PRC2-Mediated Repression of SMARCA2 Predicts EZH2 Inhibitor Activity in SWI/SNF Mutant Tumors

Total Page:16

File Type:pdf, Size:1020Kb

PRC2-Mediated Repression of SMARCA2 Predicts EZH2 Inhibitor Activity in SWI/SNF Mutant Tumors PRC2-mediated repression of SMARCA2 predicts EZH2 inhibitor activity in SWI/SNF mutant tumors Thomas Januarioa,1, Xiaofen Yea,1, Russell Bainerb, Bruno Alickec, Tunde Smitha, Benjamin Haleyd, Zora Modrusand, Stephen Gouldc, and Robert L. Yaucha,2 aDepartment of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080; bDepartment of Bioinformatics, Genentech, Inc., South San Francisco, CA 94080; cDepartment of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080; and dDepartment of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080 Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved October 3, 2017 (received for review March 8, 2017) Subunits of the SWI/SNF chromatin remodeling complex are fre- of the ovary, hypercalcemic-type (SCCOHT) (3, 7–9). Although the quently mutated in human cancers leading to epigenetic dependen- mechanisms underlying tumorigenesis in these specific contexts cies that are therapeutically targetable. The dependency on the have yet to be fully elucidated, data are further supportive of a polycomb repressive complex (PRC2) and EZH2 represents one such tumor-suppressive function (10, 11). vulnerability in tumors with mutations in the SWI/SNF complex Efforts to therapeutically target SWI/SNF-defective cancers subunit, SNF5; however, whether this vulnerability extends to other have focused on identifying novel vulnerabilities that may be a SWI/SNF subunit mutations is not well understood. Here we show consequence of the altered chromatin state caused by muta- that a subset of cancers harboring mutations in the SWI/SNF ATPase, tions in BAF complex subunits. One such described vulnera- bility was based on the initial discovery in Drosophila of an SMARCA4, is sensitive to EZH2 inhibition. EZH2 inhibition results in a opposing and antagonistic role of BAF and polycomb com- heterogenous phenotypic response characterized by senescence plexes in regulating gene expression (12). Subsequent studies and/or apoptosis in different models, and also leads to tumor revealed that this antagonistic relationship may result in human growth inhibition in vivo. Lower expression of the SMARCA2 cancers with specific defects in BAF subunits to become de- paralog was associated with cellular sensitivity to EZH2 inhibition pendent on the activity of the polycomb repressive group 2 in SMARCA4 mutant cancer models, independent of tissue deriva- (PRC2) complex. This is best exemplified in MRTs, as loss of tion. SMARCA2 is suppressed by PRC2 in sensitive models, and SNF5 results in the altered genomic occupancy of the repressive induced SMARCA2 expression can compensate for SMARCA4 and chromatin mark deposited by PRC2 at histone H3 lysine 27 resi- antagonize PRC2 targets. The induction of SMARCA2 in response to dues (H3K27me3), leading to the repression of lineage-specific EZH2 inhibition is required for apoptosis, but not for growth arrest, targets (13). In these models, disruption of the histone methyl- through a mechanism involving the derepression of the lysomal transferase activity of EZH2, the catalytic subunit of PRC2, im- protease cathepsin B. Expression of SMARCA2 also delineates EZH2 paired tumor growth, thereby demonstrating that SNF5 mutant inhibitor sensitivity for other SWI/SNF complex subunit mutant tumors depend on EZH2 activity (13, 14). More recently, a similar tumors, including SNF5 and ARID1A mutant cancers. Our data support dependency on EZH2 was described in the context of ARID1A monitoring SMARCA2 expression as a predictive biomarker for EZH2- mutant cancers, suggesting that PRC2 activity may be a common targeted therapies in the context of SWI/SNF mutant cancers. vulnerability in SWI/SNF-defective lesions (15). However, whether targeting EZH2 will be effective in all cancers harboring these EZH2 | SMARCA4 | SMARCA2 | PRC2 | ARID1A specific mutations or in other SWI/SNF subunit mutant contexts remains an open question. WI/SNF, or BAF (Brg/Brahma-associated factors), com- Significance Splexes compose a family of ATP-dependent chromatin remodeling complexes that play critical roles in controlling gene transcription and DNA repair through their ability to regulate Targeting epigenetic dependencies caused by mutations in MEDICAL SCIENCES the accessibility of DNA in the nucleus (1, 2). In mammals, these chromatin-modifying enzymes represents a novel therapeutic complexes are composed of approximately 15 subunits, including approach in cancer. Notably, cancers harboring mutations in the either the SMARCA4 or SMARCA2 ATPase and additional SNF5 subunit of the SWI/SNF chromatin remodeling complex core and accessory subunits whose specialized protein domains have been shown to be susceptible to small-molecule inhibitors enable interactions with chromatin and/or DNA substrates. SWI/ of the EZH2 histone methyltransferase that are currently in clin- SNF complexes notably control lineage specification and dif- ical development. We demonstrate that EZH2 inhibition can be ferentiation programs in tissues, and these highly specific func- effective in SMARCA4 mutant cancers that concurrently tran- tions can be achieved through combinatorial subunit assembly, as scriptionally silence the paralog helicase SMARCA2. SMARCA2 is well as tissue/lineage-specific expression of some subunits. directly suppressed by EZH2, and SMARCA2 expression levels Large-scale cancer genome sequencing efforts have revealed that predict EZH2 inhibitor activity in other SWI/SNF mutant contexts, multiple SWI/SNF complex proteins are recurrently mutated in including ARID1A mutant tumors. These data provide insight into ∼20% of human cancers (3). Mutations often render the encoded the utility of EZH2 inhibitors in SWI/SNF mutant tumors and have protein nonfunctional and associate with unique tumor spectra, important implications regarding predictive diagnostics. suggesting distinct tumor-suppressor functions across these cancers. For example, the SWI/SNF complex subunit SNF5 is subject to Author contributions: T.J., X.Y., R.B., S.G., and R.L.Y. designed research; T.J., X.Y., B.A., T.S., B.H., Z.M., S.G., and R.L.Y. performed research; T.J., X.Y., R.B., B.A., T.S., and R.L.Y. biallelic mutational inactivation in nearly all malignant rhabdoid analyzed data; and R.L.Y. wrote the paper. tumors (MRTs), and studies in genetically engineered mouse models of SNF5 inactivation have supported its role as a bona fide The authors declare no conflict of interest. tumor suppressor (3–6). Similarly, recurrent inactivating mutations This article is a PNAS Direct Submission. in additional BAF subunits have been identified in other indica- Published under the PNAS license. tions, including ARID1A mutations in ovarian clear-cell and 1T.J and X.Y. contributed equally to this work. endometroid cancers, as well as hepatocellular and gastric cancers. 2To whom correspondence should be addressed. Email: [email protected]. SMARCA4 mutations likewise are observed across a spectrum of This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. cancers of the lung and bladder, and nearly all small cell carcinomas 1073/pnas.1703966114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1703966114 PNAS | November 14, 2017 | vol. 114 | no. 46 | 12249–12254 Downloaded by guest on September 30, 2021 Multiple inhibitors targeting the enzymatic activity of EZH2 are AB currently in clinical development, with EPZ-6438 (tazemontstat) 20 20 representing the most clinically advanced molecule. Early clinical 15 7 days 15 13 days 10 10 data presented with EPZ-6438 has shown promise, as objective 5 5 4 4 responses have been observed in a subset of SNF5 mutant and H1299 TOV-112D TOV-112D 3 3 SMARCA4 mutant patients treated with EPZ-6438 as a single 2 2 1 1 Caspase 3/7 activity (fc) agent. These data not only begin to provide early clinical proof of 0 0 NA EPZ-6438: concept, but indicate that EZH2 inhibition may be effective in the A549 SNU-484 A549 A549 HCC15 context of SMARCA4 mutant cancers, a preclinical finding that has HCC15 COV434 COV434 SNU-484 SNU-484 UM-UC-3 UM-UC-3 NCI-H522 NCI-H661 NCI-H522 NCI-H661 TOV-112D TOV-112D NCI-H1703 NCI-H1299 NCI-H1568 yet to be published. Notably, not all patients with tumors harboring NCI-H1703 NCI-H1299 NCI-H1568 EPZ-6438 EPZ-6438 EPZ-6438 EPZ-6438 SNF5 or SMARCA4 defects responded to therapy, suggesting that sensitive resistant sensitive resistant identifying a biomarker predictive of response to EZH2 inhibition NCI-H1568 could provide significant benefit. In the present study, we demon- NCI-H1703 C control EPZ-6438 strate that EZH2 inhibition is effective in a subset of SMARCA4 mutant cancer models, and that the PRC2-mediated transcriptional UM-UC-3 NCI-H522 suppression of the paralog ATPase, SMARCA2, can predict the Cov-434 preclinical activity of EZH2 inhibitors. Importantly, we show that the level of SMARCA2 expression may be a global predictive HCC-15 COV434 biomarker of EZH2 activity in other BAF mutant cancers. NCI-H522 Results A Subset of SMARCA4 Mutant Cancers Is Responsive to EZH2 Inhibition. NCI-H661 We evaluated the effect of EZH2 inhibition using the EZH2- NCI-H1568 targeting histone methyltransferase inhibitor, EPZ-6438, on clo- SNF5mut control EPZ-6438 ( M): D vehicle nogenic growth across a panel of 11 SMARCA4 mutated cancer EPZ-6438 (30mg/kg) cell lines derived from different tumor types (Dataset S1). A dose- 500 EPZ-6438 (100mg/kg) 0 .06 .18 ) 3 EPZ-6438 (450mg/kg) dependent inhibition of clonogenic growth independent of tissue 400 derivation was observed in a subset of these SMARCA4 mutant cell .56 1.67 5 lines (Fig. 1A). The degree of growth inhibition on EPZ-6438 300 treatment was similar to that previously described in models 200 100 characterized by mutations in SNF5 (G401). No activity was ob- (mm volume tumor = 0 served in a panel of SWI/SNF wild-type models (n 8). The dif- 0 102030 ferential sensitivity to EPZ-6438 was not due to differences in Day target engagement, as a similar dose-dependent inhibition of H3K27 methylation was observed in sensitive and resistant models Fig.
Recommended publications
  • Integrase Interactor 1 (INI-1) Deficient Renal Cell Carcinoma
    Open Access Case Report DOI: 10.7759/cureus.13082 Integrase Interactor 1 (INI-1) Deficient Renal Cell Carcinoma Manpreet Singh 1 , Harkirat Singh 1 , Benjamin Hambro 1 , Jasleen Kaur 1 , Ravi Rao 2 1. Internal Medicine, St Agnes Medical Center, Fresno, USA 2. Hematology and Oncology, St Agnes Medical Center, Fresno, USA Corresponding author: Manpreet Singh, [email protected] Abstract Members of the SWItch/sucrose nonfermentable (SWI-SNF) family, including SWI/SNF related, matrix- associated, actin-dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), SWI/SNF related, matrix‐associated, actin‐dependent regulator of chromatin, subfamily B member 1 (SMARCB1)/integrase interactor 1 (INI-1) are known tumor suppressor genes. Interactions between SMARCB1/INI-1 and key protein components in various cellular pathways are related to tumor progression and proliferation. SMARCB1/INI-1 protein was undetectable in rhabdoid tumor cells, whereas non-tumorous cells express the SMARCB1/INI-1 genes. Germline and sporadic mutations of several genes encoding for proteins in this complex are known to cause a spectrum of cancers, usually with sarcomatoid features which include a very aggressive renal medullary carcinoma. We report a case of a 29-year-old male who presented with SMARCA4 deficient renal tumor with a very aggressive clinical behavior which ultimately led to his death. Categories: Nephrology, Oncology Keywords: renal medullary carcinoma, ini-1, renal cell carcinoma, swi/snf, smarcb1, integrase interactor 1 Introduction Renal medullary carcinoma is a rare and very aggressive malignancy affecting young adults with rare cases in patients with sickle cell disease or trait [1]. The tumor arises predominantly in the renal medulla and exhibits a variety of growth patterns including reticular, solid, tubular, trabecular, cribriform, sarcomatoid, and micropapillary [1].
    [Show full text]
  • Bioinformatics Applications Through Visualization of Variations on Protein
    1 Bioinformatics applications through visualization of variations on protein structures, comparative functional genomics, and comparative modeling for protein structure studies A dissertation presented by Alper Uzun to The Department of Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Biology Northeastern University Boston, Massachusetts July 2009 2 ©2009 Alper Uzun ALL RIGHTS RESERVED 3 Bioinformatics applications through visualization of variations on protein structures, comparative functional genomics, and comparative modeling for protein structure studies by Alper Uzun ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology in the Graduate School of Arts and Sciences of Northeastern University, July, 2009 4 Abstract The three-dimensional structure of a protein provides important information for understanding and answering many biological questions in molecular detail. The rapidly growing number of sequenced genes and related genomic information is intensively accumulating in the biological databases. It is significantly important to combine biological data and developing bioinformatics tools while information of protein sequences, structures and DNA sequences are exponentially growing. On the other hand, especially the number of known protein sequences is much larger than the number of experimentally solved protein structures. However the experimental methods cannot always be applied or protein structures
    [Show full text]
  • C/EBP Creates Elite Cells for Ipsc Reprogramming by Upregulating
    ARTICLES C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4 Bruno Di Stefano1,2,8,9,10, Samuel Collombet3,8, Janus Schou Jakobsen4,5,6,8, Michael Wierer7, Jose Luis Sardina1,2, Andreas Lackner1,2,9, Ralph Stadhouders1,2, Carolina Segura-Morales1,2, Mirko Francesconi1,2, Francesco Limone1,2, Matthias Mann7, Bo Porse4,5,6, Denis Thieffry3 and Thomas Graf1,2,10 Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) is typically inefficient and has been explained by elite-cell and stochastic models. We recently reported that B cells exposed to a pulse of C/EBPα (Bα0 cells) behave as elite cells, in that they can be rapidly and efficiently reprogrammed into iPSCs by the Yamanaka factors OSKM. Here we show that C/EBPα post-transcriptionally increases the abundance of several hundred proteins, including Lsd1, Hdac1, Brd4, Med1 and Cdk9, components of chromatin-modifying complexes present at super-enhancers. Lsd1 was found to be required for B cell gene silencing and Brd4 for the activation of the pluripotency program. C/EBPα also promotes chromatin accessibility in pluripotent cells and upregulates Klf4 by binding to two haematopoietic enhancers. Bα0 cells share many properties with granulocyte/macrophage progenitors, naturally occurring elite cells that are obligate targets for leukaemic transformation, whose formation strictly requires C/EBPα. The ability to reprogram somatic into pluripotent cells has revolu- complex process, where multiple players synergistically establish new tionized stem cell research with major implications for almost all transcriptional networks and remove epigenetic barriers14. Among the fields of modern biology.
    [Show full text]
  • Increased ACTL6A Occupancy Within Mswi/SNF Chromatin Remodelers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.435873; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Increased ACTL6A Occupancy Within mSWI/SNF Chromatin Remodelers Drives Human Squamous Cell Carcinoma Chiung-Ying Chang1,2,7, Zohar Shipony3,7, Ann Kuo1,2, Kyle M. Loh4,5, William J. Greenleaf3,6, Gerald R. Crabtree1,2,5* 1Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. 2Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA. 3Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. 4Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. 5Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. 6Department of Applied Physics, Stanford University, Stanford, California 94305, USA. 7These authors contributed equally. *Corresponding author: Gerald R. Crabtree, [email protected] Summary Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit, ACTL6A, is amplified at an early stage in the development of squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives its interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was sub-stoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near-saturation of ACTL6A within BAF complexes.
    [Show full text]
  • Loss of Integrase Interactor 1 (INI1) Expression in a Subset of Differentiated Thyroid Cancer
    diagnostics Article Loss of Integrase Interactor 1 (INI1) Expression in a Subset of Differentiated Thyroid Cancer Kung-Chen Ho 1, Jie-Jen Lee 1, Chi-Hsin Lin 2,3, Ching-Hsiang Leung 4 and Shih-Ping Cheng 1,5,* 1 Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; [email protected] (K.-C.H.); [email protected] (J.-J.L.) 2 Department of Medical Research, MacKay Memorial Hospital, Taipei 104215, Taiwan; [email protected] 3 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan 4 Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; [email protected] 5 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2543-3535 Received: 19 April 2020; Accepted: 2 May 2020; Published: 5 May 2020 Abstract: Alterations in the switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complex are enriched in advanced thyroid cancer. Integrase interactor 1 (INI1), encoded by the SMARCB1 gene on the long arm of chromosome 22, is one of the core subunits of the SWI/SNF complex. INI1 immunohistochemistry is frequently used for the diagnosis of malignant rhabdoid neoplasms. In the present study, we found normal and benign thyroid tissues generally had diffusely intense nuclear immunostaining. Loss of INI1 immunohistochemical expression was observed in 8% of papillary thyroid cancer and 30% of follicular thyroid cancer. Furthermore, loss of INI1 expression was associated with extrathyroidal extension (p < 0.001) and lymph node metastasis (p = 0.038).
    [Show full text]
  • Swi/Snf Chromatin Remodeling/Tumor Suppressor Complex Establishes Nucleosome Occupancy at Target Promoters
    Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters Michael Y. Tolstorukova,b,1,2, Courtney G. Sansamc,d,e,1, Ping Luc,d,e,1, Edward C. Koellhofferc,d,e, Katherine C. Helmingc,d,e, Burak H. Alvera, Erik J. Tillmanc,d,e, Julia A. Evansc,d,e, Boris G. Wilsonc,d,e, Peter J. Parka,b,3, and Charles W. M. Robertsc,d,e,3 aCenter for Biomedical Informatics, Harvard Medical School, Boston, MA 02115; bDivision of Genetics, Brigham and Women’s Hospital, Boston, MA 02115; cDepartment of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; dDivision of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115; and eDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 Edited by Mark Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved May 2, 2013 (received for review February 6, 2013) Precise nucleosome-positioning patterns at promoters are thought Brg1 haploinsufficient mice are tumor prone, establishing these to be crucial for faithful transcriptional regulation. However, the subunits of the complex as bona fide tumor suppressors (1, 12–17). mechanisms by which these patterns are established, are dynam- It is noteworthy that recent exome sequencing of 35 human SNF5- ically maintained, and subsequently contribute to transcriptional deficient rhabdoid tumors identified a remarkably low rate of control are poorly understood. The switch/sucrose non-fermentable mutations, with loss of SNF5 being essentially the sole recurrent event (18). Indeed, in two of the cancers, there were no other chromatin remodeling complex, also known as the Brg1 associated fi factors complex, is a master developmental regulator and tumor identi ed mutations.
    [Show full text]
  • Renal Medullary Carcinomas Depend Upon SMARCB1 Loss And
    RESEARCH ARTICLE Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition Andrew L Hong1,2,3, Yuen-Yi Tseng3, Jeremiah A Wala3, Won-Jun Kim2, Bryan D Kynnap2, Mihir B Doshi3, Guillaume Kugener3, Gabriel J Sandoval2,3, Thomas P Howard2, Ji Li2, Xiaoping Yang3, Michelle Tillgren2, Mahmhoud Ghandi3, Abeer Sayeed3, Rebecca Deasy3, Abigail Ward1,2, Brian McSteen4, Katherine M Labella2, Paula Keskula3, Adam Tracy3, Cora Connor5, Catherine M Clinton1,2, Alanna J Church1, Brian D Crompton1,2,3, Katherine A Janeway1,2, Barbara Van Hare4, David Sandak4, Ole Gjoerup2, Pratiti Bandopadhayay1,2,3, Paul A Clemons3, Stuart L Schreiber3, David E Root3, Prafulla C Gokhale2, Susan N Chi1,2, Elizabeth A Mullen1,2, Charles WM Roberts6, Cigall Kadoch2,3, Rameen Beroukhim2,3,7, Keith L Ligon2,3,7, Jesse S Boehm3, William C Hahn2,3,7* 1Boston Children’s Hospital, Boston, United States; 2Dana-Farber Cancer Institute, Boston, United States; 3Broad Institute of Harvard and MIT, Cambridge, United States; 4Rare Cancer Research Foundation, Durham, United States; 5RMC Support, North Charleston, United States; 6St. Jude Children’s Research Hospital, Memphis, United States; 7Brigham and Women’s Hospital, Boston, United States Abstract Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival.
    [Show full text]
  • Identification of a Core Member of the SWI/SNF Complex, BAF155/SMARCC1, As a Human Tumor Suppressor Gene
    RESEARCH PAPER Epigenetics 6:12, 1444-1453; December 2011; © 2011 Landes Bioscience Identification of a core member of the SWI/SNF complex, BAF155/SMARCC1, as a human tumor suppressor gene Jessica DelBove,1,6 Gary Rosson,2,7 Matthew Strobeck,3 Jianguang Chen,4 Trevor K. Archer,4 Weidong Wang,5 Erik S. Knudsen3 and Bernard E. Weissman1,2,* 1Department of Pathology and Laboratory Medicine; 2University of North Carolina-Lineberger Comprehensive Cancer Center; 7Department of Genetics; University of North Carolina; Chapel Hill, NC USA; 3Department of Cancer Biology and the Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA; 4Chromatin and Gene Expression Section; Laboratory of Molecular Carcinogenesis; National Institute of Environmental Health Sciences; National Institutes of Health; Research Triangle Park, NC USA; 5Laboratory of Genetics; National Institute on Aging; National Institutes of Health; Baltimore, MD USA; 6Department of Hematology; University of Utah School of Medicine; Salt Lake City, UT USA Key words: SWI/SNF, BAF155, SMARCC1, tumor suppressor gene, cancer epigenetics Recent studies have established that two core members of the SWI/SNF chromatin remodeling complex, BRG1 and SNF5/ INI1, possess tumor-suppressor activity in human and mouse cancers. While the third core member, BAF155, has been implicated by several studies as having a potential role in tumor development, direct evidence for its tumor suppressor activity has remained lacking. Therefore, we screened for BAF155 deficiency in a large number of human tumor cell lines. We identified two cell lines, the SNUC2B colon carcinoma and the SKOV3 ovarian carcinoma, displaying a complete loss of protein expression while maintaining normal levels of mRNA expression.
    [Show full text]
  • Gene Silencing Associated with SWI/SNF Complex Loss During NSCLC Development
    Published OnlineFirst January 20, 2014; DOI: 10.1158/1541-7786.MCR-13-0427 Molecular Cancer Genomics Research Gene Silencing Associated with SWI/SNF Complex Loss during NSCLC Development Shujie Song1,2, Vonn Walter2, Mehmet Karaca3, Ying Li2, Christopher S. Bartlett4, Dominic J. Smiraglia7, Daniel Serber5, Christopher D. Sproul3, Christoph Plass8, Jiren Zhang1, D. Neil Hayes2,6, Yanfang Zheng1, and Bernard E. Weissman2,3 Abstract The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non–small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with a histone deacetylase inhibitor or a DNA methyltransferase (DNMT) inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 reexpression led to substantial changes in the expression of CDH1, CDH3, EHF, and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts, indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. Implications: Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing during NSCLC development. Mol Cancer Res; 12(4); 1–11.
    [Show full text]
  • Loss of CIC Promotes Mitotic Dysregulation and Chromosome Segregation Defects
    bioRxiv preprint doi: https://doi.org/10.1101/533323; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Loss of CIC promotes mitotic dysregulation and chromosome segregation defects. Suganthi Chittaranjan1, Jungeun Song1, Susanna Y. Chan1, Stephen Dongsoo Lee1, Shiekh Tanveer Ahmad2,3,4, William Brothers1, Richard D. Corbett1, Alessia Gagliardi1, Amy Lum5, Annie Moradian6, Stephen Pleasance1, Robin Coope1, J Gregory Cairncross2,7, Stephen Yip5,8, Emma Laks5,8, Samuel A.J.R. Aparicio5,8, Jennifer A. Chan2,3,4, Christopher S. Hughes1, Gregg B. Morin1,9, Veronique G. LeBlanc1, Marco A. Marra1,9* Affiliations 1 Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada 2 Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada 3 Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Canada 4 Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada 5 Department of Molecular Oncology, BC Cancer, Vancouver, Canada 6 California Institute of Technology, Pasadena, USA 7 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada 8 Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada 9 Department of Medical Genetics, University of British Columbia, Vancouver, Canada Corresponding author Marco A. Marra Genome Sciences Centre BC Cancer 675 West 10th Avenue, Vancouver, BC Canada V5Z 1L3 E-mail: [email protected] 604-675-8162 1 bioRxiv preprint doi: https://doi.org/10.1101/533323; this version posted January 29, 2019.
    [Show full text]
  • Epidyne®-FRET for Nucleosome Remodeling Assays
    Nucleosome Remodeling Assay by EpiDyne®-FRET EpiDyne®-FRET allows unprecedented access to disease-relevant ATP-dependent chromatin remodeling complexes FIGURE 3 SMARCA 2 SMARCA 4 EpiDyne®-FRET nucleosomes (20 nM) were incubated with Figure 3A Figure 3B chromatin remodeling enzyme (Panel 3A, SMARCA2; panel 3B, SMARCA4) at the indicated concentration in 4.0 3.5 the presence of ATP (2 mM). 3.5 Upon ATP addition, reactions 3.0 were immediately read in 3.0 an Envision Multi-label plate 2.5 reader. Data are presented as 2.5 the mean of the Cy3-Cy5 ratio 2.0 (N=2). 2.0 1.5 Cy3/Cy5 Ratio Cy3/Cy5 1.5 Ratio Cy3/Cy5 1.0 1.0 0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 Time, Min Time, Min nM Enzyme nM Enzyme 28 14 7 3.5 0.0 12.50 6.25 3.13 1.56 0 ORDERING INFO Chromatin Remodeling Substrate, Fluorescent Readout Enzymes EpiDyne®-FRET Nucleosome Remodeling Assay Substrate SMARCA2 Chromatin Remodeling Enzyme Catalog No. 16-4201 (Human BRM) Pack Size: 50 μg Catalog No. 15-1015 Pack Size: 100 remodeling rxns Chromatin Remodeling Substrates, Non-Fluorescent Readout SMARCA4 Chromatin Remodeling Enzyme (Human BRG1) ST601-GATC1 ST601-GATC1, 50-N-66, Biotinylated Catalog No. 15-1014 Cat. No. 16-4101 Cat. No.: 16-4114 Pack Size: 100 remodeling rxns Pack Size: 50 μg Pack Size: 50 μg ACF Chromatin Remodeling Enzyme Complex ST601-GATC1, Biotinylated ST601-GATC1,2, 50-N-66, Biotinylated Catalog No. 15-1013 Cat.
    [Show full text]
  • Loss of CIC Promotes Mitotic Dysregulation and Chromosome Segregation Defects
    bioRxiv preprint doi: https://doi.org/10.1101/533323; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Loss of CIC promotes mitotic dysregulation and chromosome segregation defects. Suganthi Chittaranjan1, Jungeun Song1, Susanna Y. Chan1, Stephen Dongsoo Lee1, Shiekh Tanveer Ahmad2,3,4, William Brothers1, Richard D. Corbett1, Alessia Gagliardi1, Amy Lum5, Annie Moradian6, Stephen Pleasance1, Robin Coope1, J Gregory Cairncross2,7, Stephen Yip5,8, Emma Laks5,8, Samuel A.J.R. Aparicio5,8, Jennifer A. Chan2,3,4, Christopher S. Hughes1, Gregg B. Morin1,9, Veronique G. LeBlanc1, Marco A. Marra1,9* Affiliations 1 Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada 2 Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada 3 Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Canada 4 Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada 5 Department of Molecular Oncology, BC Cancer, Vancouver, Canada 6 California Institute of Technology, Pasadena, USA 7 Department of Clinical Neurosciences, University of Calgary, Calgary, Canada 8 Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada 9 Department of Medical Genetics, University of British Columbia, Vancouver, Canada Corresponding author Marco A. Marra Genome Sciences Centre BC Cancer 675 West 10th Avenue, Vancouver, BC Canada V5Z 1L3 E-mail: [email protected] 604-675-8162 1 bioRxiv preprint doi: https://doi.org/10.1101/533323; this version posted January 29, 2019.
    [Show full text]