Two Orders of Insectivores: Relationship Between the Orders

Total Page:16

File Type:pdf, Size:1020Kb

Two Orders of Insectivores: Relationship Between the Orders Two orders of insectivores: Relationship between the orders Erinceomorpha and Soricomorpha is unclear. They are closely related, but should there be two orders? One order? No one seems to know, and it's not that important. We'll keep following the text. Order Erinaceomorpha Hedgehogs & relatives. Only one family (Erinaceidae). Old world animals. Hairs modified as spines in hedgehogs. Other groups (e.g. moonrat) look more shrew like. Hedgehogs are omnivorous (prefer animals). Fairly common in some parts of Europe. Others (e.g. moonrat) are not known well enough, but seem to eat mostly insects and invertebrates. (Typical shrew fare). Text speculates that they are heterothermic and can hibernate. Order Soricomorpha Four families; we'll look at two (and briefly mention a third). Family Solenodontidae Are unusually large for a shrew-like animal - size of a muskrat. Seriously endangered due to introduction of rats, mongooses, and cats & dogs. Cuba & Haiti. Like shrews, are venomous (more below). And that's all we'll say about them. Family Soricidae - shrews. Large family of successful mammals. Over 370 species. Small (largest gets to small rat size). Venomous - venom is delivered through rough channels in some of their teeth (e.g., lower incisors). Affects small mammals. Wikipedia mentions specifics (e.g., enough venom in a single Blarina to kill 200 mice, but source seems a bit suspect). But some species do prey on small mammals. Records indicate symptoms developing in humans (not really dangerous to humans). Only venomous mammals other than platypus (and solenodons). Generally are insectivorous, but larger species may go after vertebrates. Have a very high metabolism and need to eat constantly: Main reason that they're frequently found dead in live traps. Sorex sp., Blarina sp., dental formula: 3/1 1/1 3/1 3/3 Other species (e.g. Notiosorex sp., Cryptotis sp. will vary from this). Most shrews around here are easy to identify down to family due to reddish-purple color of teeth. Numerous species around here: short tailed shrew, southeastern shrew, masked shrew, least shrew, pygmy shrew. Some of these are easy to identify (e.g., short tailed shrew), others can be a bit of a pain without a skull. Pygmy shrew is tiny (about dime size). One source mentions that specimens are rare. GMU used to have several in its collection! Water shrew (does occur in extreme mid-western Virginia), Sorex palustris is semi-aquatic: Has fringe of hairs on it's feet that are used to help it swim (or even run on water). Some shrews have primitive echolocation. Family Talpidae - moles 2-3/1-3 1/0-1 3-4/3-4 3/3 Burrow through soil looking for invertebrates. Large front feet, reduced eyes, etc. Birth canal passes ventral to hips (hips are greatly reduced). Two species around here: Scalopus aquaticus (Eastern mole) Condylura cristata (Star nosed mole) Projections from nose are an extensive network of touch receptors that can be used to locate prey. Can construct extensive burrow system, which can be damaging to some human activities (e.g. golf)..
Recommended publications
  • MAMMALS of OHIO F I E L D G U I D E DIVISION of WILDLIFE Below Are Some Helpful Symbols for Quick Comparisons and Identfication
    MAMMALS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE Below are some helpful symbols for quick comparisons and identfication. They are located in the same place for each species throughout this publication. Definitions for About this Book the scientific terms used in this publication can be found at the end in the glossary. Activity Method of Feeding Diurnal • Most active during the day Carnivore • Feeds primarily on meat Nocturnal • Most active at night Herbivore • Feeds primarily on plants Crepuscular • Most active at dawn and dusk Insectivore • Feeds primarily on insects A word about diurnal and nocturnal classifications. Omnivore • Feeds on both plants and meat In nature, it is virtually impossible to apply hard and fast categories. There can be a large amount of overlap among species, and for individuals within species, in terms of daily and/or seasonal behavior habits. It is possible for the activity patterns of mammals to change due to variations in weather, food availability or human disturbances. The Raccoon designation of diurnal or nocturnal represent the description Gray or black in color with a pale most common activity patterns of each species. gray underneath. The black mask is rimmed on top and bottom with CARNIVORA white. The raccoon’s tail has four to six black or dark brown rings. habitat Raccoons live in wooded areas with Tracks & Skulls big trees and water close by. reproduction Many mammals can be elusive to sighting, leaving Raccoons mate from February through March in Ohio. Typically only one litter is produced each year, only a trail of clues that they were present.
    [Show full text]
  • Controlling the Eastern Mole
    Agriculture and Natural Resources FSA9095 Controlling the Eastern Mole Dustin Blakey Introduction known about the Eastern Mole, and County Extension Agent ­ successful control in landscapes Agriculture Few things in this world are requires a basic understanding of more frustrating than spending valu­ their biology. able time and money on a landscape Rebecca McPeake only to have it torn up by wildlife. Mole Biology Associate Professor and Moles’ underground habits aerate the Extension Wildlife soil and reduce grubs, but their Moles spend most of their lives Specialist digging is cause for homeowner underground feeding on invertebrate complaints, making them one of the animals living in the soil. A mole’s most destructive mammals that can diet sharply reflects the diversity of inhabit our landscapes. the fauna found in its environment. In Arkansas, moles primarily feed on earthworms, grubs and other inverte­ brates. Moles lack the dental struc­ ture to chew plant material (seeds, roots, etc.) for food and, as a result, subsist strictly as carnivores. Occasionally moles will cut surface vegetation and bring it down to their nest, as bedding, but this is not eaten. Figure 1. Rarely seen on the surface, moles are uniquely designed for their underground existence. Photo printed with permission by Ann and Rob Simpson. Contrary to popular belief, moles are not rodents. Mice, squirrels and gophers are all rodents. Moles are insectivores in the family Talpidae. Figure 2. Moles lack the dental structure This animal family survives by to chew plant material and subsist feeding on invertebrate prey. There mostly on earthworms and other invertebrates. are seven species of moles in North America, but the Eastern Mole Moles are well-adapted to living (Scalopus aquaticus L.) is the species underground.
    [Show full text]
  • The First Record of Anourosorex (Insectivora, Soricidae) from Western Myanmar, with Special Reference to Identification and Karyological Characters
    Bull. Natl. Mus. Nat. Sci., Ser. A, 40(2), pp. 105–109, May 22, 2014 The First Record of Anourosorex (Insectivora, Soricidae) from Western Myanmar, with Special Reference to Identification and Karyological Characters Shin-ichiro Kawada1, Nozomi Kurihara1, Noriko Tominaga2 and Hideki Endo3 1 Department of Zoology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] 2 Adachi Study Center, The Open University of Japan, 5–13–5 Senju, Adachi-ku, Tokyo 120–0034, Japan 3 The University Museum, The University of Tokyo, 7–3–1 Hongo, Bunkyo, Tokyo 113–0033, Japan (Received 3 March 2014; accepted 26 March 2014) Abstract We collected six mole shrews in Tiddim Town of Chin State, western Myanmar. They were captured in a human-modified artificial environment, although mole shrews usually inhabit forests. External and skull measurements indicated that the species was Anourosorex assamensis, previously known only as an endemic species of the Assam region of India. This is the first record of this species from Myanmar. Karyological examination revealed the species was diploid with a fundamental autosomal number of 2n=50 and NFa=96. These numbers correspond to the Taiwanese species A. yamashinai, but several differences were apparent in chromosomal morphology and the position of secondary chromosomal constrictions. The karyological information suggests A. assamensis is a full species separate from A. squamipes in China. Key words : Mole shrew, Anourosorex assamensis, morphological identification, karyotype. karyotypes, and should therefore be considered Introduction separate species. After that, Hutterer (2005) Mole shrews, the genus Anourosorex Milne- reclassified all four Anourosorex as four distinct Edwards, 1872, are semifossorial shrews known species based on size differences.
    [Show full text]
  • Species of Conservation Concern SC SWAP 2015
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Moles Guild Hairy-tailed Mole (Parascalops breweri) Star-nosed Mole (Condylura cristata) Contributors (2005): Mary Bunch (SCDNR), Mark Ford (VA Tech), and David Webster (UNC-W) Reviewed and Edited (2012): Steve Fields (Culture and Heritage Museums) and David Webster (UNC-W) DESCRIPTION Taxonomy and Basic Description Three species of moles occur in South Carolina. These include the eastern mole, (Scalopus aquaticus) which is widely distributed and common. The other 2 species, the star-nosed mole (Condylura cristata) and hairy-tailed mole (Parascalops breweri), are less commonly encountered in South Carolina. All 3 possess velvety fur; eyes that are small and concealed in the fur; and large well-developed forelimbs with backward facing palms and long claws. They also lack external ear structures. The star-nosed mole was first described by Linnaeus in Star-nosed Mole Photo courtesy of ATBI 1758. Two subspecies are recognized for the star-nosed mole: Condylura cristata cristata and Condylura cristata parva. Star-nosed moles in South Carolina are considered to be C. c. parva (Peterson and Yates 1980). As the name implies, the rostrum of the star-nosed mole is star-like and consists of 22 fleshy appendages. Total length of this species ranges from 153 to 238 mm (6.24 to 9.3 in.). The moderately haired tail is approximately one-third to one- half the body length. The fur is black or a black-brown on the back (Peterson and Yates 1980; Webster et al. 1985; Laerm et al. 2005a). The hairy-tailed mole, first described by Bachman Hairy-tailed Mole Photo by E.B.
    [Show full text]
  • Mammalia) from the Miocene of Be³chatów, Poland
    Acta zoologica cracoviensia, 48A(1-2): 71-91, Kraków, 30 June, 2005 Erinaceomorpha and Soricomorpha (Mammalia) from the Miocene of Be³chatów, Poland. IV. Erinaceidae FISCHER VON WALDHEIM, 1817 and Talpidae FISCHER VON WALDHEIM, 1817 Barbara RZEBIK-KOWALSKA Received: 12 Jan., 2005 Accepted for publication: 12 Apr., 2005 RZEBIK-KOWALSKA B. 2005. Erinaceomorpha and Soricomorpha (Mammalia) from the Miocene of Be³chatów, Poland. IV. Erinaceidae FISCHER VON WALDHEIM, 1817 and Tal- pidae FISCHER VON WALDHEIM, 1817. Acta zoologica cracoviensia, 48A(1-2): 71-91. Abstract. Very scarce remains of Erinaceidae and Talpidae have been found in three dif- ferent layers of Miocene sediments in Be³chatów in central Poland. Talpidae gen. et sp. in- det. and Desmanella cf. engesseri were stated in horizon C, dated from the Middle (MN4 or MN4/MN5) Miocene, Lanthanotherium aff. sansaniense, Mygalea cf. antiqua, Talpa minuta,“Scaptonyx”cf. edwardsi and Desmanella engesseri in horizon B, dated from the Middle (MN5 or MN5/MN6) Miocene and ?Talpa minuta, Desmanella cf. stehlini and Talpidae gen. et sp. indet. in horizon A, dated from the late Middle (MN7+8) or Mid- dle/Late (MN7+8/MN9) Miocene boundary. The remains are described and illustrated and their systematic position is discussed. Key words: fossil mammals, Insectivora, Erinaceidae and Talpidae, Miocene, Poland. Barbara RZEBIK-KOWALSKA, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: [email protected] I. INTRODUCTION The present paper is the fourth part of a series of studies on the remains of Erinaceomorpha and Soricomorpha from the Miocene locality of Be³chatów in central Poland.
    [Show full text]
  • Effective Mole Control Gary L
    Extension W-11-2002 FSchool ofactSheet Natural Resources, 2021 Coffey Road, Columbus, Ohio 43210 Effective Mole Control Gary L. Comer, Jr., Extension Agent, Water Quality & Natural Resources, Logan County Amanda D. Rodewald, Assistant Professor of Wildlife Ecology and Extension Specialist, School of Natural Resources, The Ohio State University here are six species of moles in North America, and Tthree of these may occur in your yard (Eastern Mole, Hairy-tailed Mole, and Star-nosed Mole). Of these, the East- ern Mole (Scalopus aquaticus) is most common in Ohio. Moles are about the size of chipmunks (6-8 inches in length) and can weigh three to six ounces. Each year a mole can have one lit- ter of two to six young, depending on the health of the female. Gestation lasts about five to six weeks, which means that you can expect litters anywhere from mid-April through May. Be- lieve it or not, young moles have less than a 50% chance of surviving long enough to reproduce. Moles are insectivores (they eat insects), and they may con- trol some insect outbreaks. However, mole activity can also cause considerable damage to lawns. This damage is usually in the form of tunnels and/or mounds in lawn that can be un- sightly, disturb root systems, and provide cover or travel lanes for other small mammals. Often mole damage could be reduced or eliminated by not encroaching If you are like most homeowners, you are probably confused on the mole natural habitat. This wood lot is an example of wildlife by all of the conflicting “advice” on mole control.
    [Show full text]
  • Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2000 Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora Donald W. Duszynski University of New Mexico, [email protected] Steve J. Upton Kansas State University Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Duszynski, Donald W. and Upton, Steve J., "Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora" (2000). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 196. https://digitalcommons.unl.edu/parasitologyfacpubs/196 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SPECIAL PUBLICATION THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 4, pp. 1-67 30 OCTOBER 2000 Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora DONALD W. DUSZYNSKI AND STEVE J. UPTON TABLE OF CONTENTS Introduction 1 Materials and Methods 2 Results 3 Family Erinaceidae Erinaceus Eimeria ostertagi 3 E. perardi 4 Isospora erinacei 4 I. rastegaievae 5 I. schmaltzi 6 Hemiechinus E. auriti 7 E. bijlikuli 7 Hylomys E. bentongi 7 I. hylomysis 8 Family Soricidae Crocidura E. firestonei 8 E. leucodontis 9 E. milleri 9 E. ropotamae 10 Suncus E. darjeelingensis 10 E. murinus...................................................................................................................... 11 E. suncus 12 Blarina E. blarinae 13 E. brevicauda 13 I. brevicauda 14 Cryptotis E.
    [Show full text]
  • Moles, Voles and Shrews
    MlMoles, VVloles, and Shrews, Oh my! Eastern Mole Scalopus aquaticus Eastern Mole • 4 ½ to 7 inches long • Up to 5 ounces • Insectivora: Eats insects and invertebrates; not plants • Solitary • 2 to 5 young once a year •Diggps up to 150 ft. per da y. Visible tunnels likely feeding tunnels Eastern Mole • Control Measures • Toxicants and fumigants • Food Source Removal • Barriers • “Kill Traps” – use caution • Pit trap Eastern Mole • PIT TRAP • Find an active runway • Uncover enough to insert a #10 size can flush with tunnel floor • Fill and pack around can • Plug tunnel on both sides of can Eastern Mole • Cover the pit with a board • If no mole within 1 or 2 days, relocate trap Eastern Mole • Alternative: Live and let Live •Why? Eastern Mole • “Moles are important predators of insect larvae and other invertebrates; they can profoundly impact the communities of their prey. They also act to aerate and turn soil where they live through their extensive tunneling activities” – Gorog A. 1999. “Sca lopus Aqua ticus, Animal Diversity Web Pine Vole Pitymys pinetorum Pine Vole • Less than 2 ounces • 3 to 4 inches • Fossorial • Rodentia • Herbivore • Prolific • Destructive Vole Salad Bar Pine Vole • Damage Control • Eliminate Ground Cover • Soil Tillage • Plant Selection • Chemicals ? • Exclusion Hardware Cloth Barrier Hardware Cloth Barrier Hardware Cloth Barrier Pine Vole • Damage Control • Traps Vole Trap • Locate the Tunnel Vole Trap • Excavate • Bait the Trap • Lay flush with tunnel bottom and at right angles to the tunnel line, • or-- Vole Trap • Just lay trap on the surface Vole Trap • Cover and Weight • And Wait Pine Vole • Damage Control • Predation Vole Predators Ferocious Predator In His Lair Least Shrew Cryptotis parva Least Shrew • 2 ½ to 4 inches • Less than ¼ ounce • Insectivora • Same diet as mole • Some seeds and fruit • Same predators • Slightly venomous • Harmless to garden Moles, Voles, and Shrews, Oh my! THE END !!.
    [Show full text]
  • Fieldbook of ILLINOIS MAMMALS
    Field book of ILLINOIS MAMMALS Donald F. Hoffm*isler Carl O. Mohr 1LLINOI S NATURAL HISTORY SURVEY MANUAL 4 NATURAL HISTORY SURVEY LIBRARY Digitized by the Internet Archive in 2010 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/fieldbookofillinOOhof JfL Eastern cottontail, a mammal that is common in Illinois. STATE OF ILLINOIS William G. Stratton, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Vera M. Binks, Director Fieldbook of ILLINOIS MAMMALS Donald F. HofFmeister Carl O. Mohr MANUAL 4 Printed by Authority of the State of Illinois NATURAL HISTORY SURVEY DIVISION Harlow B. Mills, Chief URBANA. June. 1957 STATE OF ILLINOIS William G. Stratton, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Vera M. Binks, Director BOARD OF NATURAL RESOURCES AND CONSERVATION Vera M. Binks, Chairman A. E. Emerson, Ph.D., Biology Walter H. Newhouse, Ph.D., Geology L. H. Tiffany, Ph.D., Forestry Roger Adams, Ph.D., D.Sc, Chemistry Robert H. Anderson, B.S.C.E., Engineering W. L. Everitt, E.E., Ph.D., representing the President of the University of Illinois Delyte W. Morris, Ph.D., President of Southern Illinois University NATURAL HISTORY SURVEY DIVISION Urbana, Illinois HARLOW B. MILLS, Ph.D., Chief Bessie B. East, M.S., Assistant to the Chief This paper is a ct>ntribution from the Sectittn of Faunistic Surveys and Insect Identification and from the Section of Wildlife Research. ( 1 1655—5M—9-56) FOREWORD IN 1936 the first number of the Manual series of the Natural His- tory Survey Division appeared. It was titled the Firldbook of Illinois Wild Flowers.
    [Show full text]
  • Star-Nosed Mole, Condylura Cristata
    The Journal the Elisha Mitchell Scien USE OF AN UPLAND PINE FOREST BY THE STAR-NOSED MOLE, CONDYLURA CRISTATA TIMOTHY S. MCCAY’ Museum of Natural History, Institute of Ecology University of Georgia, Athens, GA 30602 MARK J. KOMOROSKI Savannah River Ecology Laboratory Drawer E, Aiken, SC 29802 WILLIAM M. FORD USDA Forest Service, Femow Experimental Forest Box 404, Parsons, WV 26287 Key Words: Star-nosed mole; Condylura cristata; pine forests; dispersal. The star-nosed mole (Condylura cristata) is a semi-aquatic insectivore, corn- manly found near marshy areas and streams (Hamilton, 1931; Petersen and Yates, 1980; Webster et al., 1985). We report two captures of star-nosed moles from a xeric, upland pine forest more than 500 m from the nearest persistent source of water. Both captures occurred during rainy nights, suggesting that star-nosed moles use rain events as opportunities for dispersal through upland habitats. We captured star-nosed moles on 22 April and 17 July 1998 in a loblolly-pine (Pinus taeda) plantation at the Savannah River Site National Environmental Re- search Park (SRS; 33”20’N, 81”31’W) in the Upper Coastal Plain Province of South Carolina. The forest in which the moles were captured was approximately 45 yr old, with sparse mid- and under-story vegetative cover. Both natural and planted pine forests dominated the upland habitats at the SRS (Workman and McLeod, 1990). Soils were sandy and well-drained; leaf-litter consisted exclu- sively of pine leaves. Moles were captured with arrays of drift-fences and pitfall traps that were monitored daily over the periods 3 April to 9 May and 3 to 17.
    [Show full text]
  • Sorex Longirostris Fisheri) (1928) Subsequently Reduced S
    56128 Federal Register / Vol. 63, No. 203 / Wednesday, October 21, 1998 / Proposed Rules Dated: October 8, 1998. FOR FURTHER INFORMATION CONTACT: Jeff Biologist, at the above address W. Michael McCabe, Hunt, U.S. EPA, Region 10, 1200 Sixth (telephone 804/693±6694, extension Regional Administrator, Region III. Avenue, Mail Stop WCM±122, Seattle, 127; facsimile 804/693±9032). [FR Doc. 98±28113 Filed 10±20±98; 8:45 am] WA, 98101, phone (206) 553±0256. SUPPLEMENTARY INFORMATION: BILLING CODE 6560±50±P SUPPLEMENTARY INFORMATION: For Background additional information see the immediate final rule published in the The Dismal Swamp southeastern ENVIRONMENTAL PROTECTION rules section of this Federal Register. shrew is a small, long-tailed shrew with AGENCY Dated: October 6, 1998. a brown back, slightly paler underparts, buffy feet, and a relatively short, broad Chuck Clarke, 40 CFR Part 271 nose (Handley 1979a). It weighs 3 to 5 Regional Administrator, Region 10. [FRL±6176±6] grams and measures up to 10 [FR Doc. 98±27703 Filed 10±20±98; 8:45 am] centimeters in length. The species was Idaho: Final Authorization of State BILLING CODE 6560±50±P first described as Sorex fisheri by C.H. Hazardous Waste Management Merriam (Merriam 1895). Merriam's Program Revisions description was based on four DEPARTMENT OF THE INTERIOR specimens trapped near Lake AGENCY: Environmental Protection Drummond, Virginia by A.K. Fisher of Agency (EPA). Fish and Wildlife Service the U.S. Department of Agriculture's ACTION: Proposed rule. Bureau of Biological Surveys. Rhoads 50 CFR Part 17 and Young (1897) captured a specimen SUMMARY: The EPA proposes to grant RIN 1018±AF00 in Chapanoke, Perquimans County, final authorization to the hazardous North Carolina, that seemed waste program revisions submitted by Endangered and Threatened Wildlife intermediate between S.
    [Show full text]
  • Condylura (Mammalia, Talpidae) Reloaded: New Insights About the Fossil Representatives of the Genus
    Palaeontologia Electronica palaeo-electronica.org Condylura (Mammalia, Talpidae) reloaded: New insights about the fossil representatives of the genus Gabriele Sansalone, Tassos Kotsakis, and Paolo Piras ABSTRACT The star nosed mole, Condylura cristata, due to its morphological and behavioural peculiarities, has been deeply investigated by different authors. By contrast, very little is known about the phylogenetic relationships, evolution and diversity of the fossil members of this genus. In the present study we provide new insights about the fossil specimens ascribed to Condylura taking into account systematic, palaeobiogeographi- cal and palaeoecological aspects. Further, we provide a re-description of a fossil Con- dylura from the middle Miocene of Kazakhstan. We confirm that the Kazakh fossil belongs to the genus Condylura, based on humeral morphological features, and we discuss its implications and impact on the phylogenetic scenario and ecology of this peculiar talpid genus. This specimen represents the earliest record of the genus, thus suggesting an Eurasiatic origin instead of the most commonly accepted scenario of a North American one. The presence of both plesiomorphic and apomorphic characters in Condylura strongly supports the hypothesis that this genus could be considered as sister clade of Talpinae. Gabriele Sansalone. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy/Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia [email protected] Tassos Kotsakis. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/ Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy [email protected] Paolo Piras.
    [Show full text]