Wait-Free Consensus

Total Page:16

File Type:pdf, Size:1020Kb

Wait-Free Consensus WaitFree Consensus James Aspnes July CMUCS Scho ol of Computer Science Carnegie Mellon University Pittsburgh PA Submitted in partial fulllmen t of the requirements for the degree of Do ctor of Philosophy c James Aspnes This researc h was supp orted by an IBM Graduate Fellowship and an NSF Graduate Fellowship Keywords distributed algorithms shared memory consensus random walks martingales shared coins Abstract Consensus is a decision problem in which n pro cessors each starting with a value not known to the others must collectively agree on a single value If the initial values are equal the pro cessors must agree on that common value this is the validity condition A consensus proto col is waitfree if every pro ces sor nishes in a nite numb er of its own steps regardless of the relative sp eeds of the other pro cessors a condition that precludes the use of traditional syn chronization techniques such as critical sections lo cking or leader election Waitfree consensus is fundamental to synchronization without mutual ex clusion as it can b e used to construct waitfree implementations of arbitrary concurrent data structures It is known that no deterministic algorithm for waitfree consensus is p ossible although many randomized algorithms have b een prop osed I present two algorithms for solving the waitfree consensus problem in the standard asynchronous sharedmemory model The rst is a very simple proto col based on a random walk The second is a proto col based on weighted 2 voting in which each pro cessor executes O n log n exp ected op erations This b ound is close to the trivial lower b ound of n and it substantially 2 improves on the b est previouslyknown b ound of O n log n due to Bracha and Rachman Acknowledgments I would like to b egin by thanking the memb ers of my committee My advisor Steven Rudich has always b een willing to provide encouragement Danny Sleator showed me that research is b etter done as play than as work Merrick Furst has always b een a source of interesting observations and ideas Maurice Herlihy intro duced me to waitfree consensus when I rst arrived at Carnegie Mellon his keen insights into distributed computing have b een a continuing inuence on my work I would like to thank my parents for their warm supp ort and encourage ment I would like to thank the many other students who lightened the monastic burdens of graduate student life David Applegate in particular was always ready to supply a new problem or a new toy Finally I would like to thank my b eloved wife Nan Ellman who waited longer and more patiently for me to nish than anyone i Contents Intro duction The Asynchronous SharedMemory Mo del Basic elements Time and asynchrony Randomization Relation to other models Performance measures Consensus and Shared Coins Consensus Shared coins Consensus using shared coins Consensus Using a Random Walk Random walks The robust shared coin proto col Implementing a b ounded counter with atomic registers The randomized consensus proto col Consensus Using Weighted Voting Intro duction The shared coin proto col Martingales Knowledge algebras and measurability Denition of a martingale Gambling systems ii Limit theorems Pro of of correctness Phases of the proto col Common votes Extra votes Written votes vs decided votes Choice of parameters Conclusions and Op en Problems Comparison with other proto cols Limits to waitfree consensus Op en problems iii List of Figures Consensus from a shared coin Robust shared coin proto col Pictorial representation of robust shared coin proto col The proto col as a controlled random walk Pseudo co de for counter op erations Consensus proto col Counter scan for randomized consensus proto col Shared coin proto col iv List of Tables Comparison of consensus proto cols v Chapter Intro duction Consensus CIL is a to ol for allowing a group of pro cessors to collectively cho ose one value from a set of alternatives It is dened as a decision problem in which n pro cessors each starting with a value or not known to the others must collectively agree on a single value The restriction to a single bit do es not prevent the pro cessors from cho osing b etween more than two p ossibilities since they can run just run a onebit consensus proto col multiple times The pro cessors communicate by reading from and writing to a collection of registers each pro cessor nishes the proto col by deciding on a value and halting A consensus proto col is waitfree if each pro cessor makes its decision after a nite numb er of its own steps regardless of the relative sp eeds or halting failures of the other pro cessors In addition a consensus proto col must satisfy the validity condition if every pro cessor starts with the same input value every pro cessor decides on that value This condition excludes trivial proto cols such as one where every pro cessor always decides The asynchronous sharedmemory model is an attempt to capture the eect of making the weakest p ossible assumptions ab out the timing of events in a distributed system At each moment an adversary scheduler cho oses one of the n pro cessors to run No guarantees are made ab out the schedulers choices it may start and stop pro cessors at will based on a total knowledge of the state of the system including the contents of the registers the pro gramming of the pro cessors and even the internal states of the pro cessors Since the scheduler can always simulate a halting failure by cho osing not to run a pro cessor the mo del eectively allows up to n halting failures The adversarys p ower however is not unlimited It cannot cause the pro cessors to deviate from their programming or cause op erations on the registers to fail or return incorrect values Combined with the requirement that a consensus proto col terminate af ter a nite numb er of op erations the adversarys p ower precludes the use of traditional synchronization techniques such as critical sections lo cking or leader election any pro cessor that obtains a critical resource can b e killed and as so on as any pro cessor or group of pro cessors is given control over the outcome of the proto col the scheduler can put them to sleep and leave the other pro cessors helpless to complete the proto col on their own In general any proto col dep ending on mutual exclusion where one pro cessors p os session of a resource or role dep ends on other pro cessors b eing excluded from it will not b e waitfree Waitfree consensus is fundamental to synchronization without mutual exclusion and thus lies at the heart of the more general problem of con structing highly concurrent data structures Her It can b e used to obtain waitfree implementations of arbitrary abstract data typ es with atomic op er ations Her Plo It is also complete for distributed decision tasks CM in the sense that it can b e used to solve all such decision tasks that have a waitfree solution Intuitively the pro cessors can individually simulate a sequence of op erations on an ob ject or the computation of a decision value and use consensus proto cols to cho ose among the p ossibly distinct outcomes Conversely if consensus is not p ossible it is also impossible to construct waitfree implementations for many simple abstract data typ es including queues testandset bits or compareandswap registers as there exist sim ple deterministic consensus proto cols for b ounded numb ers of pro cessors using these primitives Her Alas given the p owerful adversary of the asynchronous sharedmemory model it is not p ossible to have a deterministic waitfree consensus proto col one in which the b ehavior of the pro cessors is predictable in advance In fact in a wide variety of asynchronous models it has b een shown there is no deterministic consensus proto col that works against a scheduler that can stop even a single pro cessor CIL DDS FLP Her LAA TM Though this result is usually proved using more general techniques when only singlewriter registers are used it has a simple pro of that illustrates many of the problems that arise when trying to solve waitfree consensus Imagine that two pro cessors A and B are trying to solve the consensus problem Their situation is very much like the situation of two p eople facing each other in a narrow hallway neither p erson has any stake in whether they pass on the left or the right but if one go es left and the other right they will bump into each other and make no progress When A and B are deterministic pro cessors under the control of a malicious adversary scheduler we can show the scheduler will b e able to use its knowledge of their state and its control over the timing of events to keep A and B oscillating back and forth forever b etween the two p ossible decision values Here is what happ ens Since each pro cessor is deterministic
Recommended publications
  • Dagrep-V007-I011-Complete.Pdf
    Volume 7, Issue 11, November 2017 New Challenges in Parallelism (Dagstuhl Seminar 17451) Annette Bieniusa, Hans-J. Boehm, Maurice Herlihy, and Erez Petrank ........... 1 Algorithmic Cheminformatics (Dagstuhl Seminar 17452) Jakob L. Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler . 28 Connecting Visualization and Data Management Research (Dagstuhl Seminar 17461) Remco Chang, Jean-Daniel Fekete, Juliana Freire, and Carlos E. Scheidegger . 46 A Shared Challenge in Behavioural Specification (Dagstuhl Seminar 17462) Klaus Havelund, Martin Leucker, Giles Reger, and Volker Stolz . 59 Artificial and Computational Intelligence in Games: AI-Driven Game Design (Dagstuhl Seminar 17471) Pieter Spronck, Elisabeth André, Michael Cook, and Mike Preuß . 86 Addressing the Computational Challenges of Personalized Medicine (Dagstuhl Seminar 17472) Niko Beerenwinkel, Holger Fröhlich, and Susan A. Murphy . 130 Reliable Computation and Complexity on the Reals (Dagstuhl Seminar 17481) Norbert T. Müller, Siegfried M. Rump, Klaus Weihrauch, and Martin Ziegler . 142 DagstuhlReports,Vol. 7,Issue11 ISSN2192-5283 ISSN 2192-5283 Published online and open access by Aims and Scope Schloss Dagstuhl – Leibniz-Zentrum für Informatik The periodical Dagstuhl Reports documents the GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, program and the results of Dagstuhl Seminars and Germany. Online available at Dagstuhl Perspectives Workshops. http://www.dagstuhl.de/dagpub/2192-5283 In principal, for each Dagstuhl Seminar or Dagstuhl Perspectives Workshop a report is published that Publication date contains the following: March, 2018 an executive summary of the seminar program and the fundamental results, Bibliographic information published by the Deutsche an overview of the talks given during the seminar Nationalbibliothek (summarized as talk abstracts), and The Deutsche Nationalbibliothek lists this publica- summaries from working groups (if applicable).
    [Show full text]
  • Chicago Journal of Theoretical Computer Science the MIT Press
    Chicago Journal of Theoretical Computer Science The MIT Press Volume 1997, Article 1 12 March 1997 ISSN 1073–0486. MIT Press Journals, 55 Hayward St., Cambridge, MA 02142 USA; (617)253-2889; [email protected], [email protected]. Published one article at a time in LATEX source form on the Internet. Pag- ination varies from copy to copy. For more information and other articles see: http://www-mitpress.mit.edu/jrnls-catalog/chicago.html • http://www.cs.uchicago.edu/publications/cjtcs/ • ftp://mitpress.mit.edu/pub/CJTCS • ftp://cs.uchicago.edu/pub/publications/cjtcs • Feige and Kilian Limited vs. Polynomial Nondeterminism (Info) The Chicago Journal of Theoretical Computer Science is abstracted or in- R R R dexed in Research Alert, SciSearch, Current Contents /Engineering Com- R puting & Technology, and CompuMath Citation Index. c 1997 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor in chief: Janos Simon Consulting
    [Show full text]
  • Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All Rights Reserved
    Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All rights reserved Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum February 22, 2011 DRAFT 2 DRAFT Contents 1 Introduction 9 1.1 DecisionTasks .......................... 10 1.2 Communication.......................... 11 1.3 Failures .............................. 11 1.4 Timing............................... 12 1.4.1 ProcessesandProtocols . 12 1.5 ChapterNotes .......................... 14 2 Elements of Combinatorial Topology 15 2.1 Theobjectsandthemaps . 15 2.1.1 The Combinatorial View . 15 2.1.2 The Geometric View . 17 2.1.3 The Topological View . 18 2.2 Standardconstructions. 18 2.3 Chromaticcomplexes. 21 2.4 Simplicial models in Distributed Computing . 22 2.5 ChapterNotes .......................... 23 2.6 Exercises ............................. 23 3 Manifolds, Impossibility,DRAFT and Separation 25 3.1 ManifoldComplexes ....................... 25 3.2 ImmediateSnapshots. 28 3.3 ManifoldProtocols .. .. .. .. .. .. .. 34 3.4 SetAgreement .......................... 34 3.5 AnonymousProtocols . .. .. .. .. .. .. 38 3.6 WeakSymmetry-Breaking . 39 3.7 Anonymous Set Agreement versus Weak Symmetry Breaking 40 3.8 ChapterNotes .......................... 44 3.9 Exercises ............................. 44 3 4 CONTENTS 4 Connectivity 47 4.1 Consensus and Path-Connectivity . 47 4.2 Consensus in Asynchronous Read-Write Memory . 49 4.3 Set Agreement and Connectivity in Higher Dimensions . 53 4.4 Set Agreement and Read-Write memory . 59 4.4.1 Critical States . 63 4.5 ChapterNotes .......................... 64 4.6 Exercises ............................. 64 5 Colorless Tasks 67 5.1 Pseudospheres .......................... 68 5.2 ColorlessTasks .......................... 72 5.3 Wait-Free Read-Write Memory . 73 5.3.1 Read-Write Protocols and Pseudospheres . 73 5.3.2 Necessary and Sufficient Conditions . 75 5.4 Read-Write Memory with k-Set Agreement .
    [Show full text]
  • Tight Bounds for K-Set Agreement Soma Chaudhuri Maurice Herlihy CRL 98/4 Nancy A
    TM Tight Bounds for k-Set Agreement Soma Chaudhuri Maurice Herlihy Nancy A. Lynch Mark R. Tuttle CRL 98/4 May 1998 Cambridge Research Laboratory The Cambridge Research Laboratory was founded in 1987 to advance the state of the art in both core computing and human-computerinteraction, and to use the knowledge so gained to support the Company’s corporate objectives. We believe this is best accomplished through interconnected pur- suits in technology creation, advanced systems engineering, and business development. We are ac- tively investigating scalable computing; mobile computing; vision-based human and scene sensing; speech interaction; computer-animated synthetic persona; intelligent information appliances; and the capture, coding, storage, indexing, retrieval, decoding, and rendering of multimedia data. We recognize and embrace a technology creation model which is characterized by three major phases: Freedom: The life blood of the Laboratory comes from the observations and imaginations of our research staff. It is here that challenging research problems are uncovered (through discussions with customers, through interactions with others in the Corporation, through other professional interac- tions, through reading, and the like) or that new ideas are born. For any such problem or idea, this phase culminates in the nucleation of a project team around a well articulated central research question and the outlining of a research plan. Focus: Once a team is formed, we aggressively pursue the creation of new technology based on the plan. This may involve direct collaboration with other technical professionals inside and outside the Corporation. This phase culminates in the demonstrable creation of new technology which may take any of a number of forms - a journal article, a technical talk, a working prototype, a patent application, or some combination of these.
    [Show full text]
  • A Complexity-Based Hierarchy for Multiprocessor Synchronization
    A Complexity-Based Hierarchy for Multiprocessor Synchronization Faith Ellen Rati Gelashvili Nir Shavit University of Toronto MIT MIT [email protected] [email protected] [email protected] Leqi Zhu University of Toronto [email protected] Abstract For many years, Herlihy’s elegant computability-based Consensus Hierarchy has been our best ex- planation of the relative power of various types of multiprocessor synchronization objects when used in deterministic algorithms. However, key to this hierarchy is treating synchronization instructions as distinct objects, an approach that is far from the real-world, where multiprocessor programs apply syn- chronization instructions to collections of arbitrary memory locations. We were surprised to realize that, when considering instructions applied to memory locations, the computability based hierarchy collapses. This leaves open the question of how to better capture the power of various synchronization instructions. In this paper, we provide an approach to answering this question. We present a hierarchy of synchro- nization instructions, classified by the space complexity necessary to solve consensus in an obstruction- free manner using these instructions. Our hierarchy provides a classification of combinations of known instructions that seems to fit with our intuition of how useful some are in practice, while questioning the effectiveness of others. In particular, we prove an essentially tight characterization of the power of buffered read and write instructions. Interestingly, we show a similar result for multi-location atomic assignments. 1 Introduction Herlihy’s Consensus Hierarchy [Her91] assigns a consensus number to each object, namely, the number of processes for which there is a wait-free binary consensus algorithm using only instances of this object and read-write registers.
    [Show full text]
  • Efficient Replication Via Timestamp Stability
    Efficient Replication via Timestamp Stability Vitor Enes Carlos Baquero Alexey Gotsman Pierre Sutra INESC TEC and INESC TEC and IMDEA Software Institute Télécom SudParis University of Minho University of Minho Abstract most critical data. State-machine replication (SMR) [38] is an Modern web applications replicate their data across the globe approach for providing such guarantees used by a number and require strong consistency guarantees for their most of systems [8, 14, 21, 26, 39, 44]. In SMR, a desired service critical data. These guarantees are usually provided via state- is defined by a deterministic state machine, and each site machine replication (SMR). Recent advances in SMR have maintains its own local replica of the machine. An SMR pro- focused on leaderless protocols, which improve the avail- tocol coordinates the execution of commands at the sites to ability and performance of traditional Paxos-based solutions. ensure that the system is linearizable [18], i.e., behaves as if We propose Tempo – a leaderless SMR protocol that, in com- commands are executed sequentially by a single site. parison to prior solutions, achieves superior throughput and Traditional SMR protocols, such as Paxos [28] and offers predictable performance even in contended workloads. Raft [34], rely on a distinguished leader site that defines the To achieve these benefits, Tempo timestamps each applica- order in which client commands are executed at the replicas. tion command and executes it only after the timestamp be- Unfortunately, this site is a single point of failure and con- comes stable, i.e., all commands with a lower timestamp are tention, and a source of higher latency for clients located far known.
    [Show full text]
  • A Topological Perspective on Distributed Network Algorithms∗
    A Topological Perspective on Distributed Network Algorithms∗ Armando Casta~neda† Pierre Fraigniaud‡ Ami Paz§ UNAM, Mexico CNRS and Univ. de Paris CS Faculty, Univ. of Vienna Sergio Rajsbaum¶ Matthieu Roy Corentin Travers‖ UNAM, Mexico CNRS, France Univ. of Bordeaux and CNRS Abstract More than two decades ago, combinatorial topology was shown to be useful for analyzing distributed fault-tolerant algorithms in shared memory systems and in message passing systems. In this work, we show that combinatorial topology can also be useful for analyzing distributed algorithms in failure-free networks of arbitrary structure. To illustrate this, we analyze consensus, set-agreement, and approximate agreement in networks, and derive lower bounds for these problems under classical computational settings, such as the local model and dynamic networks. Keywords: Distributed computing; Distributed graph algorithms; Combinatorial topology arXiv:1907.03565v3 [cs.DC] 1 Oct 2020 ∗Some of the results in this paper were presented in an invited talk in SIROCCO 2019 conference [12]. †Supported by UNAM-PAPIIT IN108720. ‡Supported by ANR projects DESCARTES and FREDA. Additional support from INRIA project GANG. §Supported by the Austrian Science Fund (FWF): P 33775-N, Fast Algorithms for a Reactive Network Layer. ¶Supported by project UNAM-PAPIIT IN109917. ‖Supported by ANR projects DESCARTES and FREDA. 1 Introduction 1.1 Context and Objective A breakthrough in distributed computing was obtained in the 1990's, when combinatorial topol- ogy, a branch of Mathematics extending graph theory to higher dimensional objects, was shown to provide a framework in which a large variety of distributed computing models can be stud- ied [10, 35, 47].
    [Show full text]
  • Expert Report of Maurice P. Herlihy in Securities and Exchange Commission V
    Case 1:19-cv-09439-PKC Document 117 Filed 01/27/20 Page 1 of 33 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK ------------------------------------------------------------------------ x SECURITIES AND EXCHANGE COMMISSION, : : Plaintiff, : 19 Civ. 09439 (PKC) : - against - : ECF Case : TELEGRAM GROUP INC. and TON ISSUER INC. : : Defendants. : : ----------------------------------------------------------------------- x DECLARATION OF MAURICE P. HERLIHY I, Maurice P. Herlihy, pursuant to 28 U.S.C. § 1746, declare: 1. I hold the An Wang Chair of Computer Science at Brown University. 2. I was retained by the Plaintiff Securities and Exchange Commission (“SEC”), through the firm Integra FEC LLC, in connection with this case and was asked to review certain documents and source code prepared by the Defendants in this case, as well as certain other materials, and opine on certain matters, including: (1) the status of the publically released test version of the Telegram Open Network (“TON”) Blockchain code; (2) whether the proposed TON Blockchain is secure and will perform as planned; and (3) the current state and nature of various proposed applications that may run on the TON Blockchain and whether the TON Blockchain is currently mature enough to support them. 3. I respectfully submit this declaration in support of the Plaintiff SEC’s Motion for Summary Judgment and in further support of the SEC’s Emergency Application for an Order to Show Cause, Temporary Restraining Order, and Order Granting Expedited Discovery and Other Relief and to transmit a true and correct copy of the following document: Case 1:19-cv-09439-PKC Document 117 Filed 01/27/20 Page 2 of 33 Exhibit 1: Expert Report of Maurice P.
    [Show full text]
  • Chicago Journal of Theoretical Computer Science the MIT Press
    Chicago Journal of Theoretical Computer Science The MIT Press Volume 1995, Article 3 20 September 1995 ISSN 1073–0486. MIT Press Journals, 55 Hayward St., Cambridge, MA 02142 USA; (617)253-2889; [email protected], [email protected]. Published one article at a time in LATEX source form on the Internet. Pag- ination varies from copy to copy. For more information and other articles see: http://www-mitpress.mit.edu/jrnls-catalog/chicago.html • http://www.cs.uchicago.edu/publications/cjtcs/ • gopher.mit.edu • gopher.cs.uchicago.edu • anonymous ftp at mitpress.mit.edu • anonymous ftp at cs.uchicago.edu • Klarlund and Kozen Rabin Measures (Info) c 1995 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor in chief: Janos Simon Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel Editors: Martin Abadi Greg Frederickson John Mitchell Pankaj Agarwal Andrew Goldberg Ketan Mulmuley Eric Allender Georg Gottlob Gil Neiger Tetsuo Asano Vassos Hadzilacos David Peleg Laszl´o Babai Juris Hartmanis Andrew Pitts Eric Bach Maurice Herlihy James Royer Stephen Brookes Stephen Homer Alan Selman Jin-Yi Cai Neil Immerman Nir Shavit Anne Condon Paris Kanellakis Eva Tardos Cynthia Dwork Howard Karloff Sam Toueg David Eppstein Philip Klein Moshe Vardi Ronald Fagin Phokion Kolaitis Jennifer Welch Lance Fortnow Stephen Mahaney Pierre Wolper Steven Fortune Michael Merritt Managing editor: Michael J.
    [Show full text]
  • Compositional Competitiveness for Distributed Algorithms∗
    Compositional Competitiveness for Distributed Algorithms∗ James Aspnes† Orli Waarts‡ June 14, 2004 Abstract We define a measure of competitive performance for distributed al- gorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure com- plements the latency measure of Ajtai et al. [3], which measures how quickly an algorithm can finish tasks that start at specified times. The novel feature of the throughput measure, which distinguishes it from the latency measure, is that it is compositional: it supports a notion of algorithms that are competitive relative to a class of subroutines, with the property that an algorithm that is k-competitive relative to a class of subroutines, combined with an ℓ-competitive member of that class, gives a combined algorithm that is kℓ-competitive. In particular, we prove the throughput-competitiveness of a class of algorithms for collect operations, in which each of a group of n processes obtains all values stored in an array of n registers. Collects are a funda- mental building block of a wide variety of shared-memory distributed algorithms, and we show that several such algorithms are competitive relative to collects. Inserting a competitive collect in these algorithms gives the first examples of competitive distributed algorithms obtained by composition using a general construction. ∗An earlier version of this work appeared as “Modular competitiveness for distributed algorithms,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 237–246, Philadelphia, Pennsylvania, 22–24 May 1996. †Yale University, Department of Computer Science, 51 Prospect Street/P.O.
    [Show full text]
  • Contents U U U
    Contents u u u ACM Awards Reception and Banquet, June 2018 .................................................. 2 Introduction ......................................................................................................................... 3 A.M. Turing Award .............................................................................................................. 4 ACM Prize in Computing ................................................................................................. 5 ACM Charles P. “Chuck” Thacker Breakthrough in Computing Award ............. 6 ACM – AAAI Allen Newell Award .................................................................................. 7 Software System Award ................................................................................................... 8 Grace Murray Hopper Award ......................................................................................... 9 Paris Kanellakis Theory and Practice Award ...........................................................10 Karl V. Karlstrom Outstanding Educator Award .....................................................11 Eugene L. Lawler Award for Humanitarian Contributions within Computer Science and Informatics ..........................................................12 Distinguished Service Award .......................................................................................13 ACM Athena Lecturer Award ........................................................................................14 Outstanding Contribution
    [Show full text]
  • Distributed Computing
    Lecture Notes in Computer Science 1693 Distributed Computing 13th International Symposium, DISC'99, Bratislava, Slovak Republic, September 27-29, 1999, Proceedings Bearbeitet von Prasad Jayanti 1. Auflage 1999. Taschenbuch. x, 366 S. Paperback ISBN 978 3 540 66531 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1160 g Weitere Fachgebiete > EDV, Informatik > Hardwaretechnische Grundlagen > Netzwerk-Hardware Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface DISC, the International Symposium on DIStributed Computing, is an annual forum for research presentations on all facets of distributed computing. This volume includes 23 contributed papers and an invited lecture, all presented at DISC ’99, held on September 27-29, 1999 in Bratislava, Slovak Republic. In addition to regular submissions, the call for papers for DISC ’99 also so- licited Brief Announcements (BAs). We received 60 regular submissions and 15 brief announcement submissions. These were read and evaluated by the pro- gram committee, with the additional help of external reviewers when needed. At the program committee meeting on June 10-11 at Dartmouth College, Hanover, USA, 23 regular submissions and 4 BAs were selected for presentation at DISC ’99. The extended abstracts of these 23 regular papers appear in this volume, while the four BAs appear as a special publication of Comenius Univer- sity, Bratislava – the host of DISC ’99.
    [Show full text]