MOCVD of Tungsten and Molybdenum Nitrides

Total Page:16

File Type:pdf, Size:1020Kb

MOCVD of Tungsten and Molybdenum Nitrides MOCVD of Tungsten and Molybdenum Nitrides Daniel Rische; Doktorarbeit 2007 MOCVD of Tungsten and Molybdenum Nitrides Dissertation zur Erlangung der Doktorwürde der Fakultät für Chemie der Ruhr-Universität Bochum vorgelegt von Diplom-Chemiker Daniel Rische aus Bochum Referenten: Prof. Dr. Roland A. Fischer Prof. Dr. Christof Wöll Die vorliegende Arbeit entstand in der Zeit von Juli 2004 bis November 2007 am Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum Mein besonderer Dank gilt an Prof. Dr. Roland A Fischer, für die interessante Aufgabenstellung, das in mich gesetzte Vertrauen bei der Bearbeitung eines interessanten und herausfordernden Forschungsthemas, und den Rat mit dem er mir zur Seite stand. Danksagung Juniorprof. Dr. Anjana Devi Anjana und Harish danke ich für die Unterstützung in Form & Dr. Harish Parala von konstruktiver Kritik in vielen Bereichen und der Unterstützung bei XRD und TG/DTA Andrian Milanov Danke für die Unterstützung bei TG/DTA Messungen , sowie häufigen Gedankenaustausch Daniela Bekermann Danke für die tatkräftige Unterstützung bei Syntheseproblemen Sabine Masukowitz Vielen Dank für die Unterstützung in allen organisatorischen Fragen und bei dem Umgang mit dem RUB’schen Büroapparat. Stephan Spöllmann Stephan danke ich für die tatkräftige Unterstützung bei den Experimenten am Aixtron-Reaktor Manuela Winter Dank an Manuela für die Messungen der Einkristallstrukturen und Hilfe bei der Lösung derselben Dr. Rolf Neuser Herrn Neuser danke ich für die SEM- und EDX Messungen. H.C. Starck GmbH Danke an die H.C. Starck GmbH für die großzügige Chemikalienspende. Andreas Kempter Für den gemeinsamen Weg durch das Studium, von Vordiplom über Diplom bis jetzt. Desweiteren möchte ich mich bei meinem gesamten Lehrstuhl für die schöne Zeit in der Gruppe bedanken. Dazu gehören Saeed Amirjalayer, Dr. Raghunandan Bhakta, Thomas Cadenbach, Mirza Cokoja, Rolf Deibert, Daniel Esken, Lina Freitag, Dr. Eliza Gemel, Malte Hellwig, Stephan Hermes, Ursula Herrmann, Todor Hikov, Heike Kampschulte, Andreas Kempter, Dr. Jayaprakash Khanderi, Dr. Emmanuel Lamouroux, Dr. Eva Maile, Mikhail Meilikhov, Andrian Milanov, Maike Müller, Dr. Rochus Schmid, Felicitas Schröder, Dr. Jelena Sekulic, Stephan Spöllmann, Tobias Thiede, Dr. Maxim Tafipolsky, Tim Wilmsen, Manuela Winter, Dr. Wenhua Zhang und Xiaoning Zhang Zudem danke ich allen die meinen Dank verdienen, die ich aber in meiner Liste vergessen habe. “Science is like sex: Something useful comes out, but that’s not the reason we are doing it.” Richard P. Feynman Für Jenny Abbreviations ALD: Atomic Layer Deposition tBu: tert- Butyl CVD: Chemical Vapor Deposition Cy: Cyclohexyl DME: 1,2-Dimethoxyethane DTA: Differential Thermal Analysis EI-MS: Electron Ionization Mass Spectroscopy Et: Ethyl FT-IR Fourier-Transform-Infrared Spectroscopy GC: Gas Chromatography MBE: Molecular Beam Epitaxy Me: Methyl Mes: Mesityl MOCVD: Metal Organic Chemical Vapor Deposition MS: Mass Spectroscopy NMR: Nuclear Magnetic Resonance Ph: Phenyl iPr: iso-Propyl PVD: Physical Vapor Deposition py: Pyridine SEM: Scanning Electron Microscopy SIMS: Secondary Ion Mass Spectroscopy S/N-ratio Signal to Noise ratio SNMS: Secondary Neutral Mass Spectroscopy THF: Tetrahydrofurane TMEDA: N,N,N’,N’-Tetramethylethylenediamine TG: Thermogravimetric Analysis XRD: X-Ray Diffraction Table of Contents Table of Contents 1. Introduction .......................................................................................................................... 1 1.1. Motivation and Goals...................................................................................................... 1 1.2. Tungsten Nitride Materials.............................................................................................. 2 1.3. Molybdenum Nitride Materials....................................................................................... 3 1.4. Applications of Tungsten and Molybdenum Nitrides..................................................... 4 1.4.1. Schottky Diodes ....................................................................................................... 4 1.4.2. Conductive Diffusion Barriers ................................................................................. 5 1.4.3. Hard Coatings........................................................................................................... 7 1.4.4. Catalysis ................................................................................................................... 7 1.5. Thin Film Deposition Techniques via gas Phase ............................................................ 7 1.5.1. Physical Vapour Deposition (PVD) ......................................................................... 7 1.5.2. Chemical Vapour Deposition (CVD)....................................................................... 9 1.5.3. Atomic Layer Deposition (ALD) ........................................................................... 13 2. State of the Art.................................................................................................................... 15 2.1. Precursors for MOCVD and ALD ................................................................................ 15 2.1.1. Tungsten nitride...................................................................................................... 15 2.1.2. Molybdenum nitride............................................................................................... 20 2.2. Guanidinato ligands....................................................................................................... 22 3. Synthesis of the Tungsten Compounds............................................................................. 25 3.1. [WCl2(Nt-Bu)2py2] (1) .................................................................................................. 25 3.2. [W(Nt-Bu)2Cl{(Ni-Pr)2CNi-Pr2] (3) ............................................................................. 27 3.3. [W(Nt-Bu)2Cl{(Ni-Pr)2CNMe2}] (4) ............................................................................ 31 3.4. [W(Nt-Bu)2Cl{(Ni-Pr)2CNEt2}] (5).............................................................................. 33 3.5. [W(Nt-Bu)2Cl{(NCy)2CNEt2}] (6) ............................................................................... 35 3.6. [W(Nt-Bu)2NMe2{(Ni-Pr)2CNi-Pr2}] (7)...................................................................... 37 3.7. [W(Nt-Bu)2(NMe2){(Ni-Pr)2CNMe2}] (8).................................................................... 39 3.8. [W(Nt-Bu)2(N3){(Ni-Pr)2CNi-Pr2}] (9) ........................................................................ 39 3.9. [W(Nt-Bu)2H{(Ni-Pr)2CNMe2}] (10)........................................................................... 40 3.10. [W(Nt-Bu)2Cl{NC(NMe2)2}]2 (11) ............................................................................. 42 3.11. [W(Nt-Bu)2(N3){NC(NMe2)2}]2 (12).......................................................................... 45 2 3.12. [(W(Nt-Bu)2(N3)(µ -N3)py)]2 (13) .............................................................................. 47 3.13. Conclusions for Chapter 3........................................................................................... 50 Table of Contents 4. Synthesis of the Molybdenum Compounds...................................................................... 52 4.1. Starting Compound for the Molybdenum synthesis...................................................... 52 4.2. [Mo(Nt-Bu)2Cl{(Ni-Pr)2CNMe2}] (15) ........................................................................ 55 4.3. [Mo(Nt-Bu)2I{(Ni-Pr)2CNMe2}] (16)........................................................................... 55 4.4. [Mo(Nt-Bu)2(N3){(Ni-Pr)2CNMe2}] (17) ..................................................................... 57 4.5. Conclusions for Chapter 4............................................................................................. 59 5. MOCVD-Experiments of Tungsten Nitride..................................................................... 60 5.1. Thermal Characterization of the precursors.................................................................. 60 5.2. Depositions on the home-built MOCVD reactor .......................................................... 61 5.2.1. XRD analysis and surface morphology.................................................................. 62 5.2.2 Composition of the films (SNMS analysis) ............................................................ 68 5.2.3 Growth rates & resistivities..................................................................................... 73 5.3. Characterization of the Exhaust gases........................................................................... 74 5.4. Experiments on the Aixtron 200 RF reactor ................................................................. 77 5.4.1 The Reactor ............................................................................................................. 77 5.4.2 The Bubbler Design ................................................................................................ 79 5.4.3 The Experiments ..................................................................................................... 79 5.5. Comparison of the Guanidinato Precursors to Imido/Amido Precursors...................... 84 5.6. Conclusions for Chapter 5............................................................................................. 85 6. MOCVD-Experiments of Molybdenum Nitride.............................................................
Recommended publications
  • Geoffrey Wilkinson
    THE LONG SEARCH FOR STABLE TRANSITION METAL ALKYLS Nobel Lecture, December 11, 1973 by G EOFFREY W ILKINSON Imperial College of Science & Technology, London, England Chemical compounds in which there is a single bond between a saturated car- bon atom and a transition metal atom are of unusual importance. Quite aside from the significance and role in Nature of the cobalt to carbon bonds in the vitamin B 12 system and possible metal to carbon bonds in other biological systems, we need only consider that during the time taken to deliver this lec- ture, many thousands, if not tens of thousands of tons of chemical compounds are being transformed or synthesised industrially in processes which at some stage involve a transition metal to carbon bond. The nonchemist will pro- bably be most familiar with polyethylene or polypropylene in the form of do- mestic utensils, packaging materials, children’s toys and so on. These materials are made by Ziegler-Natta* or Philipps’ catalysis using titanium and chro- mium respectively. However, transition metal compounds are used as catalysts in the synthesis of synthetic rubbers and other polymers, and of a variety of simple compounds used as industrial solvents or intermediates. For example alcohols are made from olefins, carbon monoxide and hydrogen by use of cobalt or rhodium catalysts, acetic acid is made by carbonylation of methanol using rhodium catalysts and acrylonitrile is dimerised to adiponitrile (for nylon) by nickel catalysts. We should also not forget that the huge quantities of petroleum hydrocarbons processed by the oil and petrochemical industry are re-formed over platinum, platinum-rhenium or platinum-germanium sup- ported on alumina.
    [Show full text]
  • Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and WN Nanocrystals Synthesized by Arc Discharge
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2011, Article ID 781935, 5 pages doi:10.1155/2011/781935 Research Article Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and W-N Nanocrystals Synthesized by Arc Discharge Longhai Shen and Nan Wang School of Science, Shenyang Ligong University, Shenyang 110159, China Correspondence should be addressed to Longhai Shen, [email protected] Received 28 March 2011; Revised 10 June 2011; Accepted 5 July 2011 Academic Editor: Theodorian Borca-Tasciuc Copyright © 2011 L. Shen and N. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The effect of nitrogen pressure on the structure of Ta-N, Cr-N, Mo-N, and W-N nanocrystals formed in arc discharge process was investigated. At the nitrogen pressure of 5 ∼ 20 kPa, the pure cubic-phase TaN and CrN nanocrystals were formed, whereas pure cubic phase of Mo2N and W2N cannot be obtained. A little of metal Mo and a mass of metal W were mixed with the products of Mo2N and W2N, respectively. At the nitrogen pressure of 30 ∼ 50 kPa, subnitride Ta2NandCr2N and metal Cr were gradually formed in the product; furthermore, the proportion of metal Mo and W increased in the product of Mo2N and W2N, respectively. It indicated that the low nitrogen pressure makes cubic mononitride formation favorable. We explain this experimental observation in terms of the evaporation rate of anode metal and the ionization of nitrogen.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Chemistry DEVELOPMENT OF RESONANT INELASTIC X-RAY SCATTERING SPECTROSCOPY FOR 4d AND 5d TRANSITION METAL CATALYSTS Rowena Thomas Thesis for Degree of Doctor of Philosophy APRIL 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Chemistry Doctor of Philosophy DEVELOPMENT OF RESONANT INELASTIC X-RAY SCATTERING SPECTROSCOPY FOR 4d AND 5d TRANSITION METAL COMPLEXES By Rowena Thomas This research focuses on the development of Resonant Inelastic X-ray Scattering spectroscopy (RIXS) as a tool in homogeneous catalysis for 4d and 5d transition metals. In the RIXS data 2D plots of x-ray emission spectra as a function of absorption were obtained, showing the relationship between the two techniques as well as probing both the unfilled and filled DOS.
    [Show full text]
  • SDS US 2PD Version #: 01 Issue Date: 03-25-2021 1 / 6 Chemical Name Common Name and Synonyms CAS Number % Tungsten Chloride 13283-01-7 100
    SAFETY DATA SHEET 1. Identification Product identifier Tungsten Chloride Other means of identification SDS number 2PD Materion Code 2PD CAS number 13283-01-7 Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name Materion Advanced Chemicals Inc. Address 407 N 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Telephone 414.212.0290 E-mail [email protected] Contact person Laura Hamilton Emergency phone number Chemtrec 800.424.9300 2. Hazard(s) identification Physical hazards Not classified. Health hazards Skin corrosion/irritation Category 1 Serious eye damage/eye irritation Category 1 Environmental hazards Not classified. OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Causes severe skin burns and eye damage. Causes serious eye damage. Precautionary statement Prevention Do not breathe dust/mist/spray. Wash hands thoroughly after handling. Wear protective gloves/protective clothing/eye protection/face protection. Response IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. IF INHALED: Remove to fresh air and keep at rest in a position comfortable for breathing. Immediately call a poison center/doctor. Wash/decontaminate removed clothing before reuse. Storage Store locked up. Disposal Dispose of contents/container in accordance with local/regional/national/international regulations. Hazard(s) not otherwise None known. classified (HNOC) Supplemental information None. 3. Composition/information on ingredients Substances Material name: Tungsten Chloride SDS US 2PD Version #: 01 Issue date: 03-25-2021 1 / 6 Chemical name Common name and synonyms CAS number % Tungsten Chloride 13283-01-7 100 4.
    [Show full text]
  • SDS EU 2PD Version #: 01 Issue Date: 25-March-2021 1 / 8 Hazard Statements H314 Causes Severe Skin Burns and Eye Damage
    SAFETY DATA SHEET SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Name of the substance Tungsten Chloride Identification number 236-293-9 (EC number) Registration number - Document number 2PD Synonyms None. Materion Code 2PD Issue date 25-March-2021 Version number 01 1.3. Details of the supplier of the safety data sheet Supplier Company name Materion Advanced Chemicals Inc. Address 407 N. 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Division Milwaukee Telephone 414.212.0257 e-mail [email protected] Contact person Laura Hamilton 1.4. Emergency telephone number 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Not available. Uses advised against None known. 1.3. Details of the supplier of the safety data sheet Supplier Company name Materion Advanced Chemicals Inc. Address 407 N. 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Division Milwaukee Telephone 414.212.0257 e-mail [email protected] Contact person Laura Hamilton 1.4. Emergency telephone number SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 as amended Hazard summary Causes severe skin burns and eye damage. Causes serious eye damage. 2.2. Label elements Label according to Regulation (EC) No. 1272/2008 as amended Contains: Tungsten Chloride Hazard pictograms Signal word Danger Material name: Tungsten Chloride SDS EU 2PD Version #: 01 Issue date: 25-March-2021 1 / 8 Hazard statements H314 Causes severe skin burns and eye damage.
    [Show full text]
  • Safety Data Sheet Material Name: Wcl6 (Tungsten Hexachloride) SDS ID: 320P
    Safety Data Sheet Material Name: WCl6 (Tungsten Hexachloride) SDS ID: 320P Section 1 - PRODUCT AND COMPANY IDENTIFICATION Material Name WCl6 (Tungsten Hexachloride) Synonyms TUNGSTEN CHLORIDE; TUNGSTEN HEXACHLORIDE; TUNGSTEN (VI) CHLORIDE Chemical Family metal, halides Product Use semiconductor manufacture Restrictions on Use None known. Details of the supplier of the safety data sheet Entegris, Inc. 129 Concord Road Building 2 Billerica, MA 01821 USA Telephone Number: +1-952-556-4181 Telephone Number: +1-800-394-4083 (toll free within North America) Emergency Telephone Number: CHEMTREC - U.S. - 1-800-424-9300 CHEMTREC - Intl. - 1-703-527-3887 E-mail: [email protected] Section 2 - HAZARDS IDENTIFICATION Classification in accordance with paragraph (d) of 29 CFR 1910.1200. Skin Corrosion/Irritation - Category 1 Serious Eye Damage/Eye Irritation - Category 1 Specific target organ toxicity - Single exposure - Category 3 ( respiratory system ) GHS Label Elements Symbol(s) Signal Word Danger Hazard Statement(s) Causes severe skin burns and eye damage. May cause respiratory irritation. Precautionary Statement(s) Prevention ____________________________________________________________ Page 1 of 9 Issue date: 2020-03-26 Revision 3.4 Print date: 2020-03-26 Safety Data Sheet Material Name: WCl6 (Tungsten Hexachloride) SDS ID: 320P Do not breathe dust. Wash thoroughly after handling. Wear protective gloves/protective clothing/eye protection/face protection. Use only outdoors or in a well-ventilated area. Response Immediately call a POISON CENTER or doctor/physician. IF INHALED: Remove person to fresh air and keep comfortable for breathing. Specific treatment may be needed, see first aid section of Safety Data Sheet. IF ON SKIN (or hair): Take off immediately all contaminated clothing.
    [Show full text]
  • New Route to Synthesize Surface Organometallic Complexes (SOMC): an Approach by Alkylating Halogenated Surface Organometallic Fragments
    New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments. Dissertation by Ali Hamieh In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia February, 2017 2 EXAMINATION COMMITTEE PAGE The dissertation of Ali Hamieh is approved by the examination committee. Committee Chairperson: Professor Jean-Marie Basset Committee Members: Professor Kazuhiro Takanabe, Professor Udo Schwingenschlogl, Professor Joumana Toufaily. 3 © February, 2017 Ali Hamieh All Rights Reserved 4 ABSTRACT New Route to Synthesize Surface Organometallic Complexes (SOMC): An Approach by Alkylating Halogenated Surface Organometallic Fragments. Ali I. Hamieh The aim of this thesis is to explore new simpler and efficient routes for the preparation of surface organometallic complexes (SOMC) for the transformation of small organic molecules to valuable products. The key element in this new route relies on surface alkylation of various halogenated surface coordination complexes or organometallic fragments (SOMF). The first chapter provides an overview on the origin of organometallic compounds, their classical synthesis, characterization and some of their applications In the second chapter, novel silica-supported tungsten oxo-trimethyl complex [(≡Si-O- )W(=O)Me3] was synthesized using the new SOMC synthetic approach. WOCl4 was grafted on the surface of silica, partially dehydroxylated at 700°C (SiO2-700), and [(≡Si-O- )W(=O)Cl3] was produced. The supported complex methylated with ZnMe2 and transformed into [(≡Si-O-)W(=O)Me3], which was fully characterized. It was found that complex [(≡Si-O-)W(=O)Me3] has two conformational isomers at room temperature.
    [Show full text]
  • Transition Metal Carbides and Nitrides in Energy Storage and Conversion
    www.advancedscience.com www.MaterialsViews.com Transition Metal Carbides and Nitrides in Energy Storage REVIEW and Conversion Yu Zhong , Xinhui Xia ,* Fan Shi , Jiye Zhan , Jiangping Tu , and Hong Jin Fan* solar energy. Fuel cell is considered as the High-performance electrode materials are the key to advances in the areas of main futuristic power source due to its energy conversion and storage (e.g., fuel cells and batteries). In this Review, high performance and infi nitely renew- recent progress in the synthesis and electrochemical application of transi- able characteristics, but the overwhelming roadblocks related to high-cost and unreli- tion metal carbides (TMCs) and nitrides (TMNs) for energy storage and ability of Pt-based electrocatalysts make it conversion is summarized. Their electrochemical properties in Li-ion and impractical for large-scale manufacture at Na-ion batteries as well as in supercapacitors, and electrocatalytic reactions this stage. The electrode for fuel cells con- (oxygen evolution and reduction reactions, and hydrogen evolution reaction) sists of active electrocatalysts and support are discussed in association with their crystal structure/morphology/com- matrix, and the active electrocatalyst is the position. Advantages and benefi ts of nanostructuring (e.g., 2D MXenes) are key factor to the performance of fuel cells. Current trend has turned to nonprecious highlighted. Prospects of future research trends in rational design of high- high-performance electrocatalysts instead performance TMCs and TMNs electrodes are provided at the end. of noble metals to drive the commercial application. [ 3–5 ] Meanwhile, in parallel with the research of fuel cell, great efforts are 1. Introduction dedicated to developing new-generation EES technologies to meet the increasing demand in both consumable electronics To maintain the economic growth of modern society and simul- and electric transport systems.
    [Show full text]
  • INORGANIC SYNTHESES Volume 23 Board of Directors
    INORGANIC SYNTHESES Volume 23 Board of Directors DUWARD F. SHRIVER Norrhwesrern University HENRY F. HOLZCLAW, JR. University of Nebraska BODIE E. DOUGLAS University of Pirrsburgh JAY H. WORRELL University of Sourh Florida JOHN P. FACKLER, JR. Texas A&M University SMITH L. HOLT, JR. Oklahoma State University Future Volumes 24 JEAN’NE SHREEVE University of Idaho 25 HERBERT D. KAESZ University of California, Los Angeles 26 HARRY R. ALLCOCK Pennsylvania State University 27 STEVEN D. ITTEL E. I. du Ponr de Nemours and Co. 28 ALVIN P. GINSBERG Bell Laboratories 29 ROBERT J. ANGELIC1 Iowa Srare University International Associates MARTIN A. BENNETT Australian National University FAUSTO CALDEWO University of Pisa E. 0. FISCHER Technische Universirar Miinchen SACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT ROESKY University of Goningen F. G. A. STONE University of Brisrol GEOFFREY WILKINSON Imperial College of Science and Technology AKIO YAMAMOTO Tokyo Kogyo Daigaku (TokyoInstirure of Technology) Editor-in-Chief STANLEY KIRSCHNER Deportment of Chemistry Wayne State Universily Detroit, Michigan INORGANIC SYNTHESES Volume 23 A Wiley-Interscience Publication JOHN WILEY tk SONS New York Chichester Briskne Toronto Singapore Published by John Wiley & Sons, Inc. Copyright 0 1985 by Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Caralog Number: 39-23015 ISBN 0-471-81873-9 Printed in the United States of America 10 9 8 7 6 5 4 3 2 I HARRYR.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,780,793 B2 Yang Et Al
    USOO7780793B2 (12) United States Patent (10) Patent No.: US 7,780,793 B2 Yang et al. (45) Date of Patent: Aug. 24, 2010 (54) PASSIVATION LAYER FORMATION BY (56) References Cited PLASMA CLEAN PROCESS TO REDUCE U.S. PATENT DOCUMENTS NATIVE OXDE GROWTH 4,209,357 A 6, 1980 Gorin et al. (75) Inventors: Haichun Yang, Santa Clara, CA (US); (Continued) Xinliang Lu, Fremont, CA (US); Chien-Teh Kao, Sunnyvale, CA (US); FOREIGN PATENT DOCUMENTS Mei Chang, Saratoga, CA (US) CN 13755.75 10, 2002 (73) Assignee: Applied Materials, Inc., Santa Clara, (Continued) CA (US) OTHER PUBLICATIONS PCT International Search Report and Written Opinion dated Jun. 23. (*) Notice: Subject to any disclaimer, the term of this 2009 for International Application No. PCT/US2008/087436. patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 140 days. Primary Examiner Michael Kornakov (21) Appl. No.: 11/962,791 Assistant Examiner—Ryan Coleman (74) Attorney, Agent, or Firm Patterson & Sheridan, LLP (22) Filed: Dec. 21, 2007 (57) ABSTRACT (65) Prior Publication Data Embodiments described herein provide methods for remov US 2008/O160210 A1 Jul. 3, 2008 ing native oxide Surfaces on Substrates while simultaneously passivating the underlying Substrate Surface. In one embodi Related U.S. Application Data ment, a method is provided which includes positioning a Substrate containing an oxide layer within a processing cham (60) Continuation-in-part of applic at1On No. 11 /622.437, ber, adjusting a first temperature of the substrate to about 80° filed on Jan. 11, 2007, which is a continuation-in-part C.
    [Show full text]
  • Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties
    Coatings 2015, 5, 656-687; doi:10.3390/coatings5040656 OPEN ACCESS coatings ISSN 2079-6412 www.mdpi.com/journal/coatings Review Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties Isabelle Jauberteau 1,*, Annie Bessaudou 2, Richard Mayet 1, Julie Cornette 1, Jean Louis Jauberteau 1, Pierre Carles 1 and Thérèse Merle-Méjean 1 1 Université de Limoges, CNRS, ENSCI, SPCTS UMR7315, F-87000 Limoges, France; E-Mails: [email protected] (R.M.); [email protected] (J.C.); [email protected] (J.L.J.); [email protected] (P.C.); [email protected] (T.M.-M.) 2 Université de Limoges, CNRS, XLIM UMR6172, F-87060 Limoges, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-587-502-323; Fax: +33-587-502-304. Academic Editor: Alessandro Lavacchi Received: 24 July 2015 / Accepted: 29 September 2015 / Published: 13 October 2015 Abstract: Among transition metal nitrides, molybdenum nitrides have been much less studied even though their mechanical properties as well as their electrical and catalytic properties make them very attractive for many applications. The δ-MoN phase of hexagonal structure is a potential candidate for an ultra-incompressible and hard material and can be compared with c-BN and diamond. The predicted superconducting temperature of the metastable MoN phase of NaCl-B1-type cubic structure is the highest of all refractory carbides and nitrides. The composition of molybdenum nitride films as well as the structures and properties depend on the parameters of the process used to deposit the films.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]