Transfer Operators of Random Partially Hyperbolic Dynamical Systems Luc Gossart

Total Page:16

File Type:pdf, Size:1020Kb

Transfer Operators of Random Partially Hyperbolic Dynamical Systems Luc Gossart Transfer operators of random partially hyperbolic dynamical systems Luc Gossart To cite this version: Luc Gossart. Transfer operators of random partially hyperbolic dynamical systems. Dynamical Sys- tems [math.DS]. Université Grenoble Alpes [2020-..], 2020. English. NNT : 2020GRALM062. tel- 03223781 HAL Id: tel-03223781 https://tel.archives-ouvertes.fr/tel-03223781 Submitted on 11 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Mathématiques Arrêté ministériel : 25 mai 2016 Présentée par Luc GOSSART Thèse dirigée par Frédéric FAURE, MCF préparée au sein du Laboratoire Institut Fourier dans l'École Doctorale Mathématiques, Sciences et technologies de l'information, Informatique Opérateurs de transfert de systèmes dynamiques partiellement hyperboliques aléatoires Transfer operators of random partially hyperbolic dynamical systems Thèse soutenue publiquement le 12 novembre 2020, devant le jury composé de : Monsieur FREDERIC FAURE MAITRE DE CONFERENCES HDR, UNIVERSITE GRENOBLE ALPES, Directeur de thèse Monsieur FREDERIC NAUD PROFESSEUR DES UNIVERSITES, SORBONNE UNIVERSITE - PARIS, Rapporteur Monsieur CARLANGELO LIVERANI PROFESSEUR, UNIVERSITE DE ROME «TOR VERGATA» ITALIE, Rapporteur Monsieur COLIN GUILLARMOU DIRECTEUR DE RECHERCHE HDR, CNRS ILE-DE-FRANCE GIF-SUR- YVETTE, Examinateur Madame FRANÇOISE PENE PROFESSEUR DES UNIVERSITES, UNIVERSITE DE BRETAGNE OCCIDENTALE, Examinatrice Monsieur ERWAN LANNEAU PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES, Président du jury Remerciements 1 Introduction en français 2 CONTEXTE 3 Contexte On étudie dans cette thèse les traces plates des itérés d’opérateurs de transferts associés à des applications partiellement hyperboliques. Etant donnés une appli- cation dilatante ou un difféomorphisme Anosov T sur une variété riemannienne compacte M, l’étude de l’opérateur , tirant les fonctions en arrière par le biais de T : L ∞(M) ∞(M) (0.1) : C −→ C L u u T 7−→ ◦ s’est révélée intéressante pour la connaissance des propriétés statistiques de l’application T . Ce cadre a été étudié en détail au cours des décennies passées (voir par exemple [Rue89], [Bow75], [PP90],[BKL02], et se référer au chapitre 1 pour une présen- tation plus détaillée et des références plus fournies). L’opérateur sera appelé dans tout ce qui suit opérateur de transfert, bien que ce terme aitL à l’origine désigné, et désigne encore le plus souvent dans la lit- térature, son adjoint. Les propriétés statistiques de l’application T sont liées au spectre de : Si T est lisse, la résolvante de l’opérateur de transfert admet un prolongement méromor-L phe à C 0 et les fonctions de corrélation admettent un développement asympto- tique s’exprimant\{ } de manière explicite à l’aide des pôles et résidus de la résolvante (voir par exemple à cet égard [Rue89] et [BKL02]; le chapitre 1 contient une description plus détaillée de ces principes, notamment la section 1, et la section 5 présente des résultats précis concernant pour des applications k). Les pôles de la résolvante (c’est-à-dire de son prolongement méromorphe) sontC appelées réso- nances de Ruelle-Pollicott, et leur collection spectre de Ruelle-Pollicott. L’existence d’un tel prolongement méromorphe est généralement obtenue par le bi- ais de la construction d’espaces dans lesquels le spectre de l’opérateur de transfert est discret en dehors d’un voisinage arbitrairement petit de l’origine. Dans le cas de flots ou d’applications partiellement hyperboliques, la présence d’une direction neutre complique les choses. La section 5 du chapitre 1 présente des résultats de la littérature à ce sujet. La façon la plus élémentaire de contruire un système qui sort du cadre hyperbolique est peut-être de partir d’une application hyperbolique et d’en construire une extension en cercles : Si T est une application dilatante ou un difféomorphisme d’une variété riemannienne compacte M, et si l’on dispose d’une fonction continue τ : M T := R/Z, alors on peut considérer le système dynamique −→ M T M T (0.2) F : . (x,y× ) −→ (T (×x),y + τ(x)) 7−→ Ce genre de systèmes a été étudié notamment par Dolgopyat [Dol02], qui en a montré le caractère génériquement mélangeant pour des mesures naturelles. Avec cette définition, les modes de Fourier dans la direction y sont préservés : si u ∞(M) et p Z, ∈C ∈ 2iπp 2iπpτ(x) 2iπpy (0.3) (u e ·)(F (x,y)) = e u(T (x))e . ⊗ 4 INTRODUCTION EN FRANÇAIS De ce fait, on se ramène à l’étude d’une famille d’opérateurs de transfert ∞(M) ∞(M) (0.4) ξ,τ : C −→ C L u eiξτ u T 7−→ ◦ associés à une application dilatante ou hyperbolique, et indexés par un paramètre fréquentiel ξ R. Comme première étape dans l’exploration du spectre de Ruelle, on prend pour∈ τ une fonction aléatoire et on s’intéresse aux traces plates des itérés de l’opérateur de transfert : Si ξ,τ n’est en général pas un opérateur à trace, il admet une trace plate (voir chapitreL 1 section 5.1), définie comme l’intégrale de son noyau de Schwartz le long de la diagonale. Pour les opérateurs à trace, cette définition coïncide avec la notion habituelle de trace. La trace plate d’un itéré de l’opérateur de transfert s’exprime comme une somme sur les orbites périodiques : n iξτx ♭ n e (0.5) Tr ( ξ,τ )= n , L n det(1 dTx ) x,TX(x)=x | − | n où τx est la somme de Birkhoff n n 1 (0.6) τ = τ(x)+ + τ(T − (x)). x ··· Notons lx la période (minimale) d’un point périodique x, et 1 − 2 lx (0.7) An := n 2 1. n det(1 dTx ) ≫ x,TX(x)=x | − | Remarquons qu’An est exponentiellement grand : n Pr( 2Ju)+o(n) (0.8) An = e− 2 − où Ju = log det(dT Eu ) est le jacobien instable, et Pr( 2Ju) < 0 sa pression topologique (voir (3.B.24)).| − Dans l’hypothèse où les phases comprenant les sommes de Birkhoff, qui inter- viennent dans l’expression de la trace plate (0.5), se comporteraient comme des variables aléatoires indépendantes, uniformes sur S1, un rapide calcul montre que ♭ n les traces plates Tr ( ξ,τ ), renormalisées par le facteur An convergent vers des vari- ables aléatoires gaussiennesL complexes de variance 1. Dans [FW17], Faure et Weich établissent une forme normale globale, dans un modèle ouvert très proche, appelé IFS (iterated function scheme) : ils expriment les itérés n de l’opérateur de transfert comme une somme d’opérateurs de rang Lξ,τ 1 indexés par les points périodiques, dans la limite où n et ξ tendent vers l’infini, avec n plus grand qu’un temps d’Ehrenfest c log ξ. Ils font usage de cette forme nor- male pour obtenir une borne supérieure sur le rayon spectral de ξ,τ pour ξ large, ce qui fournit un trou spectral asymptotique. Ils rencontrent lesL mêmes phases, faisant intervenir de sommes de Birkhoff, que dans la formule des traces (0.5), et obtiendraient une borne optimale si les phases se comportaient comme des variables aléatoires uniformes indépendantes. Cependant, il n’est pas très raisonnable de considérer des fonctions aléatoires τ pour lesquelles les valeurs prises en différents points périodiques d’une même période sont indépendantes, car cela mènerait à une grande irrégularité (si par exemple τ est un champ gaussien, cette hypothèse implique que τ est partout localement non RÉSULTATS 5 borné). Il n’y a alors plus lieu de parler de traces plates. De plus, l’ensemble captif, qui apparaît de manière centrale dans le papier [FW17] est sensible aux perturbations 1, il est donc naturel de souhaiter prendre pour fonction toit τ une peturbation, petiteC en norme 1, d’une fonction τ donnée. C 0 Résultats Les résultats contenus dans cette thèse sont les deux théorèmes suivants: Applications dilatantes du cercle, chapitre 2. Ce théorème est démontré dans le chapitre 2,qui est une reproduction de [Gos20a]. Soit k N. Soit E une application dilatante k du cercle, de degré l, préservant l’orientation.∈ Soit C M = max E′. k Theorem 0.1. Soit τ0 (T). Soit (cp)p N une famille variables aléatoires ∈ C 2 2∈ ν gaussiennes complexes vérifiant E[ c ]= O(p− − ) pour un certain ν > 0 (afin de | p| s’assurer que δτ est presque sûrement continu). Soit c p = cp et − 2iπpx (0.9) δτ(x)= cpe . p Z X∈ Si 2 C (0.10) ǫ> 0, C > 0, p Z∗, E c , ∃ ∃ ∀ ∈ | p| ≥ p2k+2+ǫ h i alors on a la convergence en loi ♭ n (0.11) A Tr C(0, 1) n Lξ,τ0+δτ −→ N pour n et ξ tendant tous deux vers l’infini, en suivant la relation log ξ (0.12) 0 <c< 1, n,ξ, n c 1 ǫ . ∃ ∀ ≤ log l +(k + 2 + 2 ) log M On verra que si l’on inverse l’inégalité dans la condition (0.10), c’est-à-dire, s’il existe α> 0 et C > 0 tels que 2 C (0.13) p Z∗, E c , ∀ ∈ | p| ≤ p2k+2+α h i alors la fonction δτ est presque sûrement de classe Ck. Prendre k plus grand permet donc d’énoncer le théorème pour des champs plus réguliers, la contrepartie étant qu’il est alors valable pour des temps plus courts.
Recommended publications
  • Anosov Diffeomorphism with a Horseshoe That Attracts Almost Any Point
    DISCRETE AND CONTINUOUS doi:10.3934/dcds.2020017 DYNAMICAL SYSTEMS Volume 40, Number 1, January 2020 pp. 441–465 ANOSOV DIFFEOMORPHISM WITH A HORSESHOE THAT ATTRACTS ALMOST ANY POINT Christian Bonatti Institut de Math´ematiquesde Bourgogne, Universit´ede Bourgogne Dijon 21004, France Stanislav Minkov Brook Institute of Electronic Control Machines 119334, Moscow, Vavilova str., 24, Russia Alexey Okunev Loughborough University LE11 3TU, Loughborough, UK Ivan Shilin National Research University Higher School of Economics Faculty of Mathematics, 119048, Moscow, Usacheva str., 6, Russia (Communicated by Sylvain Crovisier) Abstract. We present an example of a C1 Anosov diffeomorphism of a two- torus with a physical measure such that its basin has full Lebesgue measure and its support is a horseshoe of zero measure. 1. Introduction. Consider a diffeomorphism F that preserves a probability mea- sure ν. The basin of ν is the set of all points x such that the sequence of measures n 1 δ := (δ + ··· + δ n−1 ) x n x F (x) converges to ν in the weak-∗ topology. A measure is called physical if its basin has positive Lebesgue measure. It is well known (see [3], [11], [12], or [1, x1:3]) that any transitive C2 Anosov diffeomorphism (note that all known Anosov diffeomorphisms are transitive) has a unique physical measure and • the basin of this measure has full Lebesgue measure, • the support of this measure coincides with the whole phase space. In C1 dynamics there are many phenomena that are impossible in C2. Bowen [2] has constructed an example of a C1 diffeomorphism of the plane with a thick horseshoe (i.e., a horseshoe with positive Lebesgue measure) and Robinson and Young [10] have embedded a thick horseshoe in a C1 Anosov diffeomorphism of T2 2010 Mathematics Subject Classification.
    [Show full text]
  • Invariant Measures for Hyperbolic Dynamical Systems
    Invariant measures for hyperbolic dynamical systems N. Chernov September 14, 2006 Contents 1 Markov partitions 3 2 Gibbs Measures 17 2.1 Gibbs states . 17 2.2 Gibbs measures . 33 2.3 Properties of Gibbs measures . 47 3 Sinai-Ruelle-Bowen measures 56 4 Gibbs measures for Anosov and Axiom A flows 67 5 Volume compression 86 6 SRB measures for general diffeomorphisms 92 This survey is devoted to smooth dynamical systems, which are in our context diffeomorphisms and smooth flows on compact manifolds. We call a flow or a diffeomorphism hyperbolic if all of its Lyapunov exponents are different from zero (except the one in the flow direction, which has to be 1 zero). This means that the tangent vectors asymptotically expand or con- tract exponentially fast in time. For many reasons, it is convenient to assume more than just asymptotic expansion or contraction, namely that the expan- sion and contraction of tangent vectors happens uniformly in time. Such hyperbolic systems are said to be uniformly hyperbolic. Historically, uniformly hyperbolic flows and diffeomorphisms were stud- ied as early as in mid-sixties: it was done by D. Anosov [2] and S. Smale [77], who introduced his Axiom A. In the seventies, Anosov and Axiom A dif- feomorphisms and flows attracted much attention from different directions: physics, topology, and geometry. This actually started in 1968 when Ya. Sinai constructed Markov partitions [74, 75] that allowed a symbolic representa- tion of the dynamics, which matched the existing lattice models in statistical mechanics. As a result, the theory of Gibbs measures for one-dimensional lat- tices was carried over to Anosov and Axiom A dynamical systems.
    [Show full text]
  • Linear Response, Or Else
    Linear response, or else Viviane Baladi Abstract. Consider a smooth one-parameter family t ft of dynamical systems ft, with t < ϵ. !→ | | Assume that for all t (or for many t close to t =0) the map ft admits a unique physical invariant probability measure µt. We say that linear response holds if t µt is differentiable at t =0(possibly !→ in the sense of Whitney), and if its derivative can be expressed as a function of f0, µ0, and ∂tft t=0. | The goal of this note is to present to a general mathematical audience recent results and open problems in the theory of linear response for chaotic dynamical systems, possibly with bifurcations. Mathematics Subject Classification (2010). Primary 37C40; Secondary 37D25, 37C30, 37E05. Keywords. Linear response, transfer operator, Ruelle operator, physical measure, SRB measure, bi- furcations, differentiable dynamical system, unimodal maps, expanding interval maps, hyperbolic dy- namical systems. 1. Introduction A discrete-time dynamical system is a self-map f : M M on a space M. To any point n → 0 x M is then associated its (future) orbit f (x) n Z+ where f (x)=x, and n∈ n 1 { | ∈ } f (x)=f − (f(x)), for n 1, represents the state of the system at time n, given the “ini- ≥ n tial condition” x. (If f is invertible, one can also consider the past orbit f − (x) n Z+ .) { | ∈ } In this text, we shall always assume that M is a compact differentiable manifold (possibly with boundary), with the Borel σ-algebra, endowed with a Riemannian structure and thus normalised Lebesgue measure.
    [Show full text]
  • Arxiv:2003.06811V3 [Math.DS] 31 Mar 2021 Nsmcasclaayi Eg E [ See (E.G
    ANOSOV DIFFEOMORPHISMS, ANISOTROPIC BV SPACES AND REGULARITY OF FOLIATIONS WAEL BAHSOUN AND CARLANGELO LIVERANI Abstract. Given any smooth Anosov map we construct a Banach space on which the associated transfer operator is quasi-compact. The peculiarity of such a space is that in the case of expanding maps it reduces exactly to the usual space of functions of bounded variation which has proven particularly successful in studying the statistical properties of piecewise expanding maps. Our approach is based on a new method of studying the absolute continuity of foliations which provides new information that could prove useful in treating hyperbolic systems with singularities. 1. Introduction Starting with the paper [BKL], there has been a growing interest in the pos- sibility to develop a functional analytic setting allowing the direct study of the transfer operator of a hyperbolic dynamical system. The papers [GL, GL1, BT, BT1, B1, B2, B3, B4, T1] have now produced quite satisfactory results for the case of Anosov diffeomorphisms (or, more generally, for uniformly hyperbolic basic sets). Important results, although the theory is not complete yet, have been ob- tained for flows [L, BuL, BuL2, GLP, FT2, DyZ, D17], group extensions and skew products ([F11, AGT]). Moreover, recently a strong relation with techniques used in semiclassical analysis (e.g. see [FR, FRS, FT1, FT2, DyZ]) has been unveiled. Also, one should mention the recent discovery of a deep relation with the theory of renormalization of parabolic systems [GL19]. In addition, such an approach has proven very effective in the study of perturbation of dynamical systems [KL1, KL3] and in the investigation of limit theorems [G10].
    [Show full text]
  • Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
    Rufus Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms New edition of Lect. Notes in Math. 470, Springer, 1975. April 14, 2013 Springer Preface The Greek and Roman gods, supposedly, resented those mortals endowed with superlative gifts and happiness, and punished them. The life and achievements of Rufus Bowen (1947{1978) remind us of this belief of the ancients. When Rufus died unexpectedly, at age thirty-one, from brain hemorrhage, he was a very happy and successful man. He had great charm, that he did not misuse, and superlative mathematical talent. His mathematical legacy is important, and will not be forgotten, but one wonders what he would have achieved if he had lived longer. Bowen chose to be simple rather than brilliant. This was the hard choice, especially in a messy subject like smooth dynamics in which he worked. Simplicity had also been the style of Steve Smale, from whom Bowen learned dynamical systems theory. Rufus Bowen has left us a masterpiece of mathematical exposition: the slim volume Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer Lecture Notes in Mathematics 470 (1975)). Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems. The area discussed by Bowen came into existence through the merging of two apparently unrelated theories.
    [Show full text]
  • What Are Lyapunov Exponents, and Why Are They Interesting?
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 1, January 2017, Pages 79–105 http://dx.doi.org/10.1090/bull/1552 Article electronically published on September 6, 2016 WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? AMIE WILKINSON Introduction At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.”1 Although it is not explicitly mentioned in this citation, there is a second unify- ing concept in Avila’s work that is closely tied with renormalization: Lyapunov (or characteristic) exponents. Lyapunov exponents play a key role in three areas of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and the spectral theory of 1-dimensional Schr¨odinger operators. Here we take the op- portunity to explore these areas and reveal some underlying themes connecting exponents, chaotic dynamics and renormalization. But first, what are Lyapunov exponents? Let’s begin by viewing them in one of their natural habitats: the iterated barycentric subdivision of a triangle. When the midpoint of each side of a triangle is connected to its opposite vertex by a line segment, the three resulting segments meet in a point in the interior of the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller triangles determined by these segments and the edges of the original triangle: Figure 1. Barycentric subdivision. Received by the editors August 2, 2016.
    [Show full text]
  • The Ergodic Theory of Hyperbolic Dynamical Systems
    MAGIC: Ergodic Theory Lecture 10 - The ergodic theory of hyperbolic dynamical systems Charles Walkden April 12, 2013 In this lecture we use symbolic dynamics to model more general hyperbolic dynamical systems. We can then use thermodynamic formalism to prove ergodic-theoretic results about such systems. In the last two lectures we studied thermodynamic formalism in the context of one-sided aperiodic shifts of finite type. In the last two lectures we studied thermodynamic formalism in the context of one-sided aperiodic shifts of finite type. In this lecture we use symbolic dynamics to model more general hyperbolic dynamical systems. We can then use thermodynamic formalism to prove ergodic-theoretic results about such systems. Let Tx M be the tangent space at x 2 M. Let Dx T : Tx M ! TTx M be the derivative of T . Idea: At each point x 2 M, there are two directions: I T contracts exponentially fast in one direction. I T expands exponentially fast in the other. Definition T : M ! M is an Anosov diffeomorphism if 9C > 0; λ 2 (0; 1) s.t. 8x 2 M, there is a splitting s u Tx M = Ex ⊕ Ex into DT -invariant sub-bundles E s , E u s.t. n n s kDx T (v)k ≤ Cλ kvk 8v 2 Ex ; 8n ≥ 0 −n n u kDx T (v)k ≤ Cλ kvk 8v 2 Ex ; 8n ≥ 0: Hyperbolic dynamical systems Let T be a C 1 diffeomorphism of a compact Riemannian manifold M. Let Dx T : Tx M ! TTx M be the derivative of T .
    [Show full text]
  • Maximal Entropy Measures for Certain Partially Hyperbolic, Derived from Anosov Systems
    MAXIMAL ENTROPY MEASURES FOR CERTAIN PARTIALLY HYPERBOLIC, DERIVED FROM ANOSOV SYSTEMS J. BUZZI, T. FISHER, M. SAMBARINO, C. VASQUEZ´ Abstract. We show that a class of robustly transitive diffeomor- phisms originally described by Ma˜n´eare intrinsically ergodic. More precisely, we obtain an open set of diffeomorphisms which fail to be uniformly hyperbolic and structurally stable, but nevertheless have the following stability with respect to their entropy. Their topological entropy is constant and they each have a unique measure of maximal entropy with respect to which peri- odic orbits are equidistributed. Moreover, equipped with their re- spective measure of maximal entropy, these diffeomorphisms are pairwise isomorphic. We show that the method applies to several classes of systems which are similarly derived from Anosov, i.e., produced by an iso- topy from an Anosov system, namely, a mixed Ma˜n´eexample and one obtained through a Hopf bifurcation. 1. Introduction Let f be a diffeomorphism of a manifold M to itself. The diffeomor- phism f is transitive if there exists a point x ∈ M where + n Of (x)= {f (x)|n ∈ N} is dense in M. It is robustly transitive [4, Ch. 7] if there exists a neighborhood U of f in the space Diff1(M) of C1 diffeomorphisms such that each g in U is transitive. Since robust transitivity is an open condition, it is an important component of the global picture of dynamical systems [23]. Date: October 11, 2010. 2000 Mathematics Subject Classification. 37C40, 37A35, 37C15. Key words and phrases. Measures of maximal entropy, topological entropy, ro- bust ergodicity, ergodic theory, partial hyperbolicity, intrinsic ergodicity.
    [Show full text]
  • Hyperbolic Dynamical Systems, Chaos, and Smale's
    Hyperbolic dynamical systems, chaos, and Smale's horseshoe: a guided tour∗ Yuxi Liu Abstract This document gives an illustrated overview of several areas in dynamical systems, at the level of beginning graduate students in mathematics. We start with Poincar´e's discovery of chaos in the three-body problem, and define the Poincar´esection method for studying dynamical systems. Then we discuss the long-term behavior of iterating a n diffeomorphism in R around a fixed point, and obtain the concept of hyperbolicity. As an example, we prove that Arnold's cat map is hyperbolic. Around hyperbolic fixed points, we discover chaotic homoclinic tangles, from which we extract a source of the chaos: Smale's horseshoe. Then we prove that the behavior of the Smale horseshoe is the same as the binary shift, reducing the problem to symbolic dynamics. We conclude with applications to physics. 1 The three-body problem 1.1 A brief history The first thing Newton did, after proposing his law of gravity, is to calculate the orbits of two mass points, M1;M2 moving under the gravity of each other. It is a basic exercise in mechanics to show that, relative to one of the bodies M1, the orbit of M2 is a conic section (line, ellipse, parabola, or hyperbola). The second thing he did was to calculate the orbit of three mass points, in order to study the sun-earth-moon system. Here immediately he encountered difficulty. And indeed, the three body problem is extremely difficult, and the n-body problem is even more so.
    [Show full text]
  • Entropy Rigidity for 3D Conservative Anosov Flows and Dispersing Billiards
    ENTROPY RIGIDITY FOR 3D CONSERVATIVE ANOSOV FLOWS AND DISPERSING BILLIARDS JACOPO DE SIMOI, MARTIN LEGUIL∗, KURT VINHAGE, AND YUN YANG Abstract. Given an integer k ≥ 5, and a Ck Anosov flow Φ on some compact connected 3-manifold preserving a smooth volume, we show that the measure of maximal entropy (MME) is the volume measure if and only if Φ is Ck−"- conjugate to an algebraic flow, for " > 0 arbitrarily small. Besides the rigidity, we also study the entropy flexibility, and show that the metric entropy with respect to the volume measure and the topological entropy of suspension flows over Anosov diffeomorphisms on the 2-torus achieve all possible values subject to natural normalizations. Moreover, in the case of dispersing billiards, we show that if the measure of maximal entropy is the volume measure, then the Birkhoff Normal Form of regular periodic orbits with a homoclinic intersection is linear. Contents 1. Introduction2 1.1. Outline of arguments and new techniques3 1.2. Entropy flexibility5 1.3. Entropy rigidity for dispersing billiards5 2. Preliminaries7 2.1. General facts about hyperbolic flows7 2.2. Equilibrium states for Anosov/Axiom A flows8 2.3. Anosov class and Birkhoff Normal Form 10 3. Entropy rigidity for conservative Anosov flows on 3-manifolds 12 3.1. Periodic Lyapunov exponents when SRB=MME 12 3.2. Expansion of the Lyapunov exponents of periodic orbits in a horseshoe with prescribed combinatorics 13 3.3. From smooth orbit equivalence to smooth flow conjugacy 19 4. Entropy Flexibility 21 5. Some results towards entropy rigidity for dispersing billiards 26 5.1.
    [Show full text]
  • Prevalence of Non-Lipschitz Anosov Foliations
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Pages 93{98 (September 11, 1997) S 1079-6762(97)00030-9 PREVALENCE OF NON-LIPSCHITZ ANOSOV FOLIATIONS BORIS HASSELBLATT AND AMIE WILKINSON (Communicated by Krystyna Kuperberg) To the memory of Gunnar Hasselblatt, 19.8.1928–12.7.1997 Abstract. We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems and give open dense sets of codimension one systems where this regularity is not exceeded as well as open dense sets of symplectic, geodesic, and codimension one systems where the analogous regu- larity results of Pugh, Shub, and Wilkinson are optimal. We produce open sets of symplectic Anosov diffeomorphisms and flows with low transverse H¨older regularity of the invariant foliations almost everywhere. Prevalence of low reg- ularity of conjugacies on large sets is a corollary. We also establish a new connection between the transverse regularity of foliations and their tangent subbundles. 1. Introduction A diffeomorphism f of a compact Riemannian manifold M is called Anosov if the tangent bundle splits (necessarily uniquely and continuously) into two Df-invariant subbundles TM = Eu Es, and there exist constants C and a<1 such that ⊕ n n n n s u Df (v) Ca v and Df− (u) Ca u for v E ;u E;n N: k k≤ k k k k≤ k k ∈ ∈ ∈ Thus, for two nearby points positive or negative iterates move apart exponentially fast. Any hyperbolic matrix A SL(m; Z) induces an Anosov diffeomorphism of ∈ the m-torus Tm; Eu and Es are the expanding and contracting root spaces of A.
    [Show full text]
  • Dimension Product Structure of Hyperbolic Sets 1
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Pages 88{96 (August 26, 2004) S 1079-6762(04)00133-7 DIMENSION PRODUCT STRUCTURE OF HYPERBOLIC SETS BORIS HASSELBLATT AND JORG¨ SCHMELING (Communicated by Svetlana Katok) Abstract. We conjecture that the fractal dimension of hyperbolic sets can be computed by adding those of their stable and unstable slices. This would facilitate substantial progress in the calculation or estimation of these dimen- sions, which are related in deep ways to dynamical properties. We prove the conjecture in a model case of Smale solenoids. 1. Introduction Since the 1980s pictures of various \fractal" sets have become part of our popular culture, and their fractal dimension has been associated with the smoothness or thickness of these sets. In recent years the rigorous and systematic study of these dimensions (see Section 4 and [F]) and their relation to characteristic properties of the dynamical systems that give rise to these sets has made substantial progress. Much of this progress was initiated by physicists, but concerns of this type have become an important part of mainstream mathematics [P]. While this has had an effect on fields such as number theory, the present work is about invariant sets in hyperbolic dynamical systems. 1.1. Invariant sets in hyperbolic dynamical systems. In this paper a dy- namical system is a diffeomorphism or an embedding of a manifold into itself, and the principal interest in the theory is to study the long-term behavior of points under repeated iteration of the map. Often, it is of interest to concentrate on par- ticular invariant sets, and here we concentrate on those that are hyperbolic (see Definition 1), i.e., at each point of the set the tangent space is a direct sum of two subspaces that are contracted and expanded, respectively, by the differential of the map.
    [Show full text]