans Berge, Francis Sweeney, Gary Yoshida, • Washington Department of Fish and Wildlife: Dave Seiler (retired), Lindsey Fleischer, Chris Waldbillig, Mark Carr, Mike Mizell, Hwa Kim, Clayton Kinsel, Pete Topping, Kelly Kiyohara, Issaquah Creek Hatchery Staff • National Marine Fisheries -
Course Catalog (2021-22)
LakeSchool Washington Name High SchoolLevel 2021-20222012-2013 Course Catalog CONTENTS Lake Washington High School 2021-22 course catalog Contents/Introduction to LW 2 Principal – Christina Thomas Associate Principal – Aric Koomia Counseling/Academic Information 3 Associate Principal – Melissa Super-Greene Courses by Department 4 Associate Principal – Tim Shultz Academic Policies 6 LW is a school with a history of excellence. Choosing the right courses that align to your future is an important step in achieving your goals. We encourage you to think deeply about your choices and if neces- Lake Washington H.S. Courses sary plot out a multi-year plan. We continually revise our course options to meet student interest. This year there are many new and Career & Technical Education 7 exciting courses. Courses are run based on student interest so not all English 16 courses in the catalog will have enough interest to be on the actual schedule. Please take the time to read the course descriptions and Fine Arts 20 requirements to select the courses that are appropriate. There are Health/Fitness 26 few options for changing after your selections have been made; so choose wisely. Mathematics 28 Lake Washington High School will provide a safe, equitable educa- Science 33 tional environment for racial minority groups, to address race and Social Studies 38 eliminate institutional racism, to reduce the racial achievement gap World Languages 41 Lake Washington High School Additional Course Choices 43 Christina Thomas - Principal 12033 N.E. 80th Street Kirkland, WA 98033 General District Information 425-936-1700 lwhs.lwsd.org District Graduation Requirements A1 Advanced Placement (AP) A2 Lake Washington School District Career & Technical Education (CTE) A2 Superintendent Dr.