Evolutionary Model of Protein Families by Means Of

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Model of Protein Families by Means Of bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. EvoProDom: Evolutionary model of protein families by means of translocations of protein domains Gon Carmi1 † Alessandro Gorohovski 1 † Milana Frenkel-Morgenstern 1,* 1Cancer Genomics and BioComputing of Complex Diseases Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed 13195, ISRAEL *Corresponding Author: e-mail: [email protected] † These authors contributed equally to this work. bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract Here, we developed a novel “evolution of protein domains” (EvoProDom) model for evolution of proteins, which was based on “mix and merge” of protein domains. We collected and integrated genomic and proteome data for 109 organisms. These data include protein domain content and orthologous protein families. In EvoProDom, we defined evolutionary events, such as translocations, as reciprocal exchanges of protein domains between orthologous proteins of different organisms. We found that protein domains, which frequently appear in translocation events, were enriched in trans-splicing events, i.e., producing novel transcripts fused from two distinct genes. We presented in EvoProDom, a general method to obtain protein domain content and orthologous protein annotation, by predicting these data from protein sequences using the Pfam search tool and KoFamKOALA, respectively. This method can be implemented in other research such as proteomics, protein design and host-virus interactions. Keywords: protein evolution, protein domains, translocations. bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 1 Introduction 2 Proteins are built from a set of domains that correspond to conserved regions with 3 distinct functional and structural characteristics (1). In accordance with the domain- 4 oriented view of proteins, domains group together to form domain architectures (DAs), 5 i.e., ordered sequences of domains. Some domains participate in specific DAs, while 6 others are found in diverse DAs. This later property is termed “domain promiscuity” or 7 “domain mobility”. Analyses of domain promiscuity can reveal the mechanisms by which 8 domains are gained or lost (2). Marsh and Teichmann in 2010 (1) described five 9 mechanisms by which proteins gain domains: (i) gene fusion, the fusion of a pair of 10 adjacent genes via alternative splicing in non-coding intergenic regions; (ii) exon 11 extension, the expansion of exon regions into adjacent introns, which encode a new 12 domain; (iii) exon recombination, direct merging of two exons from two different genes; 13 (iv) intron recombination or exon shuffling, insertion of an exon into an intron of a 14 different gene; and (v) retroposition, a sequence located within one gene, which is 15 transposed into a different gene along with a flanking genetic sequence. The mechanism 16 that added a given domain to a protein can be identified from the properties of the gained 17 domain, e.g., the position of the domain in a protein sequence and the number of exons. 18 For example, multi-exon domain gain at the c-termini is due to gene fusion. Additionally, 19 during metazoan evolution, new physical protein-protein interactions (PPIs) emerged 20 consequent to exon shuffling of domains that mediated the interaction (3). An additional 21 work, by Bornberg-Bauer and Mar Albà in 2013 (4), refined and expanded these 22 mechanisms and introduced new concepts such as intrinsically disordered regions, 23 implied links between the emergence of de-novo domains, and de-novo genes (4). bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 3 24 We developed a novel “evolution of protein domains” (EvoProDom) model for the 25 evolution of proteins, which was based on “mix and merge” of protein domains. We 26 collected and integrated genomic and proteome data for 109 organisms. These data 27 included protein domain content and orthologous protein content. In EvoProDom, we 28 defined evolutionary events, such as translocations, as the reciprocal exchanges of protein 29 domains between orthologous proteins of different organisms. We found that protein 30 domains, which frequently appear in translocation events, were enriched in trans-splicing 31 events, i.e., producing transcripts as a slippage of two distinct genes (5). We presented in 32 EvoProDom, a general method to obtain protein domain content and orthologous protein 33 annotation, by predicting these data from protein sequences using the Pfam search tool 34 (6, 7) and KoFamKOALA (8), respectively. This method can be implemented in other 35 research fields such as proteomics (9), protein design (10) and host-virus interactions 36 (11). 37 38 Materials and Methods 39 The EvoProDom model was based on the data of full genome and annotated proteomes. 40 In addition, the model utilized orthologous protein annotation and protein domain 41 content. Orthologous protein groups were used to group proteins (Refseqs) from 42 different organisms, thereby linking protein domain changes among orthologous proteins 43 with their corresponding groups of organisms. Orthologous proteins were realized as 44 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs, namely, KEGG ortholog 45 (KO) (12, 13). Protein domain content was realized as Pfam domains, and this content 46 was associated with proteins. Accordingly, proteins were modeled as a group or list of bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 4 47 Pfam domains, and orthologous proteins were modeled as a group of proteins with the 48 same KO number. Both Pfam domains and KO assignments to proteins were predicted 49 from protein sequences alone, using the Pfam search tool (6, 7) and KoFamKOALA (8), 50 respectively. By applying these protein sequence-based methods to obtain protein domain 51 content and orthologous protein annotation, new organisms were easily added to 52 EvoProDom. Moreover, this method is unique to EvoProDom and is applicable to other 53 protein domain -based applications such as proteomics (9), protein design (10) and host- 54 virus interactions (11). 55 Statistical analysis was performed using R (R: A language and environment for 56 statistical, 3.3.2,2016). 57 Data resources 58 In total, the EvoProDom model was tested on a collection of 109 organisms with full 59 genome and annotated proteomes (Entrez/NCBI (14)). These organisms were grouped 60 according to six categories: (i) 15 fish; (ii) 4 subterranean, 8 fossorial and 21 61 aboveground animals (15, 16); (iii) 65 organisms with known PPIs (BioGrid version 62 3.5.173, (17, 18)); (vi) 17 organisms with HiC datasets; (v) 4 cats; and (iv) 15 pathogenic 63 organisms (19). Organisms with HiC datasets were obtained by searching ‘HiC’ in the 64 NCBI GEO database (Table 1). 65 Orthologous protein annotation 66 Orthologous annotation was based on Kyoto Encyclopedia of Genes and Genomes 67 (KEGG) orthologs, namely, KEGG ortholog (KO) (12, 13). Proteins were assigned to 68 KO groups, by utilizing KoFamKOALA, a Hidden Markov Model (HMM) profile based 69 search tool (8). Since this tool assigned proteins to KO groups based on protein bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 5 70 sequences, in-house script was written to automatically assign proteins to KO groups. In 71 this study, only proteins with KO annotation were used for analysis. Additionally, 72 organism code was generated by selecting 3-4 letters from an organism name in 73 uppercase format (lower case code represents organisms from the KEGG database) 74 (Table 1). 75 Protein domain detection 76 Pfam (release 32.0) domains were predicted from protein sequences, using a dedicated 77 HMM-based search tool (6, 7). Therefore, in-house script was written and protein domain 78 content was predicted from protein sequences. Additionally, Pfam domains were 79 members of super families (clan, pfam nomenclature), which we used for our 80 classification. These data were supplemented to the protein domain content. 81 EvoProDomDB 82 Genomic and proteomic data, along with orthologous protein and protein domain content 83 data, were related by shared data. Thus, a relational database, EvoProDomDB, was 84 written in MySQL on MariaDB (10.0.26) for the efficient search engine. The 85 EvoProDom model was implemented and tested on EvoProDomDB. EvoProDomDB was 86 organized with orthologous protein and protein content for the 1,835,600 protein products 87 that were distributed among 23,147 KO groups, containing 17,929 unique Pfam domains. 88 Pfam domains were distributed among 629 super families, and EvoProDomDB integrated 89 data for 109 organisms from diverse taxa. EvoProDomDB was built from six relational 90 tables with common features, e.g., organism id and other features, as shown in the 91 scheme (Figure 1). Relational tables, taxonomy, ko_annotation, clan_domain, bioRxiv preprint doi: https://doi.org/10.1101/2020.02.23.961532; this version posted February 25, 2020.
Recommended publications
  • A Gene Co-Expression Network Model Identifies Yield-Related Vicinity
    www.nature.com/scientificreports OPEN A gene co-expression network model identifes yield-related vicinity networks in Jatropha curcas Received: 7 February 2018 Accepted: 4 June 2018 shoot system Published: xx xx xxxx Nisha Govender1,2, Siju Senan1, Zeti-Azura Mohamed-Hussein2,3 & Ratnam Wickneswari1 The plant shoot system consists of reproductive organs such as inforescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inforescence and inforescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identifed in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, foral and shoot meristem diferentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements. Jatropha curcas L. or the physic nut is an environmentally friendly and cost-efective feedstock for sustainable biofuel production.
    [Show full text]
  • Non-Cellulosomal Cohesin- and Dockerin-Like Modules in the Three Domains of Life Ayelet Peera, Steven P
    1 Non-cellulosomal Cohesin- and Dockerin-like Modules in the Three Domains of Life Ayelet Peera, Steven P. Smithb, Edward A. Bayerc,*, Raphael Lameda and Ilya Borovoka aDepartment of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978 Israel bDepartment of Biochemistry, Queen’s University Kingston Ontario Canada K7L 3N6 cDepartment of Biological Sciences, Weizmann Institute of Science, Rehovot 76100 Israel *Corresponding author: Edward A. Bayer Tel: (+972) -8-934-2373 Fax: (+972)-8-946-8256 Email: [email protected] Supplementary Table S1. Compendium of cohesins and dockerins in the three domains of life. In order to discover new putative cohesin/dockerin-containing proteins, we used sequences of all the classical cohesin and dockerin modules from C. thermocellum, C. cellulovorans, C. cellulolyticum, B. cellulosolvens and Acetivibrio cellulolyticus as well as cohesins and dockerins recently discovered in rumen bacteria, Ruminococcus albus and R. flavefaciens as BlastP queries for the main NCBI Blast server against all non- redundant protein sequences deposited in GenBank/EMBL/DDBJ databases. We also performed extensive searches using the TblastN algorithm through all publicly available microbial genome databases including those attached to the NCBI BLAST server for bacterial genomes (http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?), as well as several additional microbial genome databases – Microbial Genomics at the DOE Joint Genome Institute (http://genome.jgi-psf.org/mic_home.html), the Rumenomics database at TIGR/JCVI (http://tigrblast.tigr.org/rumenomics/index.cgi) and Bacterial Genomes at the Sanger Centre (http://www.sanger.ac.uk/Projects/Microbes/). Once a putative cohesin or dockerin-encoding gene product was identified, gene-walking techniques were employed to analyze and locate possible cellulosome-like gene clusters.
    [Show full text]
  • STACK: a Toolkit for Analysing Β-Helix Proteins
    STACK: a toolkit for analysing ¯-helix proteins Master of Science Thesis (20 points) Salvatore Cappadona, Lars Diestelhorst Abstract ¯-helix proteins contain a solenoid fold consisting of repeated coils forming parallel ¯-sheets. Our goal is to formalise the intuitive notion of a ¯-helix in an objective algorithm. Our approach is based on first identifying residues stacks — linear spatial arrangements of residues with similar conformations — and then combining these elementary patterns to form ¯-coils and ¯-helices. Our algorithm has been implemented within STACK, a toolkit for analyzing ¯-helix proteins. STACK distinguishes aromatic, aliphatic and amidic stacks such as the asparagine ladder. Geometrical features are computed and stored in a relational database. These features include the axis of the ¯-helix, the stacks, the cross-sectional shape, the area of the coils and related packing information. An interface between STACK and a molecular visualisation program enables structural features to be highlighted automatically. i Contents 1 Introduction 1 2 Biological Background 2 2.1 Basic Concepts of Protein Structure ....................... 2 2.2 Secondary Structure ................................ 2 2.3 The ¯-Helix Fold .................................. 3 3 Parallel ¯-Helices 6 3.1 Introduction ..................................... 6 3.2 Nomenclature .................................... 6 3.2.1 Parallel ¯-Helix and its ¯-Sheets ..................... 6 3.2.2 Stacks ................................... 8 3.2.3 Coils ..................................... 8 3.2.4 The Core Region .............................. 8 3.3 Description of Known Structures ......................... 8 3.3.1 Helix Handedness .............................. 8 3.3.2 Right-Handed Parallel ¯-Helices ..................... 13 3.3.3 Left-Handed Parallel ¯-Helices ...................... 19 3.4 Amyloidosis .................................... 20 4 The STACK Toolkit 24 4.1 Identification of Structural Elements ....................... 24 4.1.1 Stacks ...................................
    [Show full text]
  • ST Proteins, a New Family of Plant Tandem Repeat Proteins with A
    Albornos et al. BMC Plant Biology 2012, 12:207 http://www.biomedcentral.com/1471-2229/12/207 RESEARCH ARTICLE Open Access ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae Lucía Albornos, Ignacio Martín, Rebeca Iglesias, Teresa Jiménez, Emilia Labrador and Berta Dopico* Abstract Background: Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results: ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine.
    [Show full text]
  • Structure and Function of Multimeric BTB Proteins and Cullin3 Substrate Adaptors
    Structure and Function of Multimeric BTB Proteins and Cullin3 Substrate Adaptors by Xian Alan Ji A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Biochemistry University of Toronto © Copyright by Xian Alan Ji 2017 ii Structure and Function of Multimeric BTB Proteins and Cullin3 Substrate Adaptors Xian Alan Ji Doctor of Philosophy Department of Biochemistry University of Toronto 2017 Abstract Oligomerization and ubiquitylation are fundamental to the function of many proteins. Protein oligomerization confers numerous advantages including allosteric regulation, increased coding efficiency, and reduced transcriptional and translational error rates. Ubiquitylation is a widespread post-translational modification that targets modified proteins to a variety of fates including degradation by the 26S proteasome. Dysfunctional protein degradation is a common mechanism shared by a diverse range of human diseases. Many members of the BTB domain superfamily have roles centered on protein oligomerization and ubiquitylation. The BTB domain can facilitate self-assembly to form dimers, tetramers, and pentamers. In addition, many BTB proteins provide substrate specificity for the Cullin3 (Cul3) E3 ubiquitin ligase. Dysfunctional BTB/Cullin3 ubiquitinylation complexes are involved in certain forms of prostate cancer, medulloblastoma, hereditary hypertension and other diseases. Thus, understanding the details of BTB protein oligomerization and Cul3 interaction is important towards many aspects of human disease. The research presented in this thesis addresses several areas of BTB/Cul3 biology. The mechanism of dimeric BTB protein to Cul3 association was expanded to include the contributions iii from the BACK domain observed in the crystal structure of KLHL3/Cul3. Several KLHL3 mutations associated with familial hypertension were found to disrupt Cul3 binding.
    [Show full text]
  • Pdfwm-2017-18-Tam-44286/(Sa-Ii)
    Journal of Integrative Bioinformatics 2020; 17(4): 20200024 David Mary Rajathei, Subbiah Parthasarathy and Samuel Selvaraj* HPREP: a comprehensive database for human proteome repeats https://doi.org/10.1515/jib-2020-0024 Received June 8, 2020; accepted September 17, 2020; published online November 3, 2020 Abstract: Amino acid repeats are found to play important roles in both structures and functions of the proteins. These are commonly found in all kingdoms of life, especially in eukaryotes and a larger fraction of human proteins composed of repeats. Further, the abnormal expansions of shorter repeats cause various diseases to humans. Therefore, the analysis of repeats of the entire human proteome along with functional, mutational and disease information would help to better understand their roles in proteins. To fulfill this need, we developed a web database HPREP (http://bioinfo.bdu.ac.in/hprep) for human proteome repeats using Perl and HTML programming. We identified different categories of well-characterized repeats and domain repeats that are present in the human proteome of UniProtKB/Swiss-Prot by using in-house Perl programming and novel repeats by using the repeat detection T-REKS tool as well as XSTREAM web server. Further, these proteins are annotated with functional, mutational and disease information and grouped according to specific repeat types. The developed database enables the users to search by specific repeat type in order to understand their involvement in proteins. Thus, the HPREP database is expected to be a useful resource to gain better insight regarding the different repeats in human proteome and their biological roles. Keywords: bioinformatics; database; disease; function; human proteome; repeats.
    [Show full text]
  • ST Proteins, a New Family of Plant Tandem Repeat
    Albornos et al. BMC Plant Biology 2012, 12:207 http://www.biomedcentral.com/1471-2229/12/207 RESEARCH ARTICLE Open Access ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae Lucía Albornos, Ignacio Martín, Rebeca Iglesias, Teresa Jiménez, Emilia Labrador and Berta Dopico* Abstract Background: Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results: ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine.
    [Show full text]
  • Identification and Phylogenetic Analysis of RNA Binding Domain Abundant in Apicomplexans Or RAP Proteins
    RESEARCH ARTICLE Hollin et al., Microbial Genomics 2021;7:000541 DOI 10.1099/mgen.0.000541 OPEN OPEN DATA ACCESS Identification and phylogenetic analysis of RNA binding domain abundant in apicomplexans or RAP proteins Thomas Hollin1, Lukasz Jaroszewski2, Jason E. Stajich3, Adam Godzik2 and Karine G. Le Roch1,* Abstract The RNA binding domain abundant in apicomplexans (RAP) is a protein domain identified in a diverse group of proteins, called RAP proteins, many of which have been shown to be involved in RNA binding. To understand the expansion and potential function of the RAP proteins, we conducted a hidden Markov model based screen among the proteomes of 54 eukaryotes, 17 bacteria and 12 archaea. We demonstrated that the domain is present in closely and distantly related organ- isms with particular expansions in Alveolata and Chlorophyta, and are not unique to Apicomplexa as previously believed. All RAP proteins identified can be decomposed into two parts. In the N-terminal region, the presence of variable helical repeats seems to participate in the specific targeting of diverse RNAs, while the RAP domain is mostly identified in the terminalC- region and is highly conserved across the different phylogenetic groups studied. Several conserved residues defining the signature motif could be crucial to ensure the function(s) of the RAP proteins. Modelling of RAP domains in apicomplexan parasites confirmed an⍺ /β structure of a restriction endonuclease- like fold. The phylogenetic trees generated from mul- tiple alignment of RAP domains and full- length proteins from various distantly related eukaryotes indicated a complex evolutionary history of this family. We further discuss these results to assess the potential function of this protein family in apicomplexan parasites.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0058007 A1 Cox Et Al
    US 2017005.8007A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0058007 A1 Cox et al. (43) Pub. Date: Mar. 2, 2017 (54) SELF-ASSEMBLED BETASOLENOID (86). PCT No.: PCT/US 15/12934 PROTEIN SCAFFOLDS S 371 (c)(1), (2) Date: Jul. 14, 2016 (71) Applicant: THE REGENTS OF THE Related U.S. Application Data UNIVERSITY OF CALIFORNIA, Oakland, CA (US) (60) Provisional application No. 61/931,485, filed on Jan. 24, 2014. (72) Inventors: Daniel Cox, Oakland, CA (US); Publication Classification Gang-Yu Liu, Oakland, CA (US); (51) Int. Cl. Michael Toney, Oakland, CA (US); Xi C07K I4/435 (2006.01) Chen, Oakland, CA (US); Josh Hihath, C07K I4/45 (2006.01) Oakland, CA (US); Gergely Zimanyi, (52) U.S. Cl. Oakland, CA (US); Natha Robert CPC ...... C07K 14/43563 (2013.01); C07K 14/415 Hayre, Oakland, CA (US); Maria (2013.01) Peralta, Oakland, CA (US) (57) ABSTRACT The present invention provides amyloid fibrils comprising a (21) Appl. No.: 15/111,687 plurality of modified f solenoid protein (mEBSP) monomers. The mBSP monomers are modified to enhance self-assem (22) PCT Filed: Jan. 26, 2015 bly and are useful in a variety of applications. Patent Application Publication Mar. 2, 2017 Sheet 1 of 12 US 2017/0058007 A1 Nanoparticle binding a peptides six. r KY 3 YmXrm marrmyrmor-m-m-m-m-m-m-m-m-m-m-m-m8 Nanoparticle soxas D 's ^ s Substrate birding gi'Olips Substrate Fi. i. Patent Application Publication Mar. 2, 2017. Sheet 2 of 12 US 2017/0058007 A1 SY 3.
    [Show full text]
  • Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants
    REVIEW published: 11 January 2016 doi: 10.3389/fpls.2015.01218 Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants Manisha Sharma and Girdhar K. Pandey* Stress Signal Transduction Lab, Department of Plant Molecular Biology, University of Delhi, New Delhi, India The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins Edited by: Paula Casati, is particularly profuse in multicellular organisms in comparison to prokaryotes. The Centro de Estudios precipitous expansion of repeat proteins in plants is presumed to be through internal Fotosinteticos-CONICET, Argentina tandem duplications. Several repeat protein gene families have been identified in plants. Reviewed by: Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide Sebastian Pablo Rius, Consejo Nacional de Investigaciones (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The Científicas y Técnicas, Argentina structure and functions of these repeat proteins have been extensively studied in plants Elina Welchen, Universidad Nacional del Litoral, suggesting a critical role of these repeating peptides in plant cell physiology, stress Argentina and development.
    [Show full text]
  • Cpdadh: a New Peptidase Family Homologous to the Cysteine Protease Domain in Bacterial MARTX Toxins
    FOR THE RECORD CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins Jimin Pei,1* Patrick J. Lupardus,2 K. Christopher Garcia,2,3 and Nick V. Grishin1,4 1Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050 2Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305 3Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305 4Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050 Received 12 December 2008; Revised 2 January 2009; Accepted 6 January 2009 DOI: 10.1002/pro.78 Published online 10 February 2009 proteinscience.org Abstract: A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members
    [Show full text]
  • Cotranslational Folding of a Pentarepeat Β-Helix Protein
    bioRxiv preprint doi: https://doi.org/10.1101/255810; this version posted October 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cotranslational folding of a pentarepeat β-helix protein Luigi Notari1#, Markel Martínez-Carranza1#, Jose Arcadio Farias-Rico1#, Pål Stenmark1*, Gunnar von Heijne,1,2* 1Department of Biochemistry and Biophysics Stockholm University, SE-106 91 Stockholm, Sweden 2Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden *Corresponding authors. GvH Phone: Int+46-8-16 25 90, E-mail: [email protected]. PS Phone: Int+46-8-16 37 29, E-mail: [email protected]. # These authors contributed equally to this work. Keywords: pentapeptide-repeat protein; beta-helix; cotranslational folding; X-ray structure; Clostridium botulinum bioRxiv preprint doi: https://doi.org/10.1101/255810; this version posted October 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract It is becoming increasingly clear that many proteins start to fold cotranslationally, before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, i.e., proteins that are built from an array of nearly identical sequence repeats.
    [Show full text]