<<

Molecular and 40 (2006) 29–49 www.elsevier.com/locate/ympev

Higher level phylogeny of butterXies (: ) based on DNA sequence data

Carlos Peña a,¤, Niklas Wahlberg a, Elisabet Weingartner a, Ullasa Kodandaramaiah a, Sören Nylin a, André V.L. Freitas b, Andrew V.Z. Brower c

a Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden b Departamento de Zoologia and Museu de História Natural, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, SP 13083-970, Brazil c Department of Zoology, Oregon State University, Corvallis, OR, USA

Received 26 September 2005; revised 8 January 2006; accepted 9 February 2006 Available online 24 March 2006

Abstract

We have inferred the Wrst empirically supported hypothesis of relationships for the cosmopolitan butterXy subfamily Satyrinae. We used 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1 and wingless for 165 Satyrinae taxa repre- senting 4 tribes and 15 subtribes, and 26 outgroups, in order to test the of the subfamily and elucidate phylogenetic relation- ships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recovered Satyrinae as polyphyletic, and revealed that the current classiWcation of suprageneric taxa within the subfamily is comprised almost com- pletely of unnatural assemblages. The most noteworthy Wndings are that Manataria is closely related to ; Palaeonympha belongs to ; , Orsotriaena and group with the Hypocystina; Miller’s (1968). Parargina is polyphy- letic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyri- nae. The three gene regions used in a combined analysis prove to be very eVective in resolving relationships of Satyrinae at the subtribal and tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribes and subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographi- cal and evolutionary studies. © 2006 Elsevier Inc. All rights reserved.

Keywords: Nymphalidae; Satyrinae; Molecular phylogeny; Partitioned Bremer support; ButterXies

1. Introduction ciplines in comparative biology (namely evolution of host plant preferences, mimicry, behavior, etc) depend on robust The butterXies are one of the most studied and best phylogenetic hypotheses to provide a framework for inter- known groups of organisms. The vast amount of informa- preting the evolution of putatively adaptive character sys- tion gathered on this group spans a variety of topics in tems. ecology, evolutionary biology and conservation biology Despite several recent important eVorts to elucidate the (e.g. Boggs et al., 2003). However, the higher phylogenetic higher level relationships of butterXies (Brower, 2000; Cate- relationships of major groups of butterXies remain poorly rino et al., 2001; de Jong et al., 1996; Freitas and Brown, known. This lack of knowledge is critical, since several dis- 2004; Wahlberg et al., 2003b, 2005), there is still only frag- mentary knowledge about patterns of relationships among lineages within the six rhopaloceran families. This is partic- * Corresponding author. Fax: +46 8 167 715. ularly true in the nymphalid subfamily Satyrinae, one of the E-mail address: [email protected] (C. Peña). most diverse groups of butterXies.

1055-7903/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2006.02.007 30 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

The cosmopolitan Satyrinae includes about 2400 spe- subtribes, respectively. The most recent global classiWca- cies and occur on all continents except Antarctica (Ackery tion of butterXies is by Ackery et al. (1999), with minor et al., 1999). Although the other major of Nymp- changes to Harvey’s (1991) classiWcation but following halidae are comparatively well known, the subfamily entirely his conception of Satyrinae. Satyrinae remains poorly understood, with many unde- After these rearrangements, some level of consensus in scribed genera and , a higher classiWcation rife with placing the satyrine butterXies as a nymphalid subfamily unnatural assemblages, and without any available com- was achieved. Studies by Brower (2000), Wahlberg and col- prehensive and empirically supported phylogeny (Freitas, leagues (2003b, 2005), and Freitas and Brown (2004) have 2003, 2004a; Lamas, 2004; Martin et al., 2000; Miller, shown that satyrine butterXies form a within the fam- 1968; Murray and Prowell, 2005; Peña and Lamas, 2005; ily Nymphalidae with the , and Viloria and Pyrcz, 1994; Viloria and Camacho, 1999). The Calinaginae being the closest relatives. These studies sam- diversity of Satyrinae is not reXected by the number of pled only a few satyrine species and are not informative studies on the systematics of the group. In fact, the most about relationships within Satyrinae. The resolution of recent eVort to encompass the whole group is Miller’s these major lineages was the next logical step. The impor- (1968) important but now outdated work, which tant study by Viloria (1998, 2003) was among the Wrst employed an orthogenetic criterion to develop a hypothe- eVorts to address this subject. Viloria’s (2003) cladistic and sis of Satyrinae phylogeny. biogeographic study of satyrine butterXies from South The rank and position of Satyrinae among other nym- America and New Zealand proposed that many of the gen- phalid taxa has been a matter of confusion. The taxo- era considered to be in are instead more nomic rank, and even the taxa falling within the closely related to Erebiina and Hypocystina. Viloria’s circumscription of Satyrinae has changed often in recent changes were adopted in the Checklist of Neotropical But- decades (Table 1). One of the Wrst modern attempts to terXies edited by Lamas (2004). Recently, Murray and Pro- classify the butterXies is the work by Ehrlich (1958), who well’s (2005) molecular phylogenetic study of the subtribe considered Satyrinae as a subfamily of Nymphalidae, Euptychiina found many of its genera to be para- or poly- being related to Morphinae and Calinaginae. Later, Ehr- phyletic, recovering a non-monophyletic Euptychiina, with lich and Ehrlich (1967) used a quantitative phenetic Oressinoma and itself nested among the satyrine approach to propose a scheme of classiWcation retaining outgroups. the same taxonomic status for Satyrinae. Following Clark The remainder of recent works examining the relation- (1947), Miller (1968) considered the group as having the ships of satyrine butterXies are studies on species (Monteiro rank “Satyridae”. Miller proposed additional new and Pierce, 2001; Nice and Shapiro, 2001) and level subfamily level groupings to classify the entire group, relationships (Martin et al., 2000; Torres et al., 2001). considering Biinae (including , , and Martin et al. (2000) examined the phylogeny of some Euro- therein) as members of his Satyridae. DeVries pean satyrine genera, concluding that Aphantopus hyperan- et al. (1985) used a cladistic analysis based on characters tus should be transferred from Coenonymphina into of mainly immature stages to show that Miller’s Antir- Maniolina. rhini (sic) should be moved into Morphinae, stated that Except for Miller’s (1968) foundation and the study of Biini of Miller (Bia) is of uncertain position, and that Mel- Viloria (2003), we have almost no knowledge about the anitini should remain in Satyrinae. Harvey’s (1991) classi- phylogenetic relationships of the major lineages of Satyri- Wcation scheme, based on Miller’s with the addition of nae. Since a robust phylogenetic hypothesis is crucial for features from immature stages, treated Satyrinae as a sub- integrating natural groups in our classiWcation schemes, family of Nymphalidae again, moved Brassolinae out of identifying the major lineages and resolving the relation- Miller’s Satyridae to be a subfamily on its own, moved ships of the satyrine butterXies is a critical matter to Miller’s Antirrhini into Morphinae (as claimed by DeV- accomplish. At the present time, the classiWcation of Saty- ries et al., 1985), and left Bia in Satyrinae. The status of rinae remains based almost entirely on the work of Miller Bia as a brassoline is no longer in any doubt: it was (1968). hypothesized based on morphological features of adults For these reasons, the aims of this study are to test the by DeVries et al. (1985), immatures by Freitas et al. monophyly of Satyrinae, to provide evidence that eluci- (2002), and molecular data by Brower (2000), and is con- dates patterns of relationships among the major groups gruent with the successive weighting analysis tree of (tribes and subtribes) by using a cladistic analysis based morphological data of Freitas and Brown (2004). Vane- on molecular data. The resulting phylogenetic hypothesis Wright and Boppré’s (2005) detailed description of wing will be a Wrst step towards understanding the diversiWca- patterns and androconial organs of Bia shows clear tion of this globally successful subfamily. In this study, we aYnity with the brassolines. Hence, Bia is currently placed follow Ackery et al.’s (1999) classiWcation for families and in (Lamas, 2004; Vane-Wright and Boppré, subfamilies, Miller’s (1968) classiWcation for the groups 2005). For his classiWcation of satyrine tribes and sub- within Satyrinae as modiWed by Harvey (1991) and tribes, Harvey (1991) largely followed Miller’s scheme, Lamas’s (2004) checklist for nomenclature of Neotropical but down-ranking his subfamilies and tribes to tribes and taxa (see Table 1). C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 31

Table 1 Representative higher level classiWcations of satyrines Miller (1968) Harvey (1991) Lamas (2004) This paper Satyridae Satyrinae Satyrinae Satyrinae Haeterinae Haeterini Haeterini Cithaerias Cithaerias Haetera Zetherini Haetera Pierella Neorina Pierella Pseudohaetera Pseudohaetera Pseudohaetera Biini Elymniini Ethope Biinae Melanititi Parargina Zethera Melanitini Manataria Melanitini Gnophodes Melanitis Elymniina Melanitis Manataria tribe uncertain Manataria tribe uncertain Elymniini Manataria Elymniinae Elymniiti Hypocystina Gnophodes Elymniini Elymnias Argyrophorus Melanitis Elymnias Quilaphoetosus Haeterini Elymniopsis Lethiti Auca Cithaerias Lethini Aeropetes Chillanella Haetera Aeropetes Paralethe Cosmosatyrus Pierella Paralethe Enodia Elina Pseudohaetera Enodia Etcheverrius Satyrini Lethe Nelia Parargina Neope Pampasatyrus Satyrodes Kirinia Euptychiina Kirinia Lasiommata Lasiommata Lopinga Lopinga Pararge Lethina Pararge Ethope Lethe Ethope Neorina Enodia Neorina Mycalesiti Satyrodes Mycalesini Euptychia Neope Bicyclus Mycalesina Hallelesis Henotesia Bicyclus Henotesia Hallelesis Mycalesis Orsotriaena Harjesia Henotesia Orsotriaena Zetheriti Mycalesis Zetherini Zethera Magneuptychia Coenonymphina Zethera Satyrini Oreixenica Satyrinae Hypocystiti Tisiphone Hypocystini Argyronympha Pindis Nesoxenica Argyronympha Dodonidia Paramacera Hypocysta Dodonidia Erebiola Parataygetis Lamprolenis Erebiola Geitoneura Dodonidia Geitoneura Argyrophenga Heteronympha Hypocysta Erebiola Hypocysta Lamprolenis Pindis Percnodaimon Lamprolenis Nesoxenica Heteronympha Nesoxenica Oreixenica Rareuptychia Geitoneura Oreixenica Percnodaimon Splendeuptychia Oressinoma Percnodaimon Tisiphone Coenonympha Tisiphone Zipaetis Orsotriaena Zipaetis Ypthimiti Coenonymphina Zipaetis Ypthimini Neocoenyra Coenonympha Argyronympha Neocoenyra Ypthima Cercyonis Euptychiina Ypthima Ypthimomorpha Erebiina Euptychia Ypthimomorpha Palaeonympha tribe uncertain Cyllopsis Palaeonympha tribe uncertain Euptychiiti Ianussiusa Paramacera Euptychiini Caeruleuptychia Tamania Palaeonympha Caeruleuptychia Cepheuptychia Idioneurula Pharneuptychia Cepheuptychia Chloreuptychia Manerebia Euptychoides Chloreuptychia Cissia Pronophilina Yphthimoides Cissia Cyllopsis Apexacuta Moneuptychia Cyllopsis Corades Paryphthimoides Erichthodes Euptychia Daedalma (continued on next page) 32 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Table 1 (continued) Miller (1968) Harvey (1991) Lamas (2004) This paper Euptychia Euptychoides Eteona Rareuptychia Euptychoides Forsterinaria Foetterleia Godartiana Forsterinaria Godartiana Junea Hermeuptychia Godartiana Harjesia Lasiophila Splendeuptychia Harjesia Hermeuptychia Lymanopoda Pindis Hermeuptychia Moneuptychia Oxeoschistus Cepheuptychia Magneuptychia Neonympha Panyapedaliodes Cissia Moneuptychia Oressinoma Parapedaliodes Caeruleuptychia Nenoympha Paramacera Pedaliodes Magneuptychia Oressinoma Parataygetis Praepedaliodes Chloreuptychia Paramacera Pareuptychia Proboscis Neonympha Parataygetis Paryphthimoides Pronophila Erichthodes Pareuptychia Pharneuptychia Pseudomaniola Pareuptychia Paryphthimoides Pindis Punapedaliodes Taygetis Pharneuptychia Posttaygetis Steremnia Harjesia Pindis Oressinoma Steroma Parataygetis Posttaygetis Rareuptychia Satyrina Posttaygetis Rareuptychia Splendeuptychia Forsterinaria Splendeuptychia Taygetis Amphidecta subtribe uncertain Cercyonis subtribe uncertain Taygetis Yphthimoides Hyponephele subtribe uncertain Yphthimoides Coenonymphiti Neocoenyra subtribe uncertain Coenonymphini Coenonympha Ypthimina Coenonympha Aphantopus Paralasa Aphantopus Manioliti Ypthima Maniolini Cercyonis Ypthimomorpha Cercyonis Hyponephele Melanargiina Hyponephele Maniola Melanargia Maniola Pyronia Maniolina Pyronia Erebiiti Pyronia Erebiini Erebia Maniola Erebia Pronophiliti Aphantopus Pronophilini Amphidecta Pronophilina Amphidecta Corades Nelia Corades Daedalma Steremnia Daedalma Eteona Steroma Eteona Junea Manerebia Junea Lasiophila Idioneurula Lasiophila Lymanopoda Tamania Lymanopoda Oxeoschistus Ianussiusa Oxeoschistus Panyapedaliodes Lymanopoda Panyapedaliodes Parapedaliodes Argyrophorus Parapedaliodes Pedaliodes Etcheverrius Pedaliodes Praepedaliodes Pampasatyrus Praepedaliodes Proboscis Elina Proboscis Pronophila Quilaphoetosus Pronophila Pseudomaniola Cosmosatyrus Pseudomaniola Punapedaliodes Chillanella Punapedaliodes Steremnia Auca Steremnia Steroma Panyapedaliodes Steroma Idioneurula Pedaliodes Idioneurula Manerebia Punapedaliodes Manerebia Argyrophorus Praepedaliodes Argyrophorus Quilaphoetosus Corades Quilaphoetosus Auca Junea Auca Chillanella Pronophila Chillanella Cosmosatyrus Eteona Cosmosatyrus Elina Foetterleia Elina Etcheverrius Daedalma Etcheverrius Nelia Oxeoschistus Nelia Pampasatyrus Proboscis Pampasatyrus Melanargiiti Lasiophila Melanargiini Melanargia Apexacuta Melanargia Satyriti Pseudomaniola Satyrini Arethusana Erebiina Arethusana Berberia Erebia C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 33

Table 1 (continued) Miller (1968) Harvey (1991) Lamas (2004) This paper Berberia Brintesia Satyrina Brintesia Berberia Chazara Hipparchia Hipparchia Karanasa Chazara Karanasa Neominois Pseudochazara Neominois Oeneis Satyrus Oeneis Paralasa Arethusana Paralasa Pseudochazara Brintesia Pseudochazara Satyrus Karanasa Satyrus Penthema tribe uncertain Neominois Penthema not mentioned Oeneis Last column shows the implied classiWcation derived from our phylogenetic results. This classiWcation is not to be considered as taxonomic act under ICZN article 8.3 (International Commission on Zoological Nomenclature, 1999).

2. Material and methods was 95 °C for 7 min, 34 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 2 min, an extension period of 72 °C for 10 We obtained DNA sequences for three gene regions min and a Wnal one of 20 °C for 10 s. The reaction cycle pro- from 165 exemplar Satyrinae species representing 15 sub- Wle for primers ef51.9-efrcM4 and the wingless gene was tribes included in 4 tribes recognized by Harvey (1991), as 95 °C for 5 min, 39 cycles of 95 °C for 1 min, 51 °C for 1 min, well as some taxa of uncertain position (Manataria, Amphi- 70 °C for 1 min 30 s and a Wnal extension period of 72 °C for decta and Palaeonympha). We have not yet obtained repre- 7 min. The PCR primers were also used for sequencing of sentatives from the remaining putative major satyrine EF-1 and wingless, while in COI an internal primer lineages (tribes Eritini, Ragadiini and subtribe Dirina). designed by N. Wahlberg (Patty 5Ј-ACW GTW GGW Table 2 shows the sampled species in their current taxo- GGA TTA ACW GG-3Ј) was used in addition to the PCR nomic classiWcation and the GenBank accession numbers. primers. Sequencing of the PCR products was done with a We extracted DNA from two butterXy legs, dried or Beckman–Coulter CEQ8000 capillary sequencer. The freshly conserved in 96% alcohol, using QIAgen’s DNEasy resulting chromatograms were checked using the program extraction kit. For each species, we sequenced 1450 bp of BioEdit (Hall, 1999) and the sequences were aligned by eye. the cytochrome oxidase subunit I gene (COI) from the Some sequences were generated and processed according to mitochondrial genome, 1240 bp of the Elongation Factor-1 the protocols described in Brower et al. (in press). gene (EF-1), and 400 bp of the wingless gene, from the The complete data set consisted of 191 taxa (including nuclear genome. Some sequences were drawn from matrices 26 outgroups) and 3090 nucleotides. All characters were published by Wahlberg et al. (2003b, 2005) and Murray and treated as unordered and equally weighted. The resulting Prowell (2005). The primers for COI were taken from data matrix was analyzed according to a cladistic frame- Wahlberg and Zimmermann (2000), for EF-1 (primers work by performing a heuristic search using the New Tech- ef51.9 and efrcM4) from Monteiro and Pierce (2001) and nology Search algorithms in the program TNT (GoloboV for wingless from Brower and DeSalle (1998). Additional et al., 2003) with level of search 10, followed by branch- primers from Cho et al. (1995) were used for EF-1 swapping of the resulting trees with up to 10000 trees held sequences, Starsky (sense: 5Ј-CAC ATY AAC ATT GTC during each step. This same procedure was applied for each GTS ATY GG-3Ј) and Luke (antisense: 5Ј-CAT RTT GTC gene separately and for all three genes combined. Some KCC GTG CCA KCC-3Ј), another primer from Reed and taxa with missing data were not included in the separate Sperling (1999), Cho (sense: 5Ј-GTC ACC ATC ATY GAC analysis of each gene, since we have been unable to obtain GC-3Ј) and Verdi (courtesy of F. Sperling’s lab) (antisense: sequences for them to date (as indicated in Table 2). 5Ј-GAT ACC AGT CTC AAC TCT TCC-3Ј). Voucher We evaluated clade robustness by using the bootstrap specimens will be deposited at the Department of Entomol- (Felsenstein, 1985) and Bremer support (Bremer, 1988, ogy, Museo de Historia Natural, Universidad Nacional 1994) in TNT (GoloboV et al., 2003). We assessed the Mayor de San Marcos, Peru; the Department of Zoology, contribution of each gene data set to total Bremer sup- Stockholm University, Sweden; the African ButterXy port in the combined analyses by using Partitioned Research Institute, ; and the American Museum of Bremer Support (PBS) (Baker and DeSalle, 1997; Gatesy Natural History, New York (Brower’s material). et al., 1999) using the scripting feature of the program The PCR reactions were performed in a 20 l volume. TNT (GoloboV et al., 2003). In the results and discussion The reaction cycle proWle for COI was 95 °C for 5 min, 34 section, we will refer to weak Bremer support for values cycles of 94 °C for 30 s, 47 °C for 30 s, 72 °C for 1 min 30 s, of 1–2 (bootstrap values 50–63%), moderate support for and a Wnal extension period of 72 °C for 10 min. The reac- values between 3 and 5 (bootstrap values 64–75%), good tion cycle proWle for primers Starksy-Luke and Cho-Verdi support for values between 6 and 10 (bootstrap values 34 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Table 2 Information of specimens used for molecular studies Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1 Wingless Libytheinae Libythea celtis NW71-1 : Barcelona AY090198 AY090164 AY090131 Heliconiinae Heliconiini Heliconius hecale NW70-6 UK, Stratford ButterXy AY090202 AY090168 AY090135 Farm Danainae Danaini Danaina Danaus plexippus NW108-21 : Madeira, DQ018954 DQ018921 DQ018891 Monte Calinaginae Calinaga buddha NW64-3 UK, Stratford ButterXy AY090208 AY090174 AY090141 Farm Charaxinae Charaxini Charaxes castor NW78-3 UK, Stratford ButterXy AY090219 AY090185 AY090152 Farm Charaxinae Anaea troglodyta NW92-2 UK, Stratford ButterXy DQ338573 DQ338881 DQ338599 Farm Charaxinae Anaeini Hypna clytemnestra NW127-11 Brazil: São Paulo DQ338574 DQ338882 DQ338600 Charaxinae Anaeini Memphis appias NW127-6 Brazil: São Paulo DQ338575 DQ338883 DQ338601 Charaxinae Preponini NW81-9 UK, Stratford ButterXy AY090220 AY090186 AY090153 Farm Charaxinae Pallini decius NW124-7 DQ338576 DQ338884 — Morphinae Antirrheina Antirrhea philoctetes NW109-12 Costa Rica DQ338577 DQ338885 DQ338602 Morphinae Morphini Morphina helenor NW66-5 UK, Stratford ButterXy AY090210 AY090176 AY090143 Farm Morphinae phidippus NW114-17 Indonesia: Bali DQ018956 DQ018923 DQ018894 Morphinae Amathusiini lena DL-02-P687 Thailand: Chiang Mai DQ338578 DQ338886 DQ338603 Morphinae Amathusiini necho NW101-6 Indonesia: Palawan DQ338747 DQ338887 DQ338604 Morphinae Amathusiini menado NW118-19 Indonesia: Central DQ338748 DQ338888 DQ338605 Sulawesi Morphinae Amathusiini howqua NW97-7 Taiwan: Taoyuan AY218250 AY218270 AY218288 County Morphinae Amathusiini cyclops NW102-4 Indonesia: Sorong DQ338749 DQ338889 DQ338606 Island Morphinae Amathusiini klugius SA-3-2 Malaysia: Sabah, DQ338750 DQ338890 DQ338607 Luasong Morphinae Amathusiini aliris DL-02-B253 Thailand: Ranong DQ338751 DQ338891 DQ338608 Morphinae Amathusiini dohrni NW101-2 Indonesia: Java DQ338752 DQ338892 DQ338609 Morphinae Brassolini Biina EW11-3 Peru: Loreto DQ338753 — DQ338610 Morphinae Brassolini Biina Bia actorion 99-004 Brazil: Rondonia — DQ338893 — Morphinae Brassolini Brassolina NW70-10 UK, Stratford ButterXy AY090209 AY090175 AY090142 Farm Morphinae Brassolini Brassolina orgetorix NW109-15 Costa Rica DQ338754 DQ338894 DQ338611 Morphinae Brassolini Brassolina quiteria NW109-10 Costa Rica DQ018957 DQ018924 DQ018895 Morphinae Brassolini Naropina sp. NW127-27 Brazil: São Paulo DQ338755 DQ338895 DQ338612 Satyrinae Haeterini Cithaerias pireta NW93-1 Peru: Loreto DQ338756 DQ338896 DQ338613 Satyrinae Haeterini CP01-84 Peru: Madre de Dios DQ018959 DQ018926 DQ018897 Satyrinae Haeterini Pierella lamia NW93-2 Peru: Loreto DQ338757 DQ338897 DQ338614 Satyrinae Haeterini Pseudohaetera hypaesia CP03-99 Peru: Junín DQ338758 DQ338898 DQ338625 Satyrinae Melanitini NW102-13 : Kibale DQ338759 DQ338899 DQ338626 National Park Satyrinae Melanitini NW66-6 Australia: Queensland, AY090207 AY090173 AY090140 Cairns Satyrinae Elymniini Elymniina Elymnias casiphone NW121-20 Indonesia: Bali DQ338760 DQ338900 DQ338627 Satyrinae Elymniini Elymniina DL-02-P680 Thailand: Chiang Mai DQ338761 DQ338901 DQ338628 Satyrinae Elymniini Elymniina Elymnias bammakoo NW117-20 Ghana DQ338762 DQ338902 DQ338629 Satyrinae Elymniini Mycalesina EW10-5 Zimbabwe: Harare AY218238 AY218258 AY218276 Satyrinae Elymniini Mycalesina Hallelesis halyma CP10-05 Ghana DQ338763 DQ338903 DQ338630 Satyrinae Elymniini Mycalesina Henotesia simonsii EW10-6 Zimbabwe: Harare DQ338764 DQ338904 DQ338631 Satyrinae Elymniini Mycalesina Mycalesis sp. EW18-8 Australia: Queensland, DQ338765 DQ338905 DQ338632 Cairns Satyrinae Elymniini Mycalesina EW25-17 Bangladesh: Sylhet Div. DQ338766 DQ338906 DQ338633 Lowacherra Forest Satyrinae Elymniini Parargina Aeropetes tulbaghia CP13-01 S. DQ338579 DQ338907 DQ338634 Satyrinae Elymniini Parargina DNA96-018 USA: Louisiana AY508536 AY509062 — Satyrinae Elymniini Parargina CP10-09 : Lorestan DQ338767 DQ338908 DQ338615 Satyrinae Elymniini Parargina EW5-7 Sweden: Stockholm AY090213 AY090179 AY090146 Satyrinae Elymniini Parargina Lethe minerva NW121-17 Indonesia: Bali DQ338768 DQ338909 DQ338616 Satyrinae Elymniini Parargina EW3-6 Sweden DQ338769 DQ338910 DQ338617 Satyrinae Elymniini Parargina EW11-1 Costa Rica AY218244 AY218264 AY218282 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 35

Table 2 (continued) Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1 Wingless Satyrinae Elymniini Parargina Neope bremeri EW25-23 Taiwan: Pingtung DQ338770 DQ338911 DQ338618 County Satyrinae Elymniini Parargina Paralethe dendrophilus CP13-03 S. Africa DQ338771 DQ338912 DQ338619 Satyrinae Elymniini Parargina Pararge aegeria EW1-1 : Carcassonne DQ176379 DQ338913 DQ338620 Satyrinae Elymniini Parargina NEB-1-3 USA: Nebraska DQ338772 DQ338914 DQ338621 Satyrinae Elymniini Parargina Ethope noirei NW121-7 Vietnam DQ338773 DQ338915 DQ338622 Satyrinae Elymniini Parargina Neorina sp. NW118-14 Indonesia: West Java DQ338774 DQ338916 DQ338623 Satyrinae Elymniini Zetherina Penthema darlisa CP-B02 Vietnam DQ338775 DQ338917 DQ338624 Satyrinae Elymniini Zetherina Zethera incerta NW106-10 Indonesia: Sulawesi DQ338776 DQ338918 DQ338635 Satyrinae Satyrini Coenonymphina CP-AC23-26 Russia: Spassk DQ338580 DQ338919 DQ338636 Satyrinae Satyrini Coenonymphina Coenonympha pamphilus EW7-3 Sweden: Öland DQ338777 DQ338920 DQ338637 Satyrinae Satyrini Erebiina Erebia epiphron EW24-3 France: Languedoc DQ338778 DQ338921 DQ338638 Satyrinae Satyrini Erebiina Erebia ligea EW5-19 Sweden: Vallentuna DQ338779 DQ338922 DQ338639 Satyrinae Satyrini Erebiina Erebia oeme EW24-7 France: Languedoc DQ338780 DQ338923 DQ338640 Satyrinae Satyrini Erebiina Erebia palarica EW9-4 Spain: Galicia, Lugo AY090212 AY090178 AY090145 Satyrinae Satyrini Erebiina Erebia sthennyo EW24-1 France: Languedoc DQ338781 DQ338924 DQ338641 Satyrinae Satyrini Erebiina Erebia triaria EW9-1 Spain: Galicia, Lugo DQ338782 DQ338925 DQ338642 Satyrinae Satyrini Erebiina Ianussiusa maso V35 Venezuela: Táchira DQ338783 DQ338926 DQ338643 Satyrinae Satyrini Erebiina Idioneurula sp. V37 Venezuela: Táchira DQ338784 DQ338927 DQ338644 Satyrinae Satyrini Erebiina Manerebia cyclopina CP03-63 Peru: Junín DQ338785 DQ338928 — Satyrinae Satyrini Erebiina Manerebia cyclopina CP04-80 Peru: Junín — — DQ338645 Satyrinae Satyrini Erebiina Manerebia inderena E-39-09 Ecuador: Sucumbios DQ338786 DQ338929 DQ338646 Satyrinae Satyrini Erebiina Tamania jacquelinae V29 Venezuela: Táchira DQ338787 — DQ338647 Satyrinae Satyrini Euptychiina Caeruleuptychia lobelia CP01-67 Peru: Madre de Dios DQ338788 DQ338930 DQ338648 Satyrinae Satyrini Euptychiina Cepheuptychia sp. n. CP01-31 Peru: Madre de Dios DQ338789 DQ338931 DQ338649 Satyrinae Satyrini Euptychiina Chloreuptychia sp. CP01-72 Peru: Madre de Dios DQ338790 DQ338932 DQ338650 Satyrinae Satyrini Euptychiina Cissia sp. NW108-6 Brazil DQ338581 DQ338933 DQ338651 Satyrinae Satyrini Euptychiina AZ-1-6 USA: Arizona DQ338791 DQ338934 DQ338652 Satyrinae Satyrini Euptychiina Erichthodes antonina CP02-24 Peru: Madre de Dios DQ338792 DQ338935 DQ338653 Satyrinae Satyrini Euptychiina Euptychia ernestina NW136-14 Brazil: São Paulo DQ338793 DQ338936 — Satyrinae Satyrini Euptychiina Euptychia sp. DNA99-078 Ecuador: Pichincha AY508541 AY509067 — Satyrinae Satyrini Euptychiina Euptychia sp. n. 2 CP01-33 Peru: Madre de Dios DQ338794 DQ338937 DQ338654 Satyrinae Satyrini Euptychiina Euptychia sp. n. 5 CP01-53 Peru: Madre de Dios DQ338795 DQ338938 DQ338655 Satyrinae Satyrini Euptychiina Euptychia sp. n. 6 CP04-55 Peru: Junín DQ338796 DQ338939 DQ338656 Satyrinae Satyrini Euptychiina Euptychia sp. n. 7 CP02-58 Peru: Junín — DQ338940 DQ338657 Satyrinae Satyrini Euptychiina Euptychia pronophila NW127-20 Brazil: Minas Gerais DQ338797 DQ338941 DQ338658 Satyrinae Satyrini Euptychiina Euptychoides castrensis NW126-9 Brazil: São Paulo DQ338798 DQ338942 DQ338659 Satyrinae Satyrini Euptychiina Forsterinaria boliviana CP04-88 Peru: Junín DQ338799 DQ338943 DQ338660 Satyrinae Satyrini Euptychiina Godartiana muscosa NW127-8 Brazil: São Paulo DQ338582 DQ338944 DQ338661 Satyrinae Satyrini Euptychiina Harjesia blanda CP01-13 Peru: Madre de Dios DQ338800 DQ338945 DQ338662 Satyrinae Satyrini Euptychiina Hermeuptychia hermes NW127-16 Brazil: Minas Gerais DQ338583 DQ338946 DQ338663 Satyrinae Satyrini Euptychiina Magneuptychia sp. n. 4 CP01-91 Peru: Madre de Dios DQ338584 DQ338947 DQ338664 Satyrinae Satyrini Euptychiina Moneuptychia paeon B-17-41 Brazil: São Paulo DQ338801 DQ338948 DQ338665 Satyrinae Satyrini Euptychiina Neonympha areolata DNA96-019 USA: Louisiana AY508564 AY509090 — Satyrinae Satyrini Euptychiina Oressinoma sorata DNA99-065 Ecuador: Pichincha AY508561 AY509087 — Satyrinae Satyrini Euptychiina Oressinoma sorata PE-6-1 Peru: Cuzco — — AF246602 Satyrinae Satyrini Euptychiina Oressinoma typhla CP07-71 Peru: Junín DQ338802 DQ338949 DQ338666 Satyrinae Satyrini Euptychiina Paramacera allyni MEX-1-1 Mexico: D. F., DQ338803 — DQ338667 Magdalena Contreras Satyrinae Satyrini Euptychiina Parataygetis albinotata CP04-53 Peru: Junín DQ338804 DQ338950 DQ338668 Satyrinae Satyrini Euptychiina Pareuptychia hesionides CP01-66 Peru: Madre de Dios DQ338805 DQ338951 DQ338669 Satyrinae Satyrini Euptychiina Paryphthimoides grimon CP10-01 Brazil DQ338806 DQ338952 DQ338670 Satyrinae Satyrini Euptychiina Paryphthimoides sp. NW126-7 Brazil DQ338807 DQ338953 DQ338671 Satyrinae Satyrini Euptychiina Pharneuptychia innocentia CP12-06 Brazil: Minas Gerais DQ338808 DQ338954 DQ338672 Satyrinae Satyrini Euptychiina Pharneuptychia sp. NW127-18 Brazil: Minas Gerais DQ338809 DQ338955 — Satyrinae Satyrini Euptychiina Pindis squamistriga MEX-3-1 Mexico: Guanajuato AY508570 AY509096 — Satyrinae Satyrini Euptychiina Posttaygetis penelea DNA97-009 Ecuador: Napo AY508571 AY509097 — Satyrinae Satyrini Euptychiina Posttaygetis penelea NW127-28 Brazil: São Paulo — — DQ338673 Satyrinae Satyrini Euptychiina Rareuptychia clio CP01-23 Peru: Madre de Dios DQ338810 DQ338956 — Satyrinae Satyrini Euptychiina Rareuptychia clio NW126-23 Brazil: Acre — — DQ338674 Satyrinae Satyrini Euptychiina Splendeuptychia itonis CP02-44 Peru: Madre de Dios DQ338811 DQ338957 DQ338684 Satyrinae Satyrini Euptychiina Taygetis laches NW108-3 Brazil: São Paulo DQ338812 DQ338958 DQ338683 Satyrinae Satyrini Euptychiina Taygetis rectifascia NW126-13 Brazil: São Paulo DQ338813 DQ338959 DQ338682 Satyrinae Satyrini Euptychiina Yphthimoides borasta CP10-03 Brazil: São Paulo DQ338585 DQ338960 DQ338680 (continued on next page) 36 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Table 2 (continued) Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1 Wingless Satyrinae Satyrini Euptychiina Yphthimoides cepoensis CP10-02 Brazil: Minas Gerais DQ338814 DQ338961 DQ338681 Satyrinae Satyrini Euptychiina Yphthimoides sp. CP12-04 Brazil: Minas Gerais DQ338815 DQ338962 DQ338675 Satyrinae Satyrini Hypocystina Argyronympha gracilipes NW136-1 Solomon Islands: DQ338816 — DQ338676 Guadalcanal Satyrinae Satyrini Hypocystina Argyronympha pulchra NW136-6 Solomon Islands: DQ338817 DQ338963 DQ338677 Choiseul Satyrinae Satyrini Hypocystina Argyronympha rubianensis NW136-3 Solomon Islands: DQ338818 DQ338964 — Kolombangara Satyrinae Satyrini Hypocystina Argyronympha sp. NW136-7 Solomon Islands: DQ338586 DQ338965 DQ338678 Malaita Satyrinae Satyrini Hypocystina Argyronympha ugiensis NW136-2 Solomon Islands: San DQ338819 DQ338966 DQ338679 Cristobal Satyrinae Satyrini Hypocystina Argyronympha ulava NW136-5 Solomon Islands: DQ338820 DQ338967 DQ338685 Ulawa Satyrinae Satyrini Hypocystina Argyrophenga antipodium NW123-18 New Zealand DQ338821 DQ338968 DQ338686 Satyrinae Satyrini Hypocystina Dodonidia helmsi NW123-15 New Zealand DQ338822 DQ338970 DQ338688 Satyrinae Satyrini Hypocystina Erebiola butleri NW123-16 New Zealand DQ338823 DQ338971 DQ338689 Satyrinae Satyrini Hypocystina Geitoneura acantha NW124-22 Australia: Newcastle DQ338824 DQ338972 DQ338690 Satyrinae Satyrini Hypocystina Geitoneura klugii NW123-10 Australia: Adelaide DQ338825 DQ338973 DQ338691 Hills Satyrinae Satyrini Hypocystina EW10-4 Australia: Canberra AY218243 AY218263 AY218281 Satyrinae Satyrini Hypocystina Hypocysta pseudirius NW123-5 Australia: Newcastle DQ338826 DQ338974 — Satyrinae Satyrini Hypocystina Lamprolenis nitida PNG-1-10 Papua New Guinea DQ338827 DQ338975 — Satyrinae Satyrini Hypocystina Nesoxenica leprea NW123-7 Australia: Collinsvale DQ338587 DQ338976 DQ338692 Satyrinae Satyrini Hypocystina Oreixenica lathoniella NW124-23 Australia: Boreang DQ338828 DQ338977 DQ338693 Campground Satyrinae Satyrini Hypocystina Percnodaimon merula NW123-17 New Zealand DQ338829 DQ338978 DQ338694 Satyrinae Satyrini Hypocystina Tisiphone abeona NW124-21 Australia: Kulnura DQ338830 DQ338980 DQ338695 Satyrinae Satyrini Hypocystina Zipaetis saitis D30 DQ338831 DQ338981 DQ338696 Satyrinae Satyrini Hypocystina Argyrophorus argenteus CP13-07 Chile DQ338588 DQ338969 DQ338687 Satyrinae Satyrini Hypocystina Auca barrosi RV-03-V39 Chile: Céspedes DQ338832 DQ338982 DQ338697 Satyrinae Satyrini Hypocystina Auca coctei RV-03-V13 Chile: Céspedes DQ338833 DQ338983 DQ338698 Satyrinae Satyrini Hypocystina Chillanella stelligera CH-24A-1 Chile: Termas de DQ338589 DQ338984 DQ338699 Chillán Satyrinae Satyrini Hypocystina Cosmosatyrus leptoneuroides CH-15-5 Chile: Cordillera DQ338834 DQ338985 — Nahuelbuta Satyrinae Satyrini Hypocystina Elina montrolii CH-25-1 Chile: Ñuble, Cueva DQ338835 DQ338986 — Pincheira Satyrinae Satyrini Hypocystina Etcheverrius chiliensis CH-30-4 Chile: Los Andes, DQ338836 DQ338987 DQ338700 Portillo Satyrinae Satyrini Hypocystina Nelia nemyroides CH-8A-2 Chile: Los Lagos AY508562 AY509088 — Satyrinae Satyrini Hypocystina Pampasatyrus gyrtone NW126-12 Brazil: São Paulo DQ338837 DQ338988 DQ338701 Satyrinae Satyrini Hypocystina Quilaphoetosus monachus CH-12-1 Chile: Valdivia DQ338838 DQ338979 — Satyrinae Satyrini Maniolina Aphantopus hyperanthus EW2-1 Sweden: Stockholm AY090211 AY090177 AY090144 Satyrinae Satyrini Maniolina Cercyonis pegala EW8-2 USA: Oregon AY218239 AY218259 AY218277 Satyrinae Satyrini Maniolina Hyponephele cadusia CP10-07 Iran: Hamadan DQ338839 DQ338989 DQ338702 Satyrinae Satyrini Maniolina Hyponephele sp. CP10-13 Iran: Bakhtiari DQ338840 DQ338990 DQ338703 Satyrinae Satyrini Maniolina Maniola jurtina EW4-5 Spain: Sant Ciment AY090214 AY090180 AY090147 Satyrinae Satyrini Maniolina Pyronia bathseba RV-03-H546 Spain DQ338841 DQ338991 DQ338704 Satyrinae Satyrini Maniolina Pyronia cecilia EW4-2 Spain: Sant Climent DQ338842 DQ338992 DQ338705 Satyrinae Satyrini Melanargiina EW24-17 Francia: Languedoc DQ338843 DQ338993 DQ338706 Satyrinae Satyrini Melanargiina Melanargia hylata CP10-10 Iran: Ardabil DQ338844 DQ338994 DQ338707 Satyrinae Satyrini Melanargiina CP-AC23-83 Russia: Tuva DQ338845 DQ338995 DQ338708 Satyrinae Satyrini Pronophilina Apexacuta astoreth CP09-78 Peru: Apurímac DQ338846 DQ338996 DQ338709 Satyrinae Satyrini Pronophilina Corades cistene CP09-84 Peru: Apurímac DQ338847 DQ338997 DQ338710 Satyrinae Satyrini Pronophilina Daedalma sp. CP13-05 Ecuador: Tungurahua DQ338848 DQ338998 — Satyrinae Satyrini Pronophilina Eteona tisiphone NW127-21 Brazil: Minas Gerais DQ338849 DQ338999 DQ338711 Satyrinae Satyrini Pronophilina Foetterleia schreineri NW127-19 Brazil: Minas Gerais DQ338590 DQ339000 DQ338712 Satyrinae Satyrini Pronophilina Junea dorinda CP06-94 Peru: Pasco DQ338850 DQ339001 DQ338713 Satyrinae Satyrini Pronophilina Lasiophila cirta CP04-36 Peru: Junín DQ338851 DQ339002 DQ338714 Satyrinae Satyrini Pronophilina Lasiophila piscina PE-5-5 Peru: Cuzco DQ338852 DQ339003 — Satyrinae Satyrini Pronophilina Lymanopoda rana CP03-33 Peru: Junín DQ338853 DQ339004 DQ338715 Satyrinae Satyrini Pronophilina Oxeoschistus leucospilos CP04-67 Peru: Junín DQ338854 DQ339005 DQ338716 Satyrinae Satyrini Pronophilina Panyapedaliodes drymaea CP09-53 Peru: Apurímac DQ338855 DQ339006 DQ338717 Satyrinae Satyrini Pronophilina Parapedaliodes parepa CP07-51 Peru: Lima DQ338591 DQ339007 DQ338718 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 37

Table 2 (continued) Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1 Wingless Satyrinae Satyrini Pronophilina Pedaliodes sp. n. 117 CP09-66 Peru: Apurímac DQ338856 DQ339008 DQ338719 Satyrinae Satyrini Pronophilina Praepedaliodes phanias CP10-04 Brazil: São Paulo DQ338592 DQ339009 DQ338720 Satyrinae Satyrini Pronophilina Praepedaliodes sp. CP12-01 Brazil: São Paulo DQ338857 DQ339010 DQ338721 Satyrinae Satyrini Pronophilina Proboscis propylea CP07-15 Peru: Pasco DQ338858 DQ339011 DQ338722 Satyrinae Satyrini Pronophilina Pronophila thelebe CP03-70 Peru: Junín DQ338859 DQ339012 DQ338723 Satyrinae Satyrini Pronophilina Pseudomaniola loxo CP13-13 Colombia: Antioquia DQ338860 DQ339013 — Satyrinae Satyrini Pronophilina Pseudomaniola phaselis CP04-01 Peru: Junín DQ338593 DQ339014 DQ338724 Satyrinae Satyrini Pronophilina Punapedaliodes Xavopunctata CP07-87 Peru: Pasco DQ338861 DQ339015 DQ338725 Satyrinae Satyrini Pronophilina Steremnia umbracina CP07-89 Peru: Huánuco DQ338862 DQ339016 DQ338726 Satyrinae Satyrini Pronophilina Steroma modesta CP03-71 Peru: Junín DQ338594 DQ339017 DQ338727 Satyrinae Satyrini Satyrina Arethusana arethusa CP11-06 Spain: Navarra DQ338863 DQ339018 DQ338728 Satyrinae Satyrini Satyrina Berberia lambessanus EW26-29 : Moyen Atlas DQ338864 DQ339019 — central Satyrinae Satyrini Satyrina Brintesia circe CP-B01 France: Languedoc DQ338865 DQ339020 DQ338729 Satyrinae Satyrini Satyrina EW26-19 Morocco: Rif oriental DQ338866 DQ339021 DQ338730 Satyrinae Satyrini Satyrina Hipparchia Wdia RV-03-H920 Spain: San Masteu- DQ338595 — DQ338731 Albociner Satyrinae Satyrini Satyrina Hipparchia parisatis CP10-06 Iran: Isfahan DQ338867 DQ339022 — Satyrinae Satyrini Satyrina Hipparchia semele EW24-25 Sweden: Stockholm DQ338868 DQ339023 DQ338732 Satyrinae Satyrini Satyrina Hipparchia statilinus EW25-24 : Peloponnesos DQ338596 DQ339024 DQ338733 Satyrinae Satyrini Satyrina Karanasa pamira CP-AC23-32 Russia: Vanch DQ338869 DQ339025 DQ338734 Satyrinae Satyrini Satyrina CD-1-1 USA: Colorado DQ338870 DQ339026 DQ338735 Satyrinae Satyrini Satyrina EW4-1 Sweden DQ018958 DQ018925 DQ018896 Satyrinae Satyrini Satyrina Paralasa jordana CP-AC23-35 Russia: Karasu DQ338597 DQ339027 DQ338736 Satyrinae Satyrini Satyrina Pseudochazara mamurra CP10-11 Iran: Isfahan DQ338598 DQ339028 DQ338737 Satyrinae Satyrini Satyrina Satyrus actaea EW20-12 France: Carcassonne DQ338871 DQ339029 DQ338738 Satyrinae Satyrini Satyrina Satyrus ferula EW26-21 Morocco: Haut Atlas DQ338872 DQ339030 DQ338739 septentrional Satyrinae Satyrini Satyrina Satyrus iranicus CP10-12 Iran: Hamadan DQ338873 DQ339031 DQ338740 Satyrinae Satyrini Ypthimina Neocoenyra petersi NW91-5 DQ338874 DQ339032 DQ338741 Satyrinae Satyrini Ypthimina Ypthima baldus NW98-5 Indonesia: Central DQ338875 DQ339033 DQ338742 Sulawesi Satyrinae Satyrini Ypthimina Ypthima confusa DL-01-N109 Thailand: Chiang Mai DQ338876 DQ339034 DQ338743 Satyrinae Satyrini Ypthimina Ypthima fasciata NP-95-Y065 Malaysia DQ338877 DQ339035 — Satyrinae Satyrini Ypthimina Ypthimomorpha itonia NW117-23 Zambia: Ikelenge DQ338878 DQ339036 DQ338744 Satyrinae Satyrini incertae sedis Amphidecta calliomma NW126-21 Brazil: Mato Grosso DQ338879 DQ339037 DQ338745 Satyrinae Satyrini incertae sedis Palaeonympha opalina EW25-21 Taiwan: Pingtung DQ338880 DQ339038 DQ338746 County For images of voucher specimens, see http://www.zoologi.su.se/research/wahlberg.

76–88%), and strong support for values >10 (bootstrap every 100th tree sampled and the Wrst 1000 sampled gen- values 89–100%). We have also assessed clade stability by erations discarded as burn-in (based on a visual inspec- analyzing a subset of the data with Bayesian inference tion of when log likelihood values reached stationarity). using the program MrBayes 3.1 (Ronquist and Huelsen- The purpose of this analysis was to investigate the eVects beck, 2003). We chose only taxa for which all three genes on the results under a diVerent tree-building method. were successfully sequenced for a total of 124 taxa. The Such sensitivity analyses may help identify potential evolution of the sequences was modeled under the instances of long branch attraction (Giribet, 2003), and GTR + G + I model. The Bayesian analysis was per- can provide a valuable heuristic tool to guide subsequent formed on the combined data set with parameter values sampling strategies for reWnement of the current hypoth- estimated separately for each gene region (Table 3). The esis. We will refer to clades that are recovered under par- analysis was run twice for 1 million generations, with simony and Bayesian analyses as stable.

Table 3 Parameter values estimated using Bayesian phylogenetic methods Gene TL (all) r(A M C) r(A M G) r(A M T) r(C M G) r(C M T) r(G M T) pi(A) pi(C) pi(G) pi(T) alpha pinvar m COI 19.77 0.034 0.357 0.019 0.069 0.483 0.038 0.422 0.092 0.025 0.461 0.357 0.358 1.735 EF-1 0.055 0.282 0.1 0.054 0.455 0.054 0.297 0.217 0.209 0.276 0.825 0.468 0.312 wgl 0.083 0.304 0.099 0.039 0.388 0.086 0.178 0.324 0.325 0.173 0.761 0.308 0.468 Values estimated separately for each gene region. 38 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

We rooted the resulting networks with Libythea because of 3.3. Support the widely held belief that this taxon is the sister group to the rest of Nymphalidae (e.g. Ackery et al., 1999; Brower, 2000; Examination of the contributions to the support of vari- Ehrlich, 1958; Freitas and Brown, 2004; Scott, 1985; ous clades by the three gene regions employed in the simulta- Wahlberg et al., 2003b). Additional outgroups, including taxa neous analysis reveals that the major source of conXict is the from the “satyroid” subfamilies (sensu Freitas and Brown, COI partition. In the combined analysis, the COI data set 2004), were included to test the monophyly of Satyrinae. conXicts in 68 of the 182 nodes of the strict consensus tree, while the conXicting nodes are 32 and 52 for EF-1 and wing- 3. Results and discussion less, respectively (Figs. 4–6). The COI partition conXicts in both deep and shallow nodes. The EF-1 partition provides 3.1. General properties of sequences the majority of support at almost all the deeper nodes in the combined analysis, conXicting in only four nodes (Figs. 4–6). The full data set consisted of 3090 aligned nucleotide sites Apparently, the partition values for EF-1 and wingless are with no indels. We were not able to amplify the COI gene for high enough to overcome the conXicting signal of the COI. one taxon, the EF-1 for four taxa, and the wingless gene for The COI gene has been very useful for uncovering rela- 20 taxa (Table 2). Of the 1450 bp sequenced for COI, 848 tionships at the generic and speciWc level (Caterino and sites were variable and of these 680 were parsimony informa- Sperling, 1999; Wahlberg et al., 2003a) due to its hypothe- tive. The respective numbers for EF-1 are 1240 bp, 657 sized rapid evolutionary rate. In this study, the COI gene variable and 468 parsimony informative, and for wingless, carries much of the phylogenetic signal, although the main 400 bp, 264 variable and 198 parsimony informative sites. source of support in the combined analysis comes from the EF-1 and wingless data sets. EF-1 has traditionally been 3.2. Phylogenetic analyses considered to be more informative for resolving deeper divergences and more inclusive categories (Mitchell et al., In the separate analyses of each gene region, the parti- 1997). Here, the EF-1 gene is responsible for recovering tions produced partially resolved strict consensus trees some subtribal relationships (Fig. 2), and in the combined (Figs. 1–3), recovering only Melanitini as monophyletic analysis it contributes positively to shallow relationships. group. Each of the three partitions implies relationships Thus, the EF-1 data set contains some degree of phyloge- that are broadly incongruent with traditionally recognized netic information, contributing positively to several nodes groupings (i.e., COI recovered Antirrhea sister to Pierella) in both deeper and shallow relationships when used in com- (Fig. 1); EF-1 recovered many outgroups in spurious bination with the two other genes. The good resolution and derived positions (e.g. Morphinae) (Fig. 2), and wingless support in our combined tree, despite a high degree of shows some derived taxa at positions (e.g. Orsotriaena homoplasy within the data partitions, agrees with the as sister to Libythea) (Fig. 3). Källersjö et al. (1998) statement of the possibility to recover Analysis of the combined data set produced 16 equally phylogenetic information from such genes, provided that parsimonious cladograms. The strict consensus (Figs. 4–6) extensive taxonomic sampling is undertaken. shows relationships among the major clades of Satyrinae as well as relationships of Satyrinae relative to the out- 3.4. Implied relationships of Satyrinae groups. Our data imply that the Morphinae (sensu Ackery et al., 1999) and Satyrinae are both polyphyletic, grouping 3.4.1. Is Satyrinae monophyletic? together in a clade with strong Bremer and good boot- In our combined analyses (Figs. 4–7), the traditional “saty- strap support, appearing as sister to Charaxinae. These rid” groups (Satyrinae, Morphini, Amathusiini, Brassolini) subfamilies together with the more basal Calinaginae form a well-supported clade with respect to their sister taxon, form part of the “satyroid” (sensu Freitas and Brown, Charaxinae, and the other outgroups. Satyrinae, as circum- 2004) butterXy subfamilies. Individual clades are dis- scribed in recent classiWcations (Ackery et al., 1999; Harvey, cussed in detail below. 1991), appears as a polyphyletic assemblage, with some repre- Bayesian analysis produced a tree which is broadly sentatives, traditionally considered to be “primitive” satyrines congruent with the most parsimonious trees from the (Miller, 1968), grouping with tribes of the Morphinae. combined analysis (Fig. 7). Parameter values for the mod- In the “amathusiine” clade, the traditional Amathusiini is els used in the analysis are given in Table 3. The major grouped with representatives of Zetherina and Parargina diVerence is in the position of Zipaetis + Orsotriaena, (Neorina and Ethope in this study). Neorina and Ethope form which in the parsimony trees is within the subtribe a clade with Zetherina having strong Bremer and bootstrap Hypocystina, but in the Bayesian tree is sister to the support values (>30 steps; 100%), but Zetherina itself (Pent- “advanced satyrines” (as deWned below). of hema and Zethera in this study) is recovered as polyphyletic Morphinae and Satyrinae is implied by both analytical since Penthema and Zethera group with Neorina and Ethope, methods, as is the non-monophyly of many other groups respectively. It is likely that sampling additional taxa will not previously hypothesized to be natural (see below for change this grouping since it is strongly supported. Amathusi- discussion of these). ini is sister to the Zetherina+Neorina +Ethope clade, though C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 39

Libythea Neocoenyra 4 Danaus 6 Manataria Heliconius 12 Aeropetes Palla 92 Paralethe 7 12 Anaea 5 Antirrhea 3 81 Memphis Pierella Charaxes 6 Parapedaliodes 5 3 3 2 Hypna 2 Punapedaliodes Archaeoprepona 6 Panyapedaliodes 5 Calinaga 5 Pedaliodes 1 Morpho 8 Bia Neorina Tisiphone 5 7 3 Penthema Praepedaliodes sp. 53 90 3 5 6 Ethope 53 5 Praepedaliodes phanias 95 Zethera 2 67 Satyrus iranicus 6 Cyllopsis 5 Steremnia 5 Paramacera 2 Steroma Elymnias bammakoo 6 Euptychia ernestina 16 5 4 98 13 Elymnias casiphone Lymanopoda 6 93 Elymnias hypermnestra Ianussiusa 4 Ypthima confusa Manerebia cyclopina 1 3 Ypthima fasciata 5 Manerebia indirena 11 3 99 6 Ypthima baldus Nelia 85 Ypthimomorpha 4 Eteona Pharneuptychia innocentia 52 Foetterleia Rareuptychia 8 2 Junea 3 Neonympha Pronophila 3 4 Daedalma 61 Pareuptychia 3 4 3 Harjesia Oxeoschistus 4 6 2 Corades Parataygetis 4 5 Hermeuptychia Proboscis 3 Lasiophila cirta 5 Godartiana 13 Pindis squamis 3 99 Lasiophila piscina 3 Cissia 2 6 3 Apexacuta Taygetis lachesis 62 6 Pseudomaniola loxo 16 Posttaygetis Orsotriaena 80 Pseudomaniola phaselis 3 100 Taygetis rectifascia 4 2 18 Melanargia russiae 9 Euptychia pronophila 100 17 Melanargia galathea 93 Forsterinaria 100 Melanargia hylata 2 Erichthodes 2 3 6 Hypocysta 3 Splendeuptychia 6 4 Lamprolenis Amphidecta Geitoneura acantha 4 6 Cepheuptychia 2 90 Geitoneura klugii Paryphthimoides grimon Heteronympha 3 5 5 8 Chloreuptychia Argyrophenga 12 4 Caeruleuptychia 92 12 Erebiola 65 Magneuptychia 88 Percnodaimon 2 Palaeonympha 3 21 Idioneurula Paryphthimoides sp. 2 4 100 Tamania Oressinoma sorata 15 7 Coenonympha hero 5 100 Oressinoma typhla 4 Coenonympha pamphilus Yphthimoides borasta 6 4 6 Maniola 67 Yphthimoides cipoensis 4 6 Pyronia cecilia Moneuptychia 10 Aphantopus 4 Pharneuptychia sp. 12 86 Pyronia bathseba Euptychoides 6 96 8 12 Argyrophorus Lasiommata 94 6 Yphthimoides sp. 92 Etcheverrius 6 Pararge 7 Pampasatyrus Kirinia 70 3 2 8 5 Quilaphoetosus Lopinga 65 Elina 4 Lethe 9 5 37 Chillanella Enodia 63 8 8 100 Cosmosatyrus 86 Satyrodes 3 75 6 Auca barrosi 6 Neope 6 Paralasa 81 Auca coctei Zipaetis Dodonidia 5 Argyronympha rubianensis 3 4 3 Nesoxenica 55 Argyronympha ugiensis 6 19 Erebia epiphron Argyronympha gracilipes 100 Erebia oeme 3 7 Argyronympha pulchra 8 Erebia sthennyo 67 Argyronympha sp. 98 7 3 Erebia triaria 98 Argyronympha ulava 21 Erebia ligea 23 Gnophodes 3 100 Erebia palarica 100 Melanitis 1 Cercyonis Haetera 12 8 Hyponephele cadusia Cithaerias 92 3 89 4 3 57 Hyponephele sp. 77 Pseudohaetera Euptychia sp. n. 5 Henotesia 10 1 Euptychia sp. n. 6 6 Mycalesis 66 5 4 Euptychia sp. Bicyclus 55 13 4 99 Euptychia sp. n. 2 52 Hallelesis 4 Karanasa 3 Catoblepia 4 4 Neominois Narope 5 3 68 Oeneis Caligo 2 Brintesia Opsiphanes 5 2 Satyrus actaea 4 Faunis 16 4 100 Satyrus ferula Taenaris 8 50 8 Chazara 7 Aemona 3 3 69 Pseudochazara Thaumantis Arethusana 7 18 Amathusia Hipparchia parisatis 2 5 99 Zeuxidia 3 16 Discophora 97 6 Hipparchia fidia 4 8 70 Hipparchia statilinus 3 Stichophthalma Hipparchia semele Thauria 8 9 Oreixenica Berberia

Fig. 1. Strict consensus of 5 equally parsimonious trees from the cladistic analysis of the COI gene data set (length 14376, CI 0.10, and RI 0.33). Numbers given above branches are Bremer support values and numbers below the branch are bootstrap values for the node to the right of the number. 40 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Nelia Pampasatyrus 1 57 Argyrophorus Libythea Etcheverrius 1 Heliconius 7 99 3 Chillanella Danaus 98 Cosmosatyrus 7 Coenonympha hero 7 3 Auca barrosi 99 Coenonympha pamphilus 100 71 Auca coctei 1 Elymnias hypermnestra Quilaphoetosus Lamprolenis 4 90 Elina 1 Nesoxenica Melanargia hylata 9 Hypocysta 5 1 Melanargia galathea 100 100 Oreixenica 70 Melanargia russiae Heteronympha 4 2 Chazara 65 5 Geitoneura acantha Karanasa 97 2 Geitoneura klugii Pseudochazara 1 Dodonidia 4 Neominois 1 Tisiphone 93 Oeneis Percnodaimon 3 2 1 Arethusana 77 2 Argyrophenga 97 67 Brintesia 66 Erebiola Satyrus iranicus 1 14 Oressinoma sorata 6 3 Satyrus actaea 100 98 Oressinoma typhla 96 2 Satyrus ferula Argyronympha rubianensis Hipparchia semele 2 6 Argyronympha sp. 87 Berberia 99 Argyronympha ugiensis 1 62 3 Hipparchia parisatis 1 Argyronympha pulchra 94 Hipparchia statilinus 63 Argyronympha ulava Cyllopsis 1 Orsotriaena Euptychia ernestina 72 Zipaetis 3 Chloreuptychia Neope 61 Hermeuptychia 2 Lethe Neonympha 4 9 55 6 97 7 Enodia 95 1 Erichthodes 3 Satyrodes 71 Pareuptychia 98 Bicyclus 2 Cepheuptychia 6 1 97 2 Henotesia 4 57 Cissia 4 Hallelesis 87 2 Paryphthimoides grimon 68 Mycalesis 62 5 Caeruleuptychia Kirinia 93 Magneuptychia 4 89 5 Lopinga Harjesia 73 2 Lasiommata 1 Parataygetis 74 Pararge 1 Taygetis laches 2 Panyapedaliodes 69 12 Posttaygetis 65 100 4 Pedaliodes Taygetis rectifascia 98 Parapedaliodes 2 Euptychia pronophila 2 Punapedaliodes 81 Forsterinaria 74 8 Praepedaliodes phanias 1 Splendeuptychia 7 99 Praepedaliodes sp. 91 1 Pharneuptychia innocentia Corades Pindis Eteona Godartiana 3 1 Foetterleia 4 Rareuptychia 88 Junea 87 Amphidecta Pronophila Palaeonympha Daedalma Euptychoides 4 Apexacuta 4 Pharneuptychia sp. 6 55 92 Pseudomaniola loxo 1 98 2 3 Yphthimoides sp. 67 78 Pseudomaniola phaselis 83 3 Yphthimoides borasta Oxeoschistus 6 87 Yphthimoides cipoensis Proboscis 99 1 Moneuptychia 9 Lasiophila cirta 9 Neorina 59 Paryphthimoides sp. 99 Lasiophila piscina 13 99 Penthema Paralasa 100 12 Ethope Neocoenyra petersi 100 Zethera Ypthima confusa Calinaga 5 Steremnia 4 5 Anaea 97 Steroma 90 8 Memphis Ypthima baldus 95 Charaxes 6 Ypthima fasciata 3 99 54 3 Palla Ypthimomorpha 62 3 Hypna 4 Cercyonis Narope 62 Archaeoprepona 3 92 5 Hyponephele cadusia 3 Bia 99 Hyponephele sp. 56 Antirrhea 1 9 Pyronia bathseba 92 Morpho 7 Maniola 1 Caligo 99 Aphantopus 66 1 Catoblepia Pyronia cecilia 71 Opsiphanes Pierella Euptychia sp.n.6 3 Pseudohaetera 2 15 Euptychia sp.n.5 73 12 85 100 Euptychia sp.n.7 99 2 Cithaerias 1 16 Euptychia sp. 54 Haetera 100 Euptychia sp.n.2 16 Gnophodes 15 Manerebia cyclopina 2 100 Melanitis 100 Manerebia indirena 2 Manataria Aeropetes 3 Idioneurula 72 9 98 87 7 Ianussiusa Paralethe 63 Lymanopoda 2 Elymnias casiphone 70 Erebia palarica Elymnias bammakoo 3 Stichophthalma Erebia epiphron 5 Faunis Erebia triaria 1 1 97 Taenaris Erebia oeme 1 Aemona Erebia ligea 1 Thauria Erebia sthennyo Discophora 1 Thaumantis 5 Amathusia 97 Zeuxidia

Fig. 2. Strict consensus of 10 equally parsimonious trees from the cladistic analysis of the EF-1 gene data set (length 7231, CI 0.15, and RI 0.50). Numbers given above branches are Bremer support values and numbers below the branch are bootstrap values for the node to the right of the number. C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 41

Libythea Orsotriaena 3 Steremnia 7 Oressinoma sorata 82 Steroma 99 Oressinoma typhla 2 Pyronia cecilia 6 Coenonympha hero 1 53 1 Aphantopus 98 Coenonympha pamphilus Pyronia bathseba Heteronympha Neocoenyra petersi Oreixenica 1 1 Maniolaj urtina 2 Ypthima confusa Cyllopsis 1 2 Argyronympha ulava Melanargia russiae 1 14 1 5 Argyronympha sp. 2 Melanargia galathea 100 96 2 Argyronympha ugiensis Melanargia hylata 1 3 Argyronympha gracilipes 1 Cercyonis 85 Argyronympha pulchra Hyponephele cadusia 2 4 Geitoneura acantha 95 Hyponephele sp. Nesoxenica Panyapedaliodes 1 Tisiphone 1 2 Pedaliodes Argyrophenga 2 Praepedaliodes phanias Dodonidia 1 71 Praepedaliodes sp. 1 Erebiola 1 1 Parapedaliodes Geitoneura klugii Punapedaliodes Percnodaimon 1 Splendeuptychia 1 Euptychia sp. n. 6 Lasiophila cirta 3 Paramacera Pseudomaniola phaselis 1 1 Euptychia sp. n. 2 Oxeoschistus 4 Euptychia sp. n. 5 1 Apexacuta 90 Euptychia sp. n. 7 1 Proboscis propylea Ianussiusa 1 Corades Lymanopoda 1 Foetterleia 2 8 Manerebia cyclopina Eteona 99 Manerebiai ndirena 2 Junea 3 Idioneurula Pronophila thelebe 96 Tamania Erebia epiphron 1 Argyrophorus 3 Erebia ligea 82 1 Etcheverrius 2 Erebias thennyo Pampasatyrus 66 Erebiat riaria 2 1 Auca barrosi 1 Erebia oeme 59 2 54 Auca coctei 68 Erebiap alarica 80 1 1 Chillanella Kirinia 1 1 Neope Lasiommata 1 1 5 Ypthima baldus Lopinga 99 Ypthimomorpha itonia Pararge Zipaetis 1 1 Lethe 1 4 Hipparchia semele 55 Satyrodes 82 3 Hipparchia fidia 3 Manataria 86 Hipparchias tatilinus 7 Gnophodes Oeneis 1 1 99 Melanitis 2 Neominois Mycalesis 3 56 Satyrus iranicus 10 58 1 Hallelesis 100 3 Satyrus actaea 51 1 Bicyclus 1 96 Satyrus ferula Henotesia 1 2 Chazara 6 Pierella Pseudochazara 91 4 Haetera 1 Arethusana 78 1 Cithaerias Brintesia Pseudohaetera Karanasa 1 Antirrhea Paralasa Morpho 1 2 Pharneuptychiai nnocentia Elymnias bammakoo 1 10 4 Rareuptychia 99 7 Elymnias casiphone 79 Amphidecta 1 98 Elymnias hypermnes 2 Hermeuptychia 1 Catoblepia Palaeonympha 5 65 Opsiphanes Yphthimoides sp. 90 1 Bia 2 2 Moneuptychia 1 4 Caligo 55 1 Paryphthimoides sp. 1 86 Narope Yphthimoides borasta Danaus 1 2 2 Euptychoides 2 Heliconius 74 Yphthimoides cipoensis 2 Calinaga Godartiana 2 Charaxes 2 Chloreuptychia 3 Archaeoprepona Erichthodes 1 1 3 Hypna 1 1 Pareuptychia 8 Anaea Cepheuptychia 99 Memphis 4 Magneuptychia 5 Neorina 2 74 Paryphthimoides grimon 8 97 Penthema 2 Caeruleuptychia 98 7 Ethope Cissia 99 Zethera 1 Harjesia 3 Aeropetes Parataygetis 92 Paralethe 2 Posttaygetis 1 2 Discophora 72 Taygetis laches 54 Thaumantis Taygetis rectifascia 5 3 Aemona 4 Euptychia pronophila 79 72 6 Faunis 82 Forsterinaria 2 95 Taenaris 1 Stichophthalma 1 Thauria 2 Amathusia 78 Zeuxidia

Fig. 3. Strict consensus of 1512 equally parsimonious trees from the cladistic analysis of the wingless gene data set (length 2982, CI 0.16, and RI 0.51). Numbers given above branches are Bremer support values and numbers below the branch are bootstrap values for the node to the right of the number. 42 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Libythea Heliconius Danaus Calinaga 35, 100 Anaea 10,63 18.3, 16.2, Memphis 6, 1, 18, 99 0.5 Charaxes 3 5.5, 9.5, 8, 80 Charaxinae 3 3.7, 4.8, 4, 59 Palla 15, 93 -0.5 -1, 5, 5, 74 Hypna 7, 6.5, 0 3, 0.5, Archaeoprepona 1.5 1.5 41,100 Elymnias bammakoo -6, 11.5, 16, 99 Elymnias casiphone Elymniina 35.5 6.3, 3.3, Elymnias hypermnestra 6.4 16, 99 Neorina 4.2, 6.1, Penthema 16, 77 31, 100 5.7 Zetherina +Neorina -series 4.5, 5.8, -0.9, 17.7, 23,100 Ethope 5.8 14.2 6.3, 10.2, Zethera 6.5 3, - Stichophthalma -3, 5, Aemona 1 7, 90 5, 0.5, 10, 96 Faunis 14, 99 1.5 -1, 4.5, Taenaris 4, 3.5, 6.5 Amathusiini 6.5 Discophora 5, 55 Thaumantis 0.5, 4.5, Thauria 15, 81 0 32, 100 Amathusia Morphinae 3.2, 6.5, 16, 14.5, Zeuxidia 5.3 1.5 27, 96 Antirrhea 8.7, 19.9, Morpho Morphini 7, 70 -1,6 5, 3, 14, 97 Bia -1 Narope -1, 9, 8, 92 Brassolini 6 5, 0, 1,- Caligo 2, 64 Catoblepia 3, - 3 4, 0.3, -2, 0, 8.3, 0.8, -3.3 Opsiphanes 4 -6.1 20, 99 Pierella 6.9, 10.3, 25, 100 Pseudohaetera Haeterini 2.8 9.4, 15, 3, 56 Cithaerias 3, - 8, 54 0.6 -1, 4, Haetera 0.1, -2.6, 3.5, 2.9, 0 5.4 27, 100 Aeropetes 1.6 12, 8.5, Paralethe Parargina (Aeropetes -series) 6, 50 6.5 7, 4.6, 8, 58 Manataria -5.6 0.5, 3, 58, 100 Gnophodes Melanitini 4.5 27.4, 12.2, Melanitis 18.4 10, 97 Kirinia 5.1, -1.6, 1, - Lopinga Parargina (Pararge -series) 6.5 -7.7, 4.8, 7, 79 Lasiommata 3.9 -11.7, 15.4, Pararge 1, - 3.3 5.3, -0.7, 11, 99 Lethe -3.6 2.7, 9.4, 12, 98 Enodia Parargina (Lethe -series) 3, 55 -1.2 2, 9, Satyrodes 1 0.1, -2.6, Neope 5.4 2, - 8.9, -1.7, 18, 99 Bicyclus -5.1 7.3, 12.2, 2, - Henotesia Mycalesina -1.5 -1.3, 3.2, 2, - Hallelesis 1, - 0.1 -0.3, 2.6, Mycalesis -16.9, 11.2, -0.2 5, - 6.7 5, 76 Orsotriaena -1.5, -2, 0.1, 1.6, Zipaetis 6.6 1, - 3.3 Argyronympha rubianensis -0.9, 0.8, Argyronympha ugiensis 1.1 32, 100 23.8, 6.1, 9, 99 Argyronympha sp. 2 6.4, 0.6, Argyronympha ulava 4, 92 1.9 2, 2, 3, 88 Argyronympha gracilipes 0 1, 0, Argyronympha pulchra 1, - 2 -16.5, 12, 1, - Dodonidia 5.5 3.1, 0, Tisiphone 1, - -2.1 -3.3, 2.7, 12, 98 Argyrophenga 1.6 1, 56 Erebiola 15.2, 0.8, Hypocystina -4 7, -3, Percnodaimon 1, - -3 sensu Miller 6, - Nesoxenica -0.2, 1.3, Lamprolenis 0 -7.6, 12.9 5, - 0.7 5.1, 1.3, 3, 64 Hypocysta -1.3 -9.5, 16, Oreixenica 1, - -3.5 5.9, -2.2, 1, - Heteronympha -2.8 0.5, 1.5, 21, 100 Geitoneura acantha -1 12.5, 10.5, Geitoneura klugii 1, - -2 -0.7, 0.5, 68,100 Oressinoma sorata 1.2 5, 52 22, 16, Oressinoma typhla 10.3, -4.8, 30 25, 100 10, 59 -0.5 Coenonympha hero -11, 8, 6.5, 11.4, Coenonympha pamphilus 13 7.1

Fig. 4. Strict consensus of 16 equally parsimonious trees from the combined data set of all three genes (length 25006 CI 0.12, and RI 0.40), pruned to show basal clades. For the rest of the cladogram, see Figs. 5 and 6. The numbers given above branches are Bremer support and bootstrap values, respectively, for the node to the right of the number. The numbers below the branches are the contribution of the COI, EF-1, and wingless data sets, respectively, to the Bremer support value of the combined analysis (results of the Partitioned Bremer Support analysis). C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 43

EUPTYCHIINA

Paralasa 2, - 8, 77 Ypthima confusa -8.2, 3.7, Ypthima fasciata 2, - 6.5 -23, 19, 21, 100 Ypthimina -4.5, 0, 12 25.2, 2.9, 9, 86 Ypthima baldus 6.5 1, - -7.1 4.8, 2.1, Ypthimomorpha 8.3, -2.5, 2.1 -4.8 5, 69 Neocoenyra -19, 4.3, 54,100 Melanargia russiae 20.8 10, 18, 16, 100 Melanargia galathea 2, - 26 8, 0.5, Melanargia hylata 7.5 -8.2, 3.7, 1, 61 Maniola 6.5 9.7, -2.1, Pyronia cecilia 18, 99 -6.6 Maniolina 2.7, 13.3, 8, 94 Aphantopus 2 -7.9, 7.4, Pyronia bathseba 8.5 Erebia sthennyo 16, 100 16, 100 Erebia ligea 10.5, 5, 27.2, -5.6, Erebia palarica 0.5 1, - -5.6 Erebiina 7.9, -2.2, 1, - Erebia epiphron -4.8 6.2, 0.4, 1, - Erebia oeme -5.6 6.2, 0.4, Erebia triaria 1, - -5.6 1, - 8.7, -2.6, 8.3, -2.4, 11, 98 Berberia -5.1 -4.9 3.6, 6.3, 2, - Hipparchia semele 1.1 -2.9, 3.3, 14, 99 Hipparchia parisatis 1.6 4.2, 7.7, 5, 64 Hipparchia fidia 2 0.6, 2.5, Hipparchia statilinus 21, 99 1.9 8, 79 -32.6, 33.6, Chazara 16.6, -3.5, 20 6, 76 Pseudochazara 4, 2, -5.1 Satyrina 0 18, 100 Satyrus iranicus 1.5, 7.5, 10, 99 Satyrus actaea 4, - 9 4, 3, Satyrus ferula -2.1, 3.8, 3 7, 81 Arethusana 2.4 -2.1, 5.1, Brintesia 1, 76 4 0.3, 1, 3, 70 Karanasa 1, - -0.2 -16.4, 13.2, 11, 99 Neominois -1.5, 2.3, 6.2 5, 3.5, Oeneis 0.2 2.5 15, 99 Cercyonis 7.5, 8, 15, 99 Hyponephele cadusia Maniolina -0.5 6.8, 8.2, Hyponephele sp. 0 10, 99 Argyrophorus 6, 1.5, 7, 93 Etcheverrius 2.5 7.5, 0.5, Pampasatyrus -1.0 2, 87 5, 82 Quilaphoetosus 0, 1.5, 0.7, 3.4, 16, 100 Elina 0.5 0.8 11.2, 9.1, 37, 100 Chillanella -4.3 32, 4.8, Cosmosatyrus 4, 88 0.3 2, - 4, 0, 8, 95 Auca barrosi -4.0, 1.1, 0 4.9 -0.7, 3.8, Auca coctei 4.8 1, - 7.8, -2.3, 2, - Nelia -4.4 -2.5, 1.7, 15, 99 Steremnia 2.8 2.8, 13.5, Steroma 1, - -0.2 3.5, -1, 20, 99 Manerebia cyclopina -1.4 -2.1, 22.7, Manerebia indirena 2, 55 -0.7 34, 100 Idioneurula Pronophilina -2.5, 1.7, 19.5, 5, Tamania + 2.8 4, 78 9.5 -7.5, 6, Neotropical Erebiina 5.5 3, 74 Ianussiusa + -5.8, 6, Lymanopoda 2.8 Neotropical Hypocystina 6, 89 Panyapedaliodes 10.1, 0.6, Pedaliodes 16, 99 -4.7 2, 11.5, 5, 81 Parapedaliodes 2.5 -2.5, 3.6, 2, 55 Punapedaliodes 6, 90 3.9 -1.3, 1.6, 24, 100 Praepedaliodes phanias 4, 5.5, 1.6 9, 11.5, Praepedaliodes sp. -3.5 3.5 Corades 3, 55 Junea 14, 98 -4.7, 5.5, Pronophila 5, 8.5, 1, - 2.2 0.5 -3.6, 2.8, 3, 69 Eteona 1.8 1, 54 -2.6, 4.8, Foetterleia -3.6, 2.8, 0.9 1.9 Daedalma 2, - 4, 67 Oxeoschistus -5.3, 4.9, -0.5, 3.9, Proboscis 2.4 1, 55 0.6 23, 100 Lasiophila cirta -2.5, 2.2, 7.5, 13.5, Lasiophila piscina 1.3 2, 54 2 -4.9, 4.6, 13, 99 Apexacuta 2.3 -0.6, 11.8, 9, 94 Pseudomaniola loxo 1.9 5.5, 2.5, Pseudomaniola phaselis 1

Fig. 5. Continuation of cladogram in Fig. 4. Relationships within Euptychiina appear in Fig. 6. The genera transferred by Viloria (1998, 2003; see Lamas, 2004) from Pronophilina into Erebiina and Hypocystina are underlined and in bold fonts, respectively. 44 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Euptychia sp. n. 6 17, 99 25, 100 Euptychia sp. n. 5 8.6, 16.3, Euptychia sp. n. 7 -10.3,11.7, 1, - 15.7 0.2 8.7, -2.6, 28, 100 Euptychia sp. -5.1 -7.9, 29.2, Euptychia sp. n. 2 6.7 Cyllopsis 2, - 6, 55 -18.7, 10.8, -3.3, 7.2, Euptychia ernestina 9.8 2.1 Paramacera Palaeonympha 15, 100 Pharneuptychia sp. 1, - 10, 88 16.1, 3.8, 5, 87 Euptychoides -7.8, 6.7, -0.1, 4.4, -4.9 6.2, -2.6, Yphthimoides sp. 2.1 5.7 10, 95 1.3 -4.1, 9.1, 11,9 8 Yphthimoides borasta 5 5, 4.5, Yphthimoides cipoensis 8, 93 1.5 -8, 9.5, 4, 71 13, 94 Moneuptychia 6.5 2, 2, 6, 9.5, Paryphthimoides sp. 0 -2.5 2, 50 Rareuptychia -8.3, 5.7, Amphidecta 4.7 2, 60 Godartiana -1.7, 8.7, Hermeuptychia 1, - -5 -16.9, 11.2, 2, - Splendeuptychia 2, - 6.7 -0.8, 5.5, 1, - Pharneuptychiai nnocentia -5.2, 3.2, -2.7 8.7, -2.3, Pindis 4 -5.3 2, 84 Cepheuptychia 1, - Paryphthimoides grimon -10.8, 8.2, -1.1, 5.1, 1, 65 1, - Cissia 3.6 -2 5.3, -6.2, 1.8 8.9, -2.9, 5, 94 Caeruleuptychia -5 7, -3, Magneuptychia 2, 66 1 -0.2, 4.5, 2, 51 Chloreuptychia -2.3 5.3, -7.7, 9, 98 Neonympha 4.3 7, -0.5, 3, 73 Erichthodes 1, - 2.5 5.5, -7.5, Pareuptychia 5 2.6, -3.3, Taygetis laches 1.7 1, - 8.3, -2.9, 1, - Harjesia -4.4 8.4, -3.7, Parataygetis 6, 85 -3.7 0.1, -1.7, 37, 100 Posttaygetis 7.6 20, 16, Taygetis rectifascia 1, 50 1 2.2, -2, 0.8 12, 100 Euptychia pronophila 13.4, 0.1, Forsterinaria -1.5

Fig. 6. Continuation of cladogram in Figs. 4 and 5. Relationships within Euptychiina. this is not well supported and not stable to method of analy- species of Amathusiini and Neorina (Ackery, 1988). Few sis. All of these taxa are Indo-Australian. The next clade to satyrine butterXies feed on , e.g., some Haeterini branch oV is the Neotropical “morphine” clade, formed by (; DeVries, 1987). The “palmXies” range from West Morphinae tribes Morphini and Brassolini. Bia appears basal Africa to the Indo-Australian region, and many of the spe- in the Brassolini clade with strong Bremer and bootstrap sup- cies are markedly sexually dimorphic being involved in port. The “morphine” clade (Amathusiini excluded) is recov- mimicry complexes with various danaine or amathusiine ered as sister to the “satyrine” Haeterini+ Melanitini+ models, features that are quite uncommon among other Manataria +Parargina in part (Aeropetes and Paralethe). satyrines. It is interesting to note that the eyespots of Together, these three basal clades strongly support the Elymniina, when present, are rather simple, not composed hypothesis that the Satyrinae and Morphinae of current of the multiple concentric rings of diVerently colored scales classiWcations are both polyphyletic, since Zetherina groups typical of Morphinae and the rest of Satyrinae. with the Amathusiini, and Haeterini + Melanitini The Neotropical Manataria has been reported using + Manataria with the Neotropical Morphinae. The poly- Guadua angustifolia, Bambusa vulgaris and Lasiacis sp. phyly of Satyrinae and Morphinae is also recovered in the () as host plants (DeVries, 1987; Figueroa, 1953; Bayesian analysis. In order to circumscribe monophyletic Murillo and Nishida, 2004). Manataria is sister to Melani- tribes and subfamilies, it will be necessary to adjust the cur- tini with good Bremer and weak bootstrap support. rent status of these major lineages. Sampled Melanitini are monophyletic which is not surpris- ing since some species of Gnophodes have been included 3.4.2. Relationships of the “primitive” Satyrinae within the genus Melanitis (Larsen, 1991). The hypothesis Elymniina is found to branch oV Wrst, appearing as sister of a close relationship between Manataria and Melanitini is to the remaining Satyrinae + Morphinae that appear form- new and well supported by our data. Gnophodes and Mela- ing a clade. The position of Elymniina is not stable, and in nitis have crepuscular habits Xying at dusk and at dawn the Bayesian analysis, it is placed as sister to the Haeterini (Braby, 2000; Larsen, 1991), while similar crepuscular with low posterior probability. Interestingly, Elymniina activity has been recorded for Manataria (DeVries, 1987; members feed on palms (Arecaceae) as larvae, as do some Stevenson and Haber, 1996; Rydell et al., 2003). Moreover, C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 45

Libythea Heliconius Danaus Calinaga 1.00 Charaxes 0.96 0.89 Anaea Archaeoprepona 0.88 Stichophthalma 1.00 1.00 Aemona 1.00 1.00 Faunis Taenaris Discophora 1.00 Thauria Thaumantis 1.00 0.94 Zeuxidia 1.00 0.57 Amathusia 1.00 Ethope 1.00 Zethera 1.00 Neorina Penthema 0.67 0.83 Elymnias casiphone 1.00 Cithaerias Pseudohaetera 0.85 1.00 Gnophodes Melanitis 0.63 0.99 Manataria 1.00 Paralethe 1.00 Antirrhea 1.00 Morpho 1.00 Bia 1.00 Caligo 1.00 Catoblepia Opsiphanes 1.00 Orsotriaena Zipaetis 1.00 Coenonympha pamphilus 1.00 Oressinoma typhla 1.00 Oressinoma sorata Nesoxenica 0.86 0.93 Heteronympha 1.00 1.00 Geitoneura acantha Geitoneura klugii 1.00 Argyrophenga 0.76 Erebiola 0.75 Percnodaimon 1.00 Kirinia 1.00 Lopinga 1.00 Lasiommata 0.93 Pararge 0.73 Neope 0.93 1.00 Lethe Satyrodes 0.86 Bicyclus 1.00 1.00 Henotesia Hallelesis 0.99 Mycalesis 1.00 Euptychia sp. n. 2 0.99 Euptychia sp. n. 6 Cyllopsis 0.55 1.00 Palaeonympha 1.00 Moneuptychia 0.72 1.00 Yphthimoides Pharneuptychia Godartiana Amphidecta 0.59 1.00 Rareuptychia 1.00 Cepheuptychia 0.98 Yphthimoides 1.00 Cissia 0.56 Magneuptychia 1.00 1.00 Erichthodes Pareuptychia Posttaygetis 0.99 1.00 Parataygetis Taygetis 0.64 1.00 Euptychia pronophila Paralasa Forsterinaria 1.00 1.00 Cercyonis 1.00 Hyponephele cadusia Hyponephele sp. 1.00 Erebia oeme Erebia triaria 0.66 Erebia ligea 1.00 Erebia palarica 1.00 Aphantopus Maniola 0.83 Pyronia cecilia 1.00 Neocoenyra 1.00 Ypthima baldus 0.51 Ypthimomorpha 1.00 Melanargia galathea Melanargia russiae Hipparchia statilinus Brintesia 1.00 1.00 Chazara 0.61 0.62 1.00 Pseudochazara 1.00 Neominois 0.54 Oeneis 1.00 Argyrophorus 1.00 Etcheverrius Pampasatyrus 1.00 1.00 Auca coctei 0.93 Auca barrosi Steremnia 1.00 Ianussiusa 0.59 Lymanopoda 1.00 0.99 Manerebia cyclopina Manerebia indirena 0.99 Panyapedaliodes 1.00 Pedaliodes 0.68 Parapedaliodes Punapedaliodes 1.00 1.00 1.00 Praepedaliodes sp. Praepedaliodes phanias Corades 1.00 Eteona 0.85 Foetterleia 0.1 Pronophila 1.00 Apexacuta 0.51 Pseudomaniola 1.00 Oxeoschistus Lasiophila 0.73 Proboscis 0.88

Fig. 7. Phylogenetic hypothesis based on Bayesian analysis of three genes, each modeled with a GTR + G + I model. Average log likelihood of tree ¡81294.34 based on two independent runs. Parameter values for models given in Table 3. 46 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Manataria has been observed roosting in tree holes or 2000; Parsons, 1999), mainly due to adult morphology. How- shaded areas along forest trails in Mexico and Costa Rica, ever, larval and pupal morphology of Mycalesis and in groups up to 80 individuals (Barrera and Díaz-Batres, Orsotriaena are strikingly diVerent. If Orsotriaena is not 1977; Murillo and Nishida, 2004; Stevenson and Haber, related to the other Mycalesina as implied by our results and 1996). Interestingly, Larsen (1991) reports that Gnophodes morphological diVerences of immature stages, the adult mor- species also form small congregations in forest trails. The phological similarities are not homologous. Moreover, only close relationship between Manataria and Melanitini the forewing vein Sc of Orsotriaena is basally inXated, while (Fig. 4) suggests that these striking behaviors may be due to all veins, except the forewing radial vein, are basally inXated a common origin. Whether these similarities are synapo- in Mycalesis (Parsons, 1999). Orsotriaena appears in morphies or convergence needs further investigation, since Hypocystina as sister to the genus Zipaetis, a sister relation- some other “satyroid” taxa are also crepuscular (e.g. most ship which is strongly supported and stable. Brassolini and some Taygetis species in Satyrinae). Miller The genera forming the Hypocystina clade correspond and Miller (1997) suggested a close aYnity among Mana- with Miller’s (1968) taxa, but not with Viloria’s (2003) tem- taria, Aeropetes and Paralethe of the Parargina. While this perate South American taxa. The Hypocystina, including relationship was supported weakly by morphological the “non-hypocystine” genera Orsotriaena, Coenonympha evidence, it is corroborated here by molecular data. The and Oressinoma, appear in a clade with weak Bremer and African genera Aeropetes and Paralethe are sister taxa no bootstrap support. The Neotropical euptychiine genus appearing as sister to the clade Manataria + Melanitini. The Oressinoma appears as sister to Coenonympha. The position clade containing Melanitini + Manataria + Paralethe is sta- of Oressinoma, far from Euptychiina is perhaps not so sur- ble to method of analysis. prising: Oressinoma has a much diVerentiated adult mor- phology, some authors being inclined to consider 3.4.3. Relationships of the “advanced” Satyrinae Oressinoma as an aberrant genus (Miller, 1968). This may The remainder of Figs. 4–7 represent the “satyrine” explain why Oressinoma did not group with Euptychiina in clade, which is recovered with strong Bremer support and Murray and Prowell’s (2005) study. The disjunct distribu- posterior probability, but weak bootstrap support, and tion of Oressinoma and its hypocystine relatives implies includes groups traditionally considered as “advanced” either an ancient Gondwanan common origin or more Satyrinae, i.e. all the satyrine representatives in this study recent dispersal across wide oceanic barriers. but Elymniina, Zetherina, Melanitini, Haeterini, Manataria The Euptychiina appears as sister to a partially resolved and part of the Parargina (Neorina, Ethope, Aeropetes and clade, formed by representatives of Ypthimina, Maniolina, Paralethe as stated above). The “satyrine” clade is partially Pronophilina, Melanargiina, Erebiina and Satyrina. The resolved, recovering as monophyletic entities only a few of odd Neotropical Amphidecta is clearly within Euptychiina, its tribes and subtribes (sensu Harvey, 1991) with poor sup- though it has traditionally been associated with Pronophi- port for relationships among subtribes. lina and is currently classiWed incertae sedis (Lamas, 2004). Basal within the “advanced” satyrine butterXies is a Characters from immature stages of Amphidecta reynoldsi robust monophyletic group formed by some of the Parar- were not conclusive in resolving its aYnities (Freitas, gina—Pararge, Lopinga, Lasiommata and Kirinia—which 2004b). Euptychiina without Oressinoma, but including correspond to one of Miller’s (1968) subdivisions of his Amphidecta, is monophyletic. Another surprising result is “Lethini”, his Pararge-series. Part of Miller’s Lethe-series the inclusion of the Oriental genus Palaeonympha (thus far (represented by Lethe, Neope, Enodia and Satyrodes in this of uncertain position) within Euptychiina, which is a group study) appears as sister to a clade containing the Mycale- thought to be entirely restricted to the Americas. This asso- sina and Neope, although in the Bayesian analysis Neope ciation is robust and is likely to remain stable to the addi- comes out as sister to the Lethe-series. tion of more data. If this hypothesis is corroborated Members of Miller’s Pararge-series (Pararge, Kirinia, through a comparative morphological study of Palaeonym- Lasiommata and Lopinga) form a cohesive clade. Miller’s pha and the Euptychiina, the former would be the only other subdivisions of “Lethini” form independent clades euptychiine taxon distributed outside the Americas. More congruent with each of Miller’s series. Obviously each of interesting is the fact that, in our data set, Palaeonympha Miller’s sections represents very diVerent lineages, Neorina- appears related to species from the Southeastern Atlantic series group with Zetherina, Lethe-series group with forests of Brazil. Miller (1968) commented on the similarity Mycalesina, Aeropetes-series group with Manataria and of the genus to euptychiines, but was not willing to place Melanitini, and Pararge-series is on its own. These results Palaeonympha in Euptychiina because of the disjunct distri- suggest that Parargina (sensu Miller) should no longer be bution of this taxon. This relationship presents great poten- used. tial for biogeographic studies. Traditional Mycalesina is not monophyletic, and the Ypthimina without Neocoenyra is recovered as mono- monophyly of Mycalesina as a cohesive clade (18 Bremer phyletic, grouping with Paralasa and being sister to and 99% bootstrap support, 100% posterior probability) Melanargiina + Maniolina. The Bayesian analysis recovers without Orsotriaena is quite surprising. Orsotriaena is gener- Ypthimina with Neocoenyra as monophyletic, and places ally recognized as being closely related to Mycalesis (Braby, Melanargiina as sister to Satyrina. C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 47

Maniolina appears to be polyphyletic. The core Manio- The traditionally recognized tribe Haeterini and subtribe lina, including Aphantopus but excluding Cercyonis and Satyrina without Paralasa are recovered as cohesive enti- Hyponephele, is stable with strong Bremer and bootstrap ties, and additional data, we believe, are not likely to mod- support (18 steps; 99%). Cercyonis and Hyponephele come ify their monophyletic status. Similarly, “non-primitive” out as sister groups with strong support, but their position satyrine butterXies as a clade (which includes the Mycale- with regard to the other clades is unresolved in both analy- sina, Satyrini and some members of Parargina, Pararge and ses. This study corroborates the transfer of Aphantopus Lethe series) has good support and will probably remain from the Coenonymphina into Maniolina (Martin et al., robust with addition of data. Euptychiina and Mycalesina 2000). Because Cercyonis and Hyponephele appear in an also appear to be well supported monophyletic groups. unresolved position, more sampling of Maniolina taxa is However, some genera traditionally associated with these needed to resolve its aYnities. subtribes are clearly not related to them: e.g. Orsotriaena Satyrina without Paralasa is monophyletic with strong does not group with Mycalesina and Oressinoma is not part Bremer and bootstrap support (21 steps; 99%) and sister to of Euptychiina. Erebiina (only Erebia species), a result which is not stable Comparison of the parsimony and Bayesian analyses to method of analysis. (Figs. 4–7) suggest that several relationships will require The speciose Pronophilina sensu Miller (1968) appears more scrutiny in the form of increased taxon sampling and/ in two clades within a polytomy, with Maniolina (Cercyonis or increased character sampling (i.e. more genes sequenced). and Hyponephele) with weak support. One clade includes Branch lengths of many of the uncertain relationships are Viloria’s (1998, 2003; see Lamas, 2004) Neotropical very short in the Bayesian analysis (Fig. 7) suggesting rapid “Hypocystina” and “Erebiina”, in addition to Steremnia, diversiWcation of several clades, including the clade consist- Steroma and Lymanopoda, while the other clade includes ing of Morphini, Brassolini, Amathusiini, the “primitive” the remaining Pronophilina. This analysis shows that the satyrines and the “advanced” satyrines, as well as in the genera that Viloria (1998, 2003) transferred from Pronophi- clade containing Satyrina, Erebiina, Pronophilina, Manio- lina into Erebiina and Hypocystina are actually more lina and Ypthimina. Taxa which require close scrutiny are closely related to the genera currently retained in Pronophi- Elymnias and the clade Zipaetis + Orsotriaena. Relation- lina (Lamas, 2004), and are, distantly related to the Austra- ships of these taxa in the two analyses imply very diVerent lian Hypocystina and Palaeartic Erebiina. Our results thus evolutionary scenarios and resolving these conXicts will refute Viloria’s hypothesis (in Lamas, 2004) that a great require increased character sampling. part of the Pronophilina belong to Hypocystina and Erebi- Our results imply some intriguing biogeographical pat- ina. Viloria’s Neotropical Hypocystina and Erebiina are terns. We identify taxa with disjunct distributions that may not supported, and his hypothesis of a Gondwanan origin have dispersed over oceanic barriers or their disjunct distri- for his Hypocystina should be discarded. butions resulted from vicariance due to the break up of ancient land masses. This is the case of the Neotropical gen- 4. Concluding remarks era Manataria and Oressinoma that are related to the Melanitini (African and Indo-Australian) and Hypocystina This study represents the most extensive cladistic analy- (Indo-Australian), respectively. Palaeonympha also shows sis to date of the long-neglected satyrine butterXies. an intriguing wide disjunction with its closest relatives in Although we were not able to sample some taxa that might the Americas. All of these patterns will require closer scru- represent major lineages in the subfamily, our results are tiny with more taxa sampled from the respective clades, in both robust and challenging, suggesting new relationships, order to Wnd the most likely sister groups of the disjunct refuting recent hypotheses and classiWcations, and strongly taxa in question. implying the need of major revision for some of the tradi- The “primitive” Satyrinae feed mostly on palms (fam. tionally recognized subfamilies in the Nymphalidae. More Arecaceae), while the species-rich “advanced” Satyrinae importantly, our results highlight the satyrines’ strong clade feed mostly on grasses from the family Poaceae. potential as a model for research in biogeography and evo- Strong support for the two main groups in Satyrinae, the lutionary biology. “advanced” and “primitive” satyrines is corroborated by The results of the combined analysis of the three genes their diVerent host plant preferences, and suggests that the show that, of the named suprageneric taxa in the current shift from feeding on palms to grasses was a dramatic step classiWcation of Satyrinae, only Haeterini is a natural group, in the evolution of the subfamily, driving the diversiWcation while the other tribes and subtribes are either para- or poly- of the bulk of Satyrinae, the speciose, mainly Neotropical phyletic assemblages. This study also suggests new interesting subtribes Pronophilina and Euptychiina. Ehrlich and relationships of taxa long considered of uncertain aYnities Raven (1964) stated that phytophagous diversify (e.g. Manataria, Amphidecta and Palaeonympha). We oVer a together with their hosts by mutual interaction along his- tentative new higher classiWcation of Satyrinae in Table 1 tory. However, there is evidence that the crown Poaceae based on our current results, but anticipate further changes, diversiWed in the Late Cretaceous (80 Mya ago; Prasad especially regarding the status and circumscription of the et al., 2005) while the origin of butterXies may have taken subfamilies Satyrinae and Morphinae. place around 70 Mya ago (Vane-Wright, 2004), and 48 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 certainly, the Satyrinae is a younger lineage of butterXies. Brower, A.V.Z., Freitas, A.V.L., Lee, M.-M., Silva Brandão, K.L., Whin- Further studies will investigate the age of the satyrines and nett, A., Willmott, K.R., in press. Phylogenetic relationships among the the evolution of host plant use in the most diverse subfam- Ithomiini (Lepidoptera: Nymphalidae) inferred from one mitochon- X drial and two nuclear gene regions. Systematic Entomology (in press). ily of butter ies (Peña et al., in prep.). Caterino, M.S., Sperling, F.A.H., 1999. phylogeny based on mito- chondrial cytochrome oxidase I and II genes. Molecular Phylogenetics Acknowledgments and Evolution 11, 122–137. Caterino, M.S., Reed, R.D., Kuo, M.M., Sperling, F.A.H., 2001. A parti- X This work has been supported in part by the Swedish tioned likelihood analysis of swallowtail butter y phylogeny (Lepidop- tera: Papilionidae). Systematic Biology 50, 106–127. Research Council (to SN and NW), by US National Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, Science Foundation (DEB 0089886 to A.V.Z.B., and DEB T.P., Zhao, S., 1995. A highly conserved nuclear gene for low-level phy- 0316505 to A.V.L.F.), and by Brazilian FAPESP (grants 00/ logenetics: Elongation Factor- recovers morphology-based tree for 01484-1, 04/05269-9 and BIOTA-FAPESP program—grant Heliothine moths. Molecular Biology and Evolution 12, 650–656. Clark, A.H., 1947. The interrelationships of the several groups within the 98/05101-8 to A.V.L.F.). We are very grateful to the African X X butter y superfamily Nymphaloidea. Proceedings of the Entomologi- Butter y Research Institute (Nairobi, Kenya), I. Aldas, A. cal Society of Washington 49, 148–149. 192 (erratum). Asenjo, J. Boettger, M. Braby, K. S. Brown Jr., A. Chich- de Jong, R., Vane-Wright, R.I., Ackery, P.R., 1996. The higher classiWca- varkhin, W. Eckweiler, D. A. Edge, S. Gallusser, G. Gibbs, tion of butterXies (Lepidoptera): problems and prospects. Entomolog- J. Grados, R. Grund, D. Janzen, T. Jongeling, L. Kaminski, ica Scandinavica 27, 65–101. X T. B. Larsen, Y.-H. Lee, D. Lohman, K. Matsumoto, D. DeVries, P.J., 1987. The Butter ies of Costa Rica and Their Natural His- tory. Volume I: Papilionidae, Pieridae, Nymphalidae. Princeton Uni- McCorkle, F. Molleman, D. Murray, N. Pierce, T. Pyrcz, C. versity Press, Princeton. Schulze, M.-W. Tan, J. Tennent, R. Vila, A. Viloria, A. War- DeVries, P.J., Kitching, I.J., Vane-Wright, R.I., 1985. The systematic ren, M. Whiting and K. Willmott for providing specimens position of Antirrhea and Caerois, with comments on the classiWca- used in this study. A.V.Z.B. thanks M.-M. Lee and D. Mur- tion of the Nymphalidae (Lepidoptera). Systematic Entomology ray for assistance in the laboratory. C.P. thanks Pablo 10, 11–32. V Ehrlich, P.R., 1958. The comparative morphology, phylogeny and higher Golobo for help with the scripting feature of TNT. classiWcation of the butterXies (Lepidoptera: ). The Uni- Thanks to Gerardo Lamas for help in identifying voucher versity of Kansas Science Bulletin 39, 305–370. material. We acknowledge Jim Miller, Gerardo Lamas and Ehrlich, P.R., Ehrlich, A.H., 1967. The phenetic relationships of the butter- Dick Vane-Wright for criticism and comments on the man- Xies I. Adult and the nonspeciWcity hypothesis. Systematic uscript. IDEA WILD (Colorado, USA) provided funds for Zoology 16, 301–317. Ehrlich, P.R., Raven, P.H., 1964. ButterXies and plants: a study in coevolu- laboratory materials to C.P. tion. Evolution 18, 586–608. Felsenstein, J., 1985. ConWdence limits on phylogenies: an approach using References the bootstrap. Evolution 39, 783–791. Figueroa, A., 1953. Catálogo de los artrópodos de las clases Arachnida e Ackery, P.R., 1988. Hostplants and classiWcation: a review of nymphalid Insecta encontrados en el hombre, los animales y las plantas de la Rep- butterXies. Biological Journal of the Linnean Society 33, 95–203. ública de Colombia—III. Según lo anotado en la colección entomológ- Ackery, P.R., de Jong, R., Vane-Wright, R.I., 1999. The butterXies: Hedy- ica de la Facultad de Agronomía del Valle y con datos adicionales de la loidea, Hesperoidea and Papilionoidea. In: Kristensen, N.P. (Ed.), Estación Agrícola Experimental de Palmira. Acta agronomica (Pal- Lepidoptera: Moths and ButterXies. 1. Evolution, Systematics and Bio- mira) 3, 1–7. geography. Handbook of Zoology, vol. IV. Walter de Gruyter, Berlin. Freitas, A.V.L., 2003. Description of a new genus for “Euptychia” peculi- Part 35. aris (Nymphalidae: Satyrinae): Immature stages and systematic posi- Baker, R.H., DeSalle, R., 1997. Multiple sources of character information tion. Journal of the Lepidopterists’ Society 57, 100–106. and the phylogeny of Hawaiian Drosophila. Systematic Biology 46, Freitas, A.V.L., 2004a. A new species of Yphthimoides (Nymphalidae, Saty- 654–673. rinae) from Southeastern Brazil. Journal of the Lepidopterists’ Society Barrera, A., Díaz-Batres, M.E., 1977. Distribución de algunos lepidópteros 58, 7–12. de la Sierra de Nanchititla, México, con especial referencia a Tisiphone Freitas, A.V.L., 2004b. Immature stages of Amphidecta reynoldsi maculata HpV. (Ins.: Lepid.). Revista de la Sociedad mexicana de Lep- (Nymphalidae: Satyrinae). Journal of the Lepidopterists’ Society idopterología 3, 17–28. 58, 53–55. Boggs, C.L., Watt, W.B., Ehrlich, P.R. (Eds.), 2003. ButterXies: Evolution Freitas, A.V.L., Murray, D., Brown Jr., K.S, 2002. Immatures, natural his- and Ecology Taking Flight. Rocky Mountain Biological Lab Sympo- tory and the systematic position of Bia actorion (Nymphalidae). Jour- sium Series. University of Chicago Press. nal of the Lepidopterists’ Society 56, 117–122. Braby, M.F., 2000. ButterXies of Australia: Their IdentiWcation, Biology Freitas, A.V.L., Brown Jr., K.S, 2004. Phylogeny of the Nymphalidae (Lep- and Distribution. CSIRO, Australia. idoptera). Systematic Biology 53, 363–383. Bremer, K., 1988. The limits of amino acid sequence data in angiosperm Gatesy, J., O’Grady, P., Baker, R.H., 1999. Corroboration among data sets phylogenetic reconstruction. Evolution 42, 795–803. in simultaneous analysis: hidden support for phylogenetic relationships Bremer, K., 1994. Branch support and tree stability. 10, 295–304. among higher level artiodactyl taxa. Cladistics 15, 271–313. Brower, A.V.Z., 2000. Phylogenetic relationships among the Nymphal- Giribet, G., 2003. Stability in phylogenetic formulations and its relation to idae (Lepidoptera) inferred from partial sequences of the wingless nodal support. Systematic Biology 52, 554–564. gene. Proceedings of the Royal Society of London B 267, GoloboV, P., Farris, J., Nixon, K., 2003. T.N.T.: Tree Analysis Using New 1201–1211. Technology. Program and documentation, available from the authors, Brower, A.V.Z., DeSalle, R., 1998. Patterns of mitochondrial versus and at . nuclear DNA sequence divergence among nymphalid butterXies: the Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment utility of wingless as a source of characters for phylogenetic inference. editor and analysis program for Windows 95/98/NT. Nucleic Acids Molecular Biology 7, 73–82. Symposium Series 41, 95–98. C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 49

Harvey, D.J., 1991. Higher classiWcation of the Nymphalidae, Appendix B. Reed, R.D., Sperling, F.A.H., 1999. Interaction of process partitions in In: Nijhout, H.F. (Ed.), The Development and Evolution of ButterXy phylogenetic analysis: an example from the swallowtail butterXy genus Wing Patterns. Smithsonian Institution Press, Washington, DC. Papilio. Molecular Biology and Evolution 16, 286–297. International Commission on Zoological Nomenclature, 1999. Interna- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic tional Code of Zoological Nomenclature. International Trust for Zoo- inference under mixed models. Bioinformatics 19, 1572–1574. logical Nomenclature, London. Rydell, J., Kaerma, S., Hedelin, H., Skals, N., 2003. Evasive response to Källersjö, M., Farris, J.S., Chase, M.W., Bremer, B., Fay, M.F., Humphries, ultrasound by the crepuscular butterXy Manataria maculata. Naturwis- C.J., Petersen, G., Seberg, O., Bremer, K., 1998. Simultaneous parsi- senschaften 90, 80–83. mony jackknife analysis of 2538 rbcL DNA sequences reveals support Scott, J.A., 1985. The phylogeny of the butterXies (Papilionoidea and Hes- for major clades of green plants, land plants, seed plants and Xowering peroidea). Journal of Research on the Lepidoptera 23, 241–281. plants. Plant Systematics and Evolution 213, 259–287. Stevenson, R.D., Haber, W.A., 1996. Time budgets and the crepuscular Lamas, G. (Ed.), 2004. Checklist: Part 4A. Hesperioidea-Papilionoidea. migration activity of a tropical butterXy, Manataria maculata (Satyri- Atlas of Neotropical Lepidoptera. Association for Tropical Lepidop- nae). Bulletin of the Ecological Society of America 77, 424. tera/ScientiWc Publishers. Torres, E., Lees, D.C., Vane-Wright, R.I., Kremen, C., Leonard, J.A., Larsen, T.B., 1991. The ButterXies of Kenya and their Natural History. Wayne, R.K., 2001. Examining monophyly in a large radiation of Mad- Oxford University Press, UK, Oxford. agascan butterXies (Lepidoptera: Satyrinae: Mycalesina) based on Martin, J.-F., Gilles, A., Descimon, H., 2000. Molecular phylogeny and mitochondrial DNA data. Molecular Phylogenetics and Evolution 20, evolutionary patterns of the European satyrids (Lepidoptera: Satyri- 460–473. dae) as revealed by mitochondrial gene sequences. Molecular Phyloge- Vane-Wright, R.I., 2004. ButterXies at that awkward age. Nature 428, 477–480. netics and Evolution 15, 70–82. Vane-Wright, R.I., Boppré, M., 2005. Adult morphology and the higher Miller, L.D., 1968. The higher classiWcation, phylogeny and zoogeography classiWcation of Bia Hübner (Lepidoptera: Nymphalidae). Bonner zoo- of the Satyridae (Lepidoptera). Memoirs of the American Entomologi- logische Beiträge 53, 235–254. cal Society 24 [6] + iii + 174. Viloria, A.L., 1998. Studies on the systematics and biogeography of some Miller, L.D., Miller, J.Y., 1997. Gondwanan butterXies: the Africa–South montane satyrid butterXies (Lepidoptera). Ph.D. Thesis. King’s College America connection. Metamorphosis 3 (Suppl.), 42–51. London and The Natural History Museum, London. Mitchell, A., Cho, S., Regier, J.C., Mitter, C., Poole, R.W., Matthews, M., Viloria, A.L., 2003. Historical biogeography and the origins of the satyrine 1997. Phylogenetic utility of Elongation Factor-1 in Noctuoidea butterXies of the tropical Andes (Lepidoptera: Rhopalocera). In: Mor- (Insecta: Lepidoptera): the limits of synonymous substitutions. Molec- rone, J.J., Llorente, J. (Eds.), Una perspectiva latinoamericana de la ular Biology and Evolution 14, 381–390. biogeografía. Universidad Autónoma de México, México. Monteiro, A., Pierce, N.E., 2001. Phylogeny of Bicyclus (Lepidoptera: Viloria, A.L., Pyrcz, T., 1994. A new genus, Protopedaliodes and a new spe- Nymphalidae) inferred from COI, COII and EF- gene sequences. cies, Protopedaliodes kukenani from the Pantepui, Venezuela (Lepidop- Molecular Phylogenetics and Evolution 18, 264–281. tera, Nymphalidae, Satyrinae). Lambillionea 94, 345–352. Murillo, L.R., Nishida, K., 2004. Life history of Manataria maculata (Lepi- Viloria, A.L., Camacho, J., 1999. Three new pronophiline butterXies from doptera : Satyrinae) from Costa Rica. Revista de Biología Tropical 51, the Serrania del Turimiquire, eastern Venezuela, and type designation 463–470. for Corades enyo enyo (Lepidoptera: Nymphalidae). Fragmenta ento- Murray, D., Prowell, D.P., 2005. Molecular phylogenetics and evolu- mologica 31, 173–188. tionary history of the neotropical Satyrine Subtribe Euptychiina Wahlberg, N., Zimmermann, M., 2000. Pattern of phylogenetic relation- (Nymphalidae: Satyrinae). Molecular Phylogenetics and Evolution ships among members of the tribe Melitaeini (Lepidoptera: Nymphali- 34, 67–80. dae) inferred from mtDNA sequences. Cladistics 16, 347–363. Nice, C., Shapiro, A.M., 2001. Patterns of morphological, biochemical and Wahlberg, N., Oliveira, R., Scott, J.A., 2003a. Phylogenetic relationships of molecular evolution in the complex (Lepidoptera: Saty- Phyciodes butterXy species (Lepidoptera: Nymphalidae): complex ridae): a test of historical biogeographical hypotheses. Molecular Phy- mtDNA variation and species delimitations. Systematic Entomology logenetics and Evolution 20, 111–123. 28, 257–273. Parsons, M., 1999. The ButterXies of Papua New Guinea: Their Systemat- Wahlberg, N., Weingartner, E., Nylin, S., 2003b. Towards a better under- ics and Biology. Academic Press, London. standing of the higher systematics of Nymphalidae (Lepidoptera: Papi- Peña, C., Lamas, G., 2005. Revision of the butterXy genus Forsterinaria lionoidea). Molecular Phylogenetics and Evolution 28, 473–487. Gray, 1973 (Lepidoptera: Nymphalidae, Satyrinae). Revista peruana Wahlberg, N., Braby, M.F., Brower, A.V.Z., de Jong, R., Lee, M.-M., Nylin, de Biología 12, 5–48. S., Pierce, N.E., Sperling, F.A.H., Vila, R., Warren, A.D., Zakharov, E., Prasad, V., Strömberg, C.A.E., Alimohammadian, H., Sahni, A., 2005. 2005. Synergistic eVects of combining morphological and molecular Dinosour cropolites and the early evolution of grasses and grazers. Sci- data in resolving the phylogeny of butterXies and skippers. Proceedings ence 310, 1177–1180. of the Royal Society of London B 272, 1577–1586.