GNS Science Annual Report 2010 GNS Science Annual Report 2010

Total Page:16

File Type:pdf, Size:1020Kb

GNS Science Annual Report 2010 GNS Science Annual Report 2010 GNS Science Annual Report 2010 GNS Science Annual Report 2010 01 GNS Science Annual Report 2010 01 GNS Science Annual Report 2010 Contents 03 Introduction and statistics 34 Corporate Governance 04 Our Science 36 CRI Capability Fund Report 06 GNS Science at a glance 41 Report of the Directors 07 From the Chairman and Chief Executive 42 Income Statement 10 Fifty ways we benefit New Zealand 43 Statement of Comprehensive Income 12 A closer look at our radiocarbon dating 43 Statement of Changes in Equity 14 A closer look at our petroleum geoscience 44 Balance Sheet 16 A closer look at our work on the 45 Statement of Cash Flows Transmission Gully route 46 Notes to the Financial Statements 18 Student support 61 Performance Indicators 19 Organisational structure 63 Statement of Responsibility 20 New public-good research contracts 64 Audit Report 22 Our commercial activities 65 Directory – applying our science 24 Management team 26 Human resources 28 Collaborations and partnerships 30 Board of Directors 32 International linkages 02 Contents GNS Science Annual Report 2010 Introduction $65.1 million 369 staff Record annual revenue Full-time equivalents $2.4 million $176,500 Profit before tax Revenue per FTE 5.0% $9.1 million After-tax return on equity Invested in new equipment and infrastructure The formation of the Earth has taken hundreds of millions of years, layer upon layer, shaping and forming, reshaping and reforming, with events in the distant past continuing to influence our physical environment today. So it is with science – formulating ideas and reformulating them. Making new discoveries and creating new solutions, so that the work of the past benefits our lives today, and the work of today will benefit future generations. Introduction 03 GNS Science Annual Report 2010 1 5 3 2 4 6 1. Geobiology research 4. Water dating GNS Science’s geobiology research team has 2000 Our water dating laboratory, the most accurate such strains of extremophilic bacteria in its culture facility in the world, has been further enhanced with collection, and some are prime candidates for the addition of a laser spectroscopic stable isotope industrial uses such as bioethanol production. analyser which adds greater quality assurance for This year the team sequenced the genomes of two water dating measurements. Laboratory staff work novel heat-loving bacteria from the Taupo Volcanic with local government throughout New Zealand Zone, to provide new insights into extremophile and overseas organisations to help in the metabolisms and biotechnological applications. management of aquifers, lakes and rivers. 2. Science outreach 5. Probing Crater Lake Our touring exhibition, NZ Fossils: Dead Precious!, This year our scientists installed a radio-linked recently finished a three-year tour of New Zealand electronic probe in Mt Ruapehu’s acidic crater lake museums and was seen by 524,000 people. The to take hourly readings of lake temperature, lake exhibition, sponsored by Shell NZ, consisted of 50 level, and acoustic rumblings from the bottom of fossil specimens drawn mainly from our national the lake. The steady flow of high quality data from paleontology collection. the probe is helping volcanologists understand Ruapehu’s volcanic system. It will also pick up 3. Tectonic plate locking early signs of volcanic unrest. Seismologist Martin Reyners and colleagues have shed light on the locking mechanisms between 6. Ocean drilling tectonic plates. Under a Marsden funded project, This year we participated in a record-breaking they have developed a physical model suggesting Integrated Ocean Drilling Program voyage that the strength of plate coupling is controlled by the collected deep drill cores from the ocean floor off ability of fluid to move across the plate interface. the Canterbury coast. The cores contain valuable Progress in understanding locked plates has information about the relationship between climate New Zealand and worldwide implications, as change and global sea level over the past 35 million locked plates accumulate strain that can be released years. The science output from this project feeds as large quakes. into a large number of science programmes worldwide, including developing and verifying climate models. 04 Our science GNS Science Annual Report 2010 9 7 10 8 11 12 7. Auckland air pollution 10. New sub-surface model Using our unique ion-beam analysis capability, we Our engineering geologists have developed the first analysed 1400 air filters from five sites in Auckland 3D-models of the geology below Wellington and to determine the composition and sources of Lower Hutt to a depth of 500m. The 3D models particulate matter in the air. From the results, map units with similar physical properties and this we produced a detailed report for the Auckland enables scientists to determine the strength and Regional Council to improve management of air duration of ground shaking for a range of quality in the Auckland region. earthquake magnitudes and locations. Engineers use this information to design infrastructure that 8. Tsunami evacuation maps is more resilient to earthquakes. We work with emergency managers, local government and communities to produce colour- 11. Geothermal energy coded tsunami evacuation maps. They show at-risk We undertake work to identify drilling sites and zones and are the basis for evacuation routes and reduce exploration risk for geothermal energy location of safe areas. We also played a major role in companies. We also help with the efficient operation the development of a national standard for tsunami of existing geothermal plants. The rapid expansion warning and evacuation signage. of geothermal energy is creating new jobs and geothermal is on target to supply 18% of 9. Gisborne moves east New Zealand’s electricity generation by 2015. Using permanent GPS installations, our geodesists recorded Gisborne moving eastward at a rate of 12. Oil and gas exploration several millimetres a week for several weeks this We are working with Crown Minerals on a two-year year – the fifth such ‘slow earthquake’ episode in programme that will substantially increase the Poverty Bay in the past nine years. GPS studies quality and quantity of geoscience information enable our scientists to gain a greater understanding available to the oil and gas exploration industry in of locking and release mechanisms at the tectonic New Zealand. Called the Petroleum Exploration and plate interface and where stress is accumulating and Geosciences Initiative, it will improve the knowledge being relieved in the Earth’s crust. of petroleum potential in Taranaki and other key sedimentary basins and increase the attractiveness of New Zealand for exploration companies. Our science 05 GNS Science Annual Report 2010 GNS Science at a glance GNS Science, Te Pu- Ao, is the Crown-owned science company that meets New Zealand’s needs to discover and understand the earth processes and materials that underpin geological resources, environmental and industrial isotopes, and geological hazards. We apply this scientific knowledge to create and preserve wealth, to protect the environment, and to improve the Visit our website: safety and well-being of people. www.gns.cri.nz The benefits we deliver for New Zealand include: When we were established as a Crown Research • security and wealth from energy, mineral, and Institute in 1992, we had assets of $14 million, water resources revenue of $25 million a year and a staff of 253. • mitigation of the economic and social effects Today we have assets of $45 million, revenue of of geological hazards $65.1 million, and a staff of 369 full-time • development of new technologies such as nano- equivalents. scale devices and non-invasive scanning. Our clients include: These benefits arise directly from our research into • New Zealand central government agencies processes and endowments within the Earth’s crust • regional and local government including: • overseas government agencies • rocks, minerals, and groundwater • oil and gas exploration companies • earthquakes, volcanoes, landslides, and tsunami • geothermal energy exploration and operating • hydrocarbons and geothermal energy companies • geobiology and climate history • hydroelectricity operating companies • gravitational and electromagnetic fields • the onshore and offshore minerals exploration • natural isotopes and radiation. industries Our Ma-ori name, Te Pu- Ao, means the foundation, • meat, dairy, wool, timber, and horticulture origin and source of the world in its entirety, from the processing industries atomic through to planetary scales. We are a Crown- • insurance and reinsurance companies owned research institute operating as a limited • engineers, developers, and infrastructure liability company with an independent Board of companies Directors. This unique structure allows us to: • museums • focus on strategically important science at a • research organisations in New Zealand and national level overseas. • engage in the full spectrum of science from basic research through to consultancy and product Staff development Our 369 staff are located in Lower Hutt (75%), • undertake work for the public and private sectors Taupo (20%), and Dunedin (5%). • operate in New Zealand and internationally • have autonomy and self-determination. Our revenue is generated from: • open bidding and negotiation for public-good Each year we invest most of our tax-paid profit in research contracts (40-45%) scientific equipment and infrastructure. This • consultancy, product development, and laboratory
Recommended publications
  • GNS Science Miscellaneous Series Report
    NHRP Contestable Research Project A New Paradigm for Alpine Fault Paleoseismicity: The Northern Section of the Alpine Fault R Langridge JD Howarth GNS Science Miscellaneous Series 121 November 2018 DISCLAIMER The Institute of Geological and Nuclear Sciences Limited (GNS Science) and its funders give no warranties of any kind concerning the accuracy, completeness, timeliness or fitness for purpose of the contents of this report. GNS Science accepts no responsibility for any actions taken based on, or reliance placed on the contents of this report and GNS Science and its funders exclude to the full extent permitted by law liability for any loss, damage or expense, direct or indirect, and however caused, whether through negligence or otherwise, resulting from any person’s or organisation’s use of, or reliance on, the contents of this report. BIBLIOGRAPHIC REFERENCE Langridge, R.M., Howarth, J.D. 2018. A New Paradigm for Alpine Fault Paleoseismicity: The Northern Section of the Alpine Fault. Lower Hutt (NZ): GNS Science. 49 p. (GNS Science miscellaneous series 121). doi:10.21420/G2WS9H RM Langridge, GNS Science, PO Box 30-368, Lower Hutt, New Zealand JD Howarth, Dept. of Earth Sciences, Victoria University of Wellington, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2018 www.gns.cri.nz ISSN 1177-2441 (print) ISSN 1172-2886 (online) ISBN (print): 978-1-98-853079-6 ISBN (online): 978-1-98-853080-2 http://dx.doi.org/10.21420/G2WS9H CONTENTS ABSTRACT ......................................................................................................................... IV KEYWORDS ......................................................................................................................... V KEY MESSAGES FOR MEDIA ............................................................................................ VI 1.0 INTRODUCTION ........................................................................................................ 7 2.0 RESEARCH AIM 1.1 — ACQUIRE NEW AIRBORNE LIDAR COVERAGE ..............
    [Show full text]
  • Media Watch on the Auckland Volcanic Field
    D E T E R M I N I N G V O L C A N I C R I S K I N A U C K L A N D Auckland is a vital link in New Zealand’s economy and the city and surrounding region are internationally desirable places to work. However, Auckland sits on a volcanic field. The DEVORA research programme is aimed at a much-improved assessment of volcanic hazard and risk in the Auckland metropolitan area. Media Watch on the Auckland Volcanic Field Story: Click on a range of links to view media stories and risk- related news coverage relevant to the Auckland Volcanic Field. (For use with Press) Theme: Resources This work is licensed under a Creative Commons Attribution 3.0 New Zealand License. The authors and DEVORA have taken all reasonable care to ensure the accuracy of the information supplied in this legacy document. However, neither the authors nor DEVORA, warrant that the information contained in this legacy document will be complete or free of errors or inaccuracies. By using this legacy document you accept all liability arising from your use of it. Neither the authors nor DEVORA, will be liable for any loss or damage suffered by any person arising from the use of this legacy document, however caused. DEVORA Determining Volcanic Risk in Auckland ! Media Watch on the Auckland Volcanic Field Media Watch on the Auckland Volcanic Field. Last updated on 07/07/2020. 2019 Volcanic threat in Auckland (December 2019) Following the devastating Whakaari (White Island) eruption in December, there was more interest in understanding the volcanic threat around the rest of New Zealand – including Auckland.
    [Show full text]
  • User Requirements of Riskscape 2.0 Software and Opportunities for Disaster Risk Research in Aotearoa-New Zealand
    User Requirements of RiskScape 2.0 Software and Opportunities for Disaster Risk Research in Aotearoa-New Zealand K-L Thomas RJ Woods R Garlick FR Scheele MA Coomer R Paulik LB Clarke GNS Science Report 2020/10 June 2020 DISCLAIMER The Institute of Geological and Nuclear Sciences Limited (GNS Science) and its funders give no warranties of any kind concerning the accuracy, completeness, timeliness or fitness for purpose of the contents of this report. GNS Science accepts no responsibility for any actions taken based on, or reliance placed on the contents of this report and GNS Science and its funders exclude to the full extent permitted by law liability for any loss, damage or expense, direct or indirect, and however caused, whether through negligence or otherwise, resulting from any person’s or organisation’s use of, or reliance on, the contents of this report. BIBLIOGRAPHIC REFERENCE Thomas K-L, Woods RJ, Garlick R, Scheele FR, Coomer MA, Paulik R, Clarke LB. 2020. User requirements of RiskScape 2.0 software and opportunities for disaster risk research in Aotearoa-New Zealand. Lower Hutt (NZ): GNS Science. 83 p. (GNS Science report; 2020/10). doi:10.21420/10.21420/RVDT-8R62. K-L Thomas, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand RJ Woods, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R Garlick, Catalyst IT, PO Box 11053, Wellington 6012, New Zealand MA Coomer, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand FR Scheele, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R Paulik, NIWA, Private Bag 14901, Wellington 6241, New Zealand LB Clarke, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2020 www.gns.cri.nz ISSN 2350-3424 (online) ISBN 978-1-99-001030-9 (online) http://dx.doi.org/10.21420/RVDT-8R62 CONTENTS ABSTRACT .........................................................................................................................
    [Show full text]
  • Oil and Gas Security
    NEW ZEALAND OVERVIEW _______________________________________________________________________ 3 1. Energy Outlook _________________________________________________________________ 4 2. Oil ___________________________________________________________________________ 5 2.1 Market Features and Key Issues ___________________________________________________________ 5 2.2 Oil Supply Infrastructure _________________________________________________________________ 8 2.3 Decision-making Structure for Oil Emergencies ______________________________________________ 10 2.4 Stocks _______________________________________________________________________________ 10 3. Other Measures _______________________________________________________________ 12 3.1 Demand Restraint ______________________________________________________________________ 12 3.2 Fuel Switching _________________________________________________________________________ 13 3.3 Surge Oil Production ____________________________________________________________________ 14 3.4 Relaxing Fuel Specifications ______________________________________________________________ 14 4. Natural Gas ___________________________________________________________________ 15 4.1 Market Features and Key Issues __________________________________________________________ 15 4.2 Natural Gas Supply Infrastructure _________________________________________________________ 17 4.3 Emergency Policy for Natural Gas _________________________________________________________ 18 List of Figures Total Primary Energy Supply .................................................................................................................................4
    [Show full text]
  • Statement of Corporate Intent 2015-2020
    G36 Statement of Delivering science and technology to Corporate Intent benefi t New Zealand’s pastoral sector 2015-2020 G36 FOREWORD 1 AGRESEARCH’S CORE PURPOSE 2 AGRESEARCH CONTEXT 4 Economic drivers 4 Trends in agriculture 4 Trends in agri-food 5 Trends in agri-technologies 5 Trends in the science system 5 Helping Kiwis connect with science 5 NZ SCIENCE INITIATIVES 7 National Science Challenges 7 The New Zealand Food Safety Science and Research Centre 9 PLANNING FOR IMPACT 10 An Adoption and Practice Change Roadmap 10 Project Planning Tools 10 Evaluation Methods 10 contents CO-OWNED SECTOR OUTCOMES 11 OUTCOME AREAS 12 Outcome 1: Improved Dairy On-Farm Performance 13 Outcome 2: Improved Meat & Fibre On-Farm Performance 18 Outcome 3: Improved Returns from Dairy Products 23 Outcome 4: Improved Returns from Meat & Fibre Products 26 Outcome 5: Improved Pan-sector Performance 29 Outcome 6: Improved Māori Agribusiness Performance and Vision Mātauranga 33 INTERNATIONAL ACTIVITIES 36 Overall direction 36 Examples of international work 36 INFRASTRUCTURE FIT FOR PURPOSE 38 Innovation Hubs 38 Research Infrastructure 38 CORE FUNDING INVESTMENT 40 Overview 40 Investment process 41 ORGANISATIONAL VITALITY 44 Prizes to recognise excellent science and technology 44 Advisory panels to ensure science quality and relevance 45 Growing talent and supporting change 47 TRANSFORMING OUR CAPABILITY 48 Roadmaps to strengthen science 48 Four Investments to grow capability 49 FINANCIALS 50 Assumptions 50 Accounting policy 50 Reporting to shareholding ministers 50 Dividend policy 51 Acquisitions and divestment of assets 51 Activities for which AgResearch seeks compensation from the Crown 51 Estimate of current commercial value 51 AgResearch senior scientist Dr Debbie Burg (left) and DairyNZ senior scientist Dr Susanne Meier KEY PERFORMANCE INDICATORS FOR 2015/16, AT A GLANCE 52 PERFORMANCE INDICATORS 53 GLOSSARY OF ABBREVIATIONS 57 Cover image: (right) are part of the team working in an MBIE and DairyNZ-funded research programme to improve cow fertility.
    [Show full text]
  • Clear Vision from the End of the Earth
    NATURE INDEX | AUSTRALIA & NEW ZEALAND CLEAR VISION FROM THE END OF THE EARTH A pragmatic and deliberate approach to research funding yields impressive results, while New Zealand’s geography makes it a perfect natural laboratory for Earth scientists, writes Linda Vergnani. hile seismologist Martin Reyners In collaboration with New Zealand’s Earth- Canterbury sequence, as it is known, included works in his office, he is quietly awed quake Commission, GNS Science runs the thousands of quakes ranging from magnitude that 23 kilometres below him the Aus- country’s earthquake, volcano and geological 3 to 7.1. The most destructive, the magnitude W tralian Plate is slowly colliding with hazard information network, GeoNet. They 6.2 Christchurch aftershock, killed 185 peo- the Pacific Plate, a process that could trigger manage and monitor hundreds of seismo- ple when it hit on 22 February, more than five an earthquake at any moment. graphs across the country, using real-time months after the initial 7.1 magnitude Darfield “It’s a wonderful laboratory for studying data to relay hazard information to officials earthquake that triggered the sequence. Rey- tectonic processes,” says the researcher, of his and, via the GeoNet website and app, keep the ners says the sequence caused damage worth Lower Hutt workplace, near Wellington in public updated. “My job is understanding what between NZ$40 to $50 billion, equivalent to New Zealand. “We can sit above a subduction kinds of earthquakes we might expect and then more than 15% of the country’s annual GDP. zone, like we have on the North Island, with alerting the authorities so they can plan and Because the area was so well instrumented, instruments on land and see what is happening inform people about them, and design build- the sequence was one of the best ever docu- between the plates.
    [Show full text]
  • Worlds of Discovery National Isotope Centre
    climate change. change. climate readiness for potential impacts of of impacts potential for readiness internationally. internationally. and the country’s preparation and and preparation country’s the and locally, nationally and and nationally locally, New Zealand government policy, policy, government Zealand New sustainable use of resources, resources, of use sustainable and learning in isotope sciences. isotope in learning and helping to support development of of development support to helping long-term protection and and protection long-term opportunities for hands-on experience experience hands-on for opportunities Zealand’s unique situation and needs, needs, and situation unique Zealand’s working to support the the support to working Stable isotope laboratory isotope Stable • research facilities, and offer them them offer and facilities, research climate change. We also explore New New explore also We change. climate In numerous ways, we are are we ways, numerous In Water dating laboratory dating Water • We give students access to our our to access students give We input into the global response to to response global the into input Millennium Development Goals. Goals. Development Millennium and storage and expanding their education portfolios. portfolios. education their expanding programs are providing signifi cant cant signifi providing are programs as well as the United Nations’ Nations’ United the as well as Ice core research laboratory laboratory research core Ice • are proud to assist universities in in universities assist to proud are The outcomes of these research research these of outcomes The Health, Agriculture and Energy, Energy, and Agriculture Health, Also important to the future, we we future, the to important Also Ion beam implantation and analysis and implantation beam Ion • Development for Clean Water, Water, Clean for Development gas emissions and absorptions and emissions gas New Zealand New World Summit on Sustainable Sustainable on Summit World Linear accelerators Linear • on knowledge.
    [Show full text]
  • OMV New Zealand Limited and Shell
    PUBLIC VERSION OMV New Zealand Limited Application for Clearance of a Business Acquisition Under Section 66 of the Commerce Act 1986 Proposed Acquisition by OMV New Zealand Limited of Shares in Shell Exploration NZ Limited, Shell Taranaki Limited, Shell New Zealand (2011) Limited, and Energy Infrastructure Limited 15 June 2018 30750909_1.docx TABLE OF CONTENTS Part A: Executive Summary ................................................................................................. 5 The Parties .................................................................................................................. 5 The Transaction .......................................................................................................... 5 Affected Markets ......................................................................................................... 6 Counterfactual ............................................................................................................. 7 Industry Context .......................................................................................................... 8 No Substantial Lessening of Competition in the Natural Gas Market ........................ 8 No Substantial Lessening of Competition in the LPG Market .................................. 11 No Substantial Lessening of Competition in Markets for Other Assets ................... 12 Conclusion ................................................................................................................ 13 Part B: The Parties .............................................................................................................
    [Show full text]
  • Natural Hazards 2013 DRAFT.Pdf
    Minister’s Foreword ------------------------------------------------------------------------------------------------------------ 4 Platform Manager’s Perspective ------------------------------------------------------------------------------------------ 5 Hazards Summary: Low Rainfall & Drought ------------------------------------------------- 6 Hazards Summary: Wind & Tornadoes ------------------------------------------------------------------------------ 7 Increasing Resilience to Weather Hazards ------------------------------------------------------------------------- 8 Hazards Summary: Snow, Hail & Electrical 10 Risk & RiskScape Overview ------------------------------------------------------------------------------------------------- 11 Hazards Summary: Coastal ------------------------------------------------------------------------------------------ 12 Geological Hazards Overview ---------------------------------------------------------------------------------------------- 13 Societal Resilience Overview ----------------------------------------------------------------------------------------------- 16 Hazards Summary: Tsunami Activity ------------------------------------------------------------------------------- 17 Understanding Factors That Build Iwi Resilience ------------------------------------------------------------------ 18 Resilient Engineering & Infrastructure Overview --------------------------------------------------------- 20 Natural Hazards Research Platform Timeline ---------------------------------------------------------------------
    [Show full text]
  • In Today's World We Need…
    G.38 GNS SCIENCE ANNUAL REPORT 2014 IN TODAY’S WORLD WE NEED… GNS Science Annual Report 2014 1 G.38 TO MEET THE DIVERSE AND CHANGING SOCIETAL, ENVIRONMENTAL AND ECONOMIC CHALLENGES PLACED UPON US. Presented to the House of Representatives pursuant to section 17 of the Crown Research Institutes Act 1992 2 GNS Science Annual Report 2014 GNS Science Annual Report 2014 1 THROUGH THE GREAT WORK OF OUR SCIENTISTS, WE MEET THESE CHALLENGES EVERY DAY TO PROTECT OUR ENVIRONMENT AND MAKE NEW ZEALAND A SAFER, MORE PROSPEROUS PLACE TO LIVE. CONTENTS 02 DIGGING DEEP 32 Natural Hazards 04 DEALING WITH PRESSURE 38 Engineering Geology 06 KEEPING IT CLEAN 42 Geology and Past Climates 08 Chairman and Chief Executive’s Review 47 Organisational Structure 12 Statement of Core Purpose 48 Board of Directors 13 Staff Awards, Honours and Distinctions 50 Management Team 14 Vision Ma-tauranga 53 Performance Indicators 15 Stakeholder Survey Findings 56 Corporate Governance 16 Being a Good Employer 58 Report of the Directors 18 Energy and Minerals 59 Financial Statements 24 Groundwater 80 Directory 28 Isotopes and Ion-Beam Technology 2 GNS Science Annual Report 2014 GNS Science Annual Report 2014 3 FINANCIAL HIGHLIGHTS REVENUE BY SECTOR OUTCOME AREAS AFTER TAX PROFIT Geology and 8.7% Past Climates $4.0m Energy and 28.6% Minerals Hazards 47.2% $1.8m $1.5m $1.1m Groundwater 6.0% $1.0m Engineering 2.6% Environment 6.9% Geology and Materials 2010 2011 2012 2013 2014 REVENUE SOURCES TOTAL ASSETS Technology 9.3% GeoNet 11.8% transfer – overseas $53.6m $51.0m $49.7m $47.8m
    [Show full text]
  • Discoverdiscoverdiscove
    DISCOVERDISCOVERDISCOVERDISCOVERDISCOVER UNDERSTANDUNDERSTANDUNDERSTANDUNDERSTAUNDERSTAND APPLYAPPLYAPPLYAPPLYAPPLYAPPLYAPPLY ISSUE NO.4 AUGUST 2013 globeMAGAZINE including: SW eeT Win FOR HOneY inDUSTRY Isotope science throws honey a lifeline NOVEL USE FOR RADIOCARBON Measuring CO2 emissions with radiocarbon EARTHQUAKES anD BULK WATER SUPPLY A wakeup call for Wellington’s water supplies globeMAGAZINE CARBON CALLING PH OTOGRAPHY: Radiocarbon dating is one of the most widely known scientific techniques. However, Lloyd Homer, Margaret Low, less well known is that New Zealand scientists were at the forefront of its development Heidi Roop, Julian Thomson, in the early 1950s. As a result of this trailblazing work, this year the New Zealand Tourism Bay of Plenty, radiocarbon community is celebrating the 60th anniversary of the publication of the The Dominion Post. first radiocarbon dates in 1953. Our Rafter Radiocarbon Laboratory, where it all began, is the oldest continually operating radiocarbon lab in the world. DESIGN: Darren D’Cruz Dating with radiocarbon acts as a kind of egg-timer to measure the time that has elapsed since an organism died and stopped taking in carbon from its environment. COVER PHOTO:. It works for objects that are up to 50,000 years old. Sixty years ago, the pioneer There are about 380,000 bee- developers knew they were on to something big, but they may not have realised that hives in New Zealand. Isotope radiocarbon would become a cornerstone scientific technique for dozens of industries science supports the bee and scientific disciplines. industry which, directly and indirectly, contributes about Applications include dating antiquities, atmospheric studies, archaeology, climate $5 billion annually to the research, oceanography, geology, earthquake, volcano, and tsunami research, marine New Zealand economy.
    [Show full text]
  • Vulnerability Assessment of Christchurch Buildings in Canterbury Earthquakes S
    Vulnerability Assessment of Christchurch Buildings in Canterbury Earthquakes S. R. Uma R. P. Dhakal M. Nayyerloo GNS Science Report 2013/20 May 2013 BIBLIOGRAPHIC REFERENCE Uma, S. R.; Dhakal, R. P.; Nayyerloo, M. 2013. Vulnerability Assessment of Christchurch Buildings in Canterbury Earthquakes, GNS Science Report 2013/20. 35 p. S. R. Uma, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand R. P. Dhakal, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand M. Nayyerloo, GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2013 ISSN 1177-2425 ISBN 978-1972192-55-9 CONTENTS ABSTRACT ......................................................................................................................... IV KEYWORDS ........................................................................................................................ IV 1.0 INTRODUCTION ........................................................................................................ 5 2.0 GROUND MOTIONS .................................................................................................. 7 3.0 BUILDING INVENTORY ASSESSMENT DATABASE ............................................. 12 4.0 CODE RECOMMENDATIONS ................................................................................. 13 5.0 PRELIMINARY OBSERVATIONS ON THE PERFORMANCE OF CBD BUILDINGS .............................................................................................................. 15 6.0
    [Show full text]