Findings of the Mars Special Regions Science Analysis Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seasonal Melting and the Formation of Sedimentary Rocks on Mars, with Predictions for the Gale Crater Mound
Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound Edwin S. Kite a, Itay Halevy b, Melinda A. Kahre c, Michael J. Wolff d, and Michael Manga e;f aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA bCenter for Planetary Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel cNASA Ames Research Center, Mountain View, California 94035, USA dSpace Science Institute, 4750 Walnut Street, Suite 205, Boulder, Colorado, USA eDepartment of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720, USA f Center for Integrative Planetary Science, University of California Berkeley, Berkeley, California 94720, USA arXiv:1205.6226v1 [astro-ph.EP] 28 May 2012 1 Number of pages: 60 2 Number of tables: 1 3 Number of figures: 19 Preprint submitted to Icarus 20 September 2018 4 Proposed Running Head: 5 Seasonal melting and sedimentary rocks on Mars 6 Please send Editorial Correspondence to: 7 8 Edwin S. Kite 9 Caltech, MC 150-21 10 Geological and Planetary Sciences 11 1200 E California Boulevard 12 Pasadena, CA 91125, USA. 13 14 Email: [email protected] 15 Phone: (510) 717-5205 16 2 17 ABSTRACT 18 A model for the formation and distribution of sedimentary rocks on Mars 19 is proposed. The rate{limiting step is supply of liquid water from seasonal 2 20 melting of snow or ice. The model is run for a O(10 ) mbar pure CO2 atmo- 21 sphere, dusty snow, and solar luminosity reduced by 23%. -
Mvoytek-PAC Feb2018nai Nexss
NASA Astrobiology Institute Dr. Mary Voytek Senior Scientist for Astrobiology NAI Program Scientist 1 NAI Mission Statement 5 Elements Train the Next Generation Provide Leadership for of Astrobiologists NASA Space Missions Collaborative, Interdisciplinary Research Education and Outreach Information Technology for In Transition… Research NAI: A Virtual Institute Without Walls •Competitively-selected science teams, CAN 6 TEAMS each a consortium (currently 12 teams) • Massachusetts Institute of Technology • University of Illinois at Urbana-Champaign •~600 members at ~100 participating • University of Southern California institutions • University of Wisconsin • ~320 “senior” scientists • VPL at University of Washington • ROTATING OFF THIS YEAR • ~280 postdocs and students RRO TATING • ~20 members of the US National Academy of Sciences CAN 7 TEAMS • NASA Goddard Space Flight Center •Managed/integrated by a central office • NASA Ames Research Center at NASA Ames Research Center • NASA Jet Propulsion Laboratory • SETI Institute • University of Colorado in Boulder • University of California, Riverside • University of Montana in Missoula NAI CAN 6 & 7 Teams VPL at University of Washington University of Montana University of Wisconsin In Missoula NASA Ames SETI Institute Research Center Massachusetts Institute of Technology University of Illinois, NASA Goddard Space University of California, University of Colorado Urbana-Champaign Flight Center NASA Jet Propulsion Riverside in Boulder Laboratory University of Southern California NASA Astrobiology -
Exoplanet Biosignatures: a Review of Remotely Detectable Signs of Life
ASTROBIOLOGY Volume 18, Number 6, 2018 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2017.1729 Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life Edward W. Schwieterman,1–5 Nancy Y. Kiang,3,6 Mary N. Parenteau,3,7 Chester E. Harman,3,6,8 Shiladitya DasSarma,9,10 Theresa M. Fisher,11 Giada N. Arney,3,12 Hilairy E. Hartnett,11,13 Christopher T. Reinhard,4,14 Stephanie L. Olson,1,4 Victoria S. Meadows,3,15 Charles S. Cockell,16,17 Sara I. Walker,5,11,18,19 John Lee Grenfell,20 Siddharth Hegde,21,22 Sarah Rugheimer,23 Renyu Hu,24,25 and Timothy W. Lyons1,4 Abstract In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth’s biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. -
C Copyright 2013 Marcela Ewert Sarmiento
c Copyright 2013 Marcela Ewert Sarmiento Microbial Challenges and Solutions to Inhabiting the Dynamic Architecture of Saline Ice Formations Marcela Ewert Sarmiento A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Jody W. Deming, Chair John A. Baross Rebecca Woodgate Program Authorized to Offer Degree: School of Oceanography and Astrobiology Program University of Washington Abstract Microbial Challenges and Solutions to Inhabiting the Dynamic Architecture of Saline Ice Formations Marcela Ewert Sarmiento Chair of the Supervisory Committee: Walters Endowed Professor Jody W. Deming Oceanography Sea ice contains a microscopic network of brine inclusions effectively colonized by organisms from the three major clades of life. The architecture of this brine channel network is dynamic, with surface area, brine volume fraction, and brine salinity changing with temper- ature. This dynamic architecture may have also played a role in the origin and early evolution of life (Chapter 1). Sea-ice microorganisms experience multiple stressors, including low temperature, high salinity and fluctuations in those parameters. This dissertation discusses two bacterial adaptations to these challenges: the production of extracellular polysaccharide substances (EPS) and the accumulation of compatible solutes. Two Arctic bacteria were used as model organisms; the psychrophilic Colwellia psychrerythraea strain 34H (Cp34H), which grows at a comparatively narrow range -
March 29, 2017 SENT VIA US MAIL and EMAIL TO
March 29, 2017 SENT VIA U.S. MAIL AND EMAIL TO: [email protected] Sumara M. Thompson-King Designated Agency Ethics Official Office of General Counsel NASA Headquarters 300 E. Street SW, Suite 5R30 Washington, DC 20546 Re: Improper Receipt of Gifts by NASA Technical Officer Dear Ms. Thompson-King: I am writing on behalf of the Freedom From Religion Foundation, a national non-profit organization that works to protect the constitutional principle of separation between state and church, regarding improper gifts accepted by NASA Technical Officer Mary Voytek. FFRF discovered the improper gifts after receiving documents related to a Freedom of Information Act request1 regarding a grant awarded by NASA to the Center for Theological Inquiry (CTI).2 Factual Background NASA awarded grants to CTI to study “ the societal implications of astrobiology, with particular reference to religious traditions and faith communities.”3 The first was awarded on September 12, 2014 and the second on June 20, 2016. The technical officer assigned to each of these grants was Mary A. Voytek. CTI Director William Storrar was listed as the principal investigator for each. While CTI and Storrar have done business with NASA, they appear to have given gifts to Voytek. Trip to the UK—Flight and Lodging While administering the first CTI grant but prior to approving the supplemental grant, Voytek participated in a panel at CTI’s Science & Society: a new conversation held at Windsor Castle in the United Kingdom on July 3, 2015.4 According to emails between Voytek and Storrar, CTI arranged for Voytek’s travel to and from this event.5 A subsequent email from Storrar’s office to Voytek, confirmed her attendance and explained that travel plans would be arranged in the near future and paid for by CTI. -
As-Life Paper.Cite As Unpublished.Billings.2012.Doc
1 As-life paper.cite as unpublished.Billings.2012.doc Today’s date: July 9, 2012 Completion date: July 30, 2011 Cite as unpublished research Linda Billings, Ph.D. Research Professor School of Media and Public Affairs George Washington University Washington, DC, USA [email protected] ph. 703-528-2334 http://lindabillings.org http://doctorlinda.wordpress.com Weird life, or not? The role of social and mass media in the discourse of science in the case of disputed claims about the microbe GFAJ-1 Abstract The discourse of science is an evolving ecosystem of sorts, an actor-network1 in which knowledge and power, credibility and legitimacy, and cultural authority are constructed and distributed, reconstructed and redistributed, among individuals, groups, institutions, and others. In this evolving ecosystem, what credentials are required to be a scientist, a journalist, or a science critic? Who has the authority to speak for, to, or about science? Open, public, participatory practices of the expanding online universe called Web 2.0 are changing the discourse of science, including the holy ground of peer review. In this new round-the-world, round-the-clock, electronic environment, anyone with access to the Internet and an ability to read and write in English (still the “universal” language of science) may now participate in the ongoing dialogue about science2 – 1 B. Latour, Reassembling the Social: An Introduction to Actor-Network-Theory, Oxford: OXford University Press, 2005; B. Latour, Science in Action, Cambridge, MA: Harvard University Press, 1987. 2 D. Kennedy and G. Overholser (Eds.), Science and the Media, Cambridge, MA: American Academy of Arts and Sciences, 2010; M. -
Life in the Cold Biosphere: the Ecology of Psychrophile
Life in the cold biosphere: The ecology of psychrophile communities, genomes, and genes Jeff Shovlowsky Bowman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Jody W. Deming, Chair John A. Baross Virginia E. Armbrust Program Authorized to Offer Degree: School of Oceanography i © Copyright 2014 Jeff Shovlowsky Bowman ii Statement of Work This thesis includes previously published and submitted work (Chapters 2−4, Appendix 1). The concept for Chapter 3 and Appendix 1 came from a proposal by JWD to NSF PLR (0908724). The remaining chapters and appendices were conceived and designed by JSB. JSB performed the analysis and writing for all chapters with guidance and editing from JWD and co- authors as listed in the citation for each chapter (see individual chapters). iii Acknowledgements First and foremost I would like to thank Jody Deming for her patience and guidance through the many ups and downs of this dissertation, and all the opportunities for fieldwork and collaboration. The members of my committee, Drs. John Baross, Ginger Armbrust, Bob Morris, Seelye Martin, Julian Sachs, and Dale Winebrenner provided valuable additional guidance. The fieldwork described in Chapters 2, 3, and 4, and Appendices 1 and 2 would not have been possible without the help of dedicated guides and support staff. In particular I would like to thank Nok Asker and Lewis Brower for giving me a sample of their vast knowledge of sea ice and the polar environment, and the crew of the icebreaker Oden for a safe and fascinating voyage to the North Pole. -
The Nexus for Exoplanet System Science
The Nexus for Exoplanet System Science! https://nexss.info Tony Del Genio, NASA GISS Natalie Batalha, NASA ARC Dawn Gelino, NExScI Shawn Domagal-Goldman, NASA GSFC Andrew Rushby, NASA ARC What is NExSS? • A research coordination network dedicated to the study of planetary habitability and the search for life on exoplanets. • A NASA cross-division initiative bringing astrophysicists, planetary scientists, Earth scientists, and heliophysicists together to explore the potential of “systems science” thinking* in exoplanet research. • *Not tied to any single observational strategy. Scientific goals of NExSS • Investigate the diversity of planets • Understand how planet history, geology, and climate interact to create the conditions for life • Put planets into an architectural context as stellar systems built over time by dynamical processes and sculpted by stars • Use experience from solar system (including Earth) history to identify where habitable niches are most likely to occur and which planets are most likely to be habitable • Leverage NASA investments in research and missions to accelerate discovery and characterization of potential life-bearing worlds Strategic Objectives • To further our joint strategic objective to explore exoplanets as potentially habitable and inhabited worlds outside our solar system. • To establish common goals across SMD divisions; Planetary Science (PSD), Heliophysics (HPD), Earth Science (ESD) and Astrophysics (APD). • To leverage existing Programs in SMD to advance the field of exoplanet research, specifically research in comparative planetology, biosignature and habitat detection, star-planet interactions, and planet characterization. • To establish a mechanism to break down the barriers between divisions, disciplines, and stove-piped research activities. The NExSS Teams HQ reps: Mary Voytek (PSD) D. -
The Nexus for Exoplanet System Science
The Nexus for Exoplanet System Science https://nexss.info Dr. Mary Voytek Senior Scientist for Astrobiology SMD, NASA HQ 3/11/16 NExSS: NASA Exoplanet System Science Research Coordination Network A Cross-division Initiative 2 Objectives To further our joint strategic objective to explore exoplanets as potential habitable and inhabited worlds outside our solar system. • Exoplanet research cuts across divisions in SMD including Planetary Science (PSD), Heliophysics (HPD), Earth Science (ESD) and Astrophysics (APD) To leverage existing Programs in SMD to advance the field of Exoplanet Research, specifically research in comparative planetology, biosignature and habitat detection, and planet characterization. Establish a mechanism to break down the barriers between, divisions, disciplines and stove piped 3 research activities. What is a Coordination Network? A virtual structure to support groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, divisional, and geographic boundaries. 4 What Research Coordination Networks have accomplished? Provided opportunities to foster new collaborations, including international partnerships, and address interdisciplinary topics. Provided innovative ideas for implementing novel networking strategies, collaborative technologies. Supported the development of community standards for data and meta-data. Supported the means by which investigators can • share information and ideas, • coordinate ongoing or planned research activities, -
The Nexus for Exoplanet System Science Research Coordination Network a Cross-Division Initiative
The Nexus for Exoplanet System Science Research Coordination Network A Cross-division Initiative https://nexss.info Dr. Mary Voytek Senior Scientist for Astrobiology SMD, NASA HQ Heliophysics Subcommittee M eeting 8/8/16 What is a Coordination Network? A virtual structure to support groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, divisional, and geographic boundaries. 2 Objectives To further our joint strategic objective to explore exoplanets as potential habitable and inhabited worlds outside our solar system. • Exoplanet research cuts across divisions in SMD including Planetary Science (PSD), Heliophysics (HPD), Earth Science (ESD) and Astrophysics (APD) To leverage existing Programs in SMD to advance the field of Exoplanet Research, specifically research in comparative planetology, biosignature and habitat detection, and planet characterization. Establish a mechanism to break down the barriers between, divisions, disciplines and stove piped research activities. 3 Wha t Research Coordination Networks have accomplished? Provided opportunities to share information and ideas, foster new collaborations, including international partnerships, and address interdisciplinary topics. Provided innovative ideas for implementing novel networking strategies, collaborative technologies. Supported the development of community standards for data and meta-data. Supported the means by which investigators can • coordinate ongoing or planned research activities, -
OCE Fall 98C.P65
Division of Ocean Sciences Fall 1998 Newsletter Planning for Basic Research The Division of Ocean Sciences is in the middle of an extremely active phase of community-based planning. It is therefore an appropriate time to discuss this process, and describe the goals and motivations for this considerable effort. During the past 18 months, we supported four separate community-based efforts to identify the most promising future opportunities for progress and discovery in each of the primary disciplines of ocean sciences: Physical Oceanography, Chemi- cal Oceanography, Biological Oceanography and Marine Geology and Geophysics. All the participants in this process, especially the Workshop Steering Committees and their respective Chairs, deserve wide recognition for their hard work and effort. The resulting four substantial reports can be found at http://www.joss.ucar.edu/joss_psg/project/ oce_workshop/. Recently, we formed a fifth working group (Table 1), co- chaired by Peter Brewer of MBARI and Ted Moore of the University of Michigan; they will integrate these reports with President Clinton speaks at the National Ocean Conference, in other major planning documents from the community. Their Monterey, CA last June. Photo courtesy of R. Bell, DOC. product will be a succinct and integrated description of research topics that have the most potential for significant observation, analysis, or experimentation that are needed to impact on the understanding of the ocean system and which achieve the stated scientific goals. It will not describe pro- feasibly can be tackled during the next decade or so. The gram plans or budgetary implications: this document will fo- document will be written at a high level, targeted at commu- cus on the science. -
Project Number 33089 Innovation Fund Proposal
Project number 33089 Innovation Fund Proposal Project information Project title The Churchill Marine Observatory Applicant institution University of Manitoba Collaborating institutions University of Calgary, University of Victoria Project leader Name David Barber Title/position Professor, Canada Research Chair (Tier 1), Associate Dean (Research) Project funding Total project cost $31,775,435 Amount requested from the $12,396,452 CFI Percentage of the total project 39% cost requested from the CFI (maximum 40%) Disciplines Primary discipline GEOPHYSICS Primary sub-discipline Applied Geophysics Secondary discipline ENVIRONMENT Secondary sub-discipline Bioremediation Tertiary discipline ELECTRICAL AND ELECTRONIC ENGINEERING Tertiary sub-discipline Digital Signal Processing Areas of application Primary Development of the North Secondary Fossil fuels and their derivatives Submitted on 2014-06-27 Project number 33089 Innovation Fund Proposal Keywords Research or technology Bioremediation, chemical dispersants, petroleum ecotoxicolgy, sea ice dynamics development and thermodynamics, ecology and ecosystem structure Specific infrastructure Arctic, Oil in Ice Mesocosm, Comprehensive Environmental Monitoring, Hudson Bay Submitted on 2014-06-27 2 Canada Foundation for Innovation Project number 33089 Plain language summary This summary will not be used in the review process. Should the project be funded, the CFI may use it in its communication products. The Churchill Marine Observatory (CMO) will be a globally unique, highly innovative, multidisciplinary research facility located in Churchill, Manitoba, adjacent to Canada’s only Arctic deep-water port. The CMO will directly address technological, scientific, and economic issues pertaining to Arctic marine transportation and oil and gas exploration and development throughout the Arctic. CMO will include an Oil in Sea Ice Mesocosm (OSIM), an Environmental Observing (EO) system, and a logistics base.