AP Biology Photosynthesis Chapter 8 Reading Guide – ANSWER KEY 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 29 Spring 2007
Geol. 656 Isotope Geochemistry Lecture 29 Spring 2007 ISOTOPE FRACTIONATION IN THE BIOSPHERE INTRODUCTION As we noted, biological processes often involve large isotopic fractionations. Indeed, biological proc- esses are the most important cause of variations in the isotope composition of carbon, nitrogen, and sul- fur. For the most part, the largest fractionations occur during the initial production of organic matter by the so-called primary producers, or autotrophs. These include all plants and many kinds of bacteria. The most important means of production of organic matter is photosynthesis, but organic matter may also be produced by chemosynthesis, for example at mid-ocean ridge hydrothermal vents. Large frac- tions of both carbon and nitrogen occur during primary production. Additional fractionations also oc- cur in subsequent reactions and up through the food chain as hetrotrophs consume primary producers, but these are generally smaller. CARBON ISOTOPE FRACTIONATION DURING PHOTOSYNTHESIS The most important of process producing isotopic fractionation of carbon is photosynthesis. As we earlier noted, photosynthetic fractionation of carbon isotopes is primarily kinetic. The early work of Park and Epstein (1960) suggested fractionation occurred in several steps. Subsequent work has eluci- dated the fractionations involved in these steps, which we will consider in more detail here. For terrestrial plants (those utilizing atmospheric CO2), the first step is diffusion of CO2 into the boundary layer surrounding the leaf, through the stomata, and internally in the leaf. The average δ13C of various species of plants has been correlated with the stomatal conductance (Delucia et al., 1988), in- dicating that diffusion into the plant is indeed important in fractionating carbon isotopes. -
Lecture 7 - the Calvin Cycle and the Pentose Phosphate Pathway
Lecture 7 - The Calvin Cycle and the Pentose Phosphate Pathway Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire 1 Introduction The Calvin cycle Text The dark reactions of photosynthesis in green plants Reduces carbon from CO2 to hexose (C6H12O6) Requires ATP for free energy and NADPH as a reducing agent. 2 2 Introduction NADH versus Text NADPH 3 3 Introduction The Pentose Phosphate Pathway Used in all organisms Glucose is oxidized and decarboxylated to produce reduced NADPH Used for the synthesis and degradation of pentoses Shares reactions with the Calvin cycle 4 4 1. The Calvin Cycle Source of carbon is CO2 Text Takes place in the stroma of the chloroplasts Comprises three stages Fixation of CO2 by ribulose 1,5-bisphosphate to form two 3-phosphoglycerate molecules Reduction of 3-phosphoglycerate to produce hexose sugars Regeneration of ribulose 1,5-bisphosphate 5 5 1. Calvin Cycle Three stages 6 6 1.1 Stage I: Fixation Incorporation of CO2 into 3-phosphoglycerate 7 7 1.1 Stage I: Fixation Rubisco: Ribulose 1,5- bisphosphate carboxylase/ oxygenase 8 8 1.1 Stage I: Fixation Active site contains a divalent metal ion 9 9 1.2 Rubisco Oxygenase Activity Rubisco also catalyzes a wasteful oxygenase reaction: 10 10 1.3 State II: Formation of Hexoses Reactions similar to those of gluconeogenesis But they take place in the chloroplasts And use NADPH instead of NADH 11 11 1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate Involves a sequence of transketolase and aldolase reactions. 12 12 1.3 State III: -
Biol 1020: Photosynthesis
Chapter 10: Photosynthesis Energy and Carbon Sources Electromagnetic Spectrum and Light Chloroplasts Photosynthesis Overview Light Reactions C3 Cycle Photorespiration Supplemental Carbon Fixation: C4 and CAM pathways . • List and differentiate the 4 possible groups of organisms based on how they obtain energy and useful carbon. Classification by Energy and Carbon Sources energy source chemotrophs can only get energy directly from chemical compounds phototrophs can get energy directly from light (these organisms can use chemical compounds as energy sources as well) . Classification by Energy and Carbon Sources carbon source autotrophs can fix carbon dioxide, thus they can use CO2 as a carbon source heterotrophs cannot fix CO2; they use organic molecules from other organisms as a carbon source . Classification by Energy and Carbon Sources combined, these leads to 4 possible groups: photoautotrophs – carry out photosynthesis use light energy to fix CO2 store energy in chemical bonds of organic molecules includes green plants, algae, and some bacteria photoheterotrophs – use light energy but cannot fix CO2; some nonsulfur purple bacteria chemoautotrophs – obtain energy from reduced inorganic molecules and use some of it to fix CO2; some bacteria chemoheterotrophs – use organic molecules as both carbon and energy sources dependent completely on other organisms for energy capture and carbon fixation includes all animals, all fungi, most protists, and most bacteria . • List and differentiate the 4 possible groups of -
IB HL Biology: Ecology Review Fall 2017 Populations 1. Define the Following Terms Associated with Population Ecology; Population and Carrying Capacity
IB HL Biology: Ecology Review Fall 2017 Populations 1. Define the following terms associated with population ecology; population and carrying capacity. 2. What processes contribute to changes in population size? 3. What are some factors which can increase the carrying capacity of a population? Decrease? 4. What is quadrat sampling? When would it be used? Communities 5. Define the following terms; community, autotroph, heterotroph, producer, primary consumer, secondary consumer, detritivore and saprotroph. 6. What is the initial energy source for all communities? 7. Be able to read food webs and determine the trophic level of different species. 8. Choose 2 regions below and determine the Simpson’s Diversity Index value for these regions. Which region is more diverse? A. An area of the Black Forest in Germany contains 134 pitch pines, 24 douglas firs, and 53 red pines. B. A meadow contains 1532 chestnut oaks, 342 black cherry trees, 12 white ash trees, and 1022 yellow birches. C. You school science classroom contains 12 beetles, 34 termites, 84 ants, 93 fleas, and 1 butterfly. D. An African park contains 15 lions, 94 giraffes, 1000 wildebeests, 50 elephants, and 5 hyenas. Choose more areas if you need more practice. 9. What is a keystone species? 10. Distinguish between primary and secondary succession. Ecosystems 11. What is an ecosystem? 12. Explain the 10% rule of energy transfer. How is the energy lost between trophic levels? 13. Review the Carbon Cycle. What are the main sources of carbon dioxide on earth? 14. Review the Nitrogen Cycle. 15. Distinguish between Gross Primary Productivity and Net Primary Productivity. -
The Summary Equation of Cellular Respiration. the Difference Between
The summary equation of cellular respiration. The difference between fermentation and cellular respiration. The role of glycolysis in oxidizing glucose to two molecules of pyruvate. The process that brings pyruvate from the cytosol into the mitochondria and introduces it into the citric acid cycle. How the process of chemiosmosis utilizes the electrons from NADH and FADH2 to produce ATP. E flows into ecosystem as Sunlight Autotrophs transform it into chemical E O2 released as byproduct Cells use some of chemical E in organic molecules to make ATP E leaves as heat Catabolic Pathway Complex organic Simpler waste molecules products with less E Some E used to do work and dissipated as heat Introduction Respiration (15 min) Respiration: exergonic (releases E) C6H12O6 + 6O2 6H2O + 6CO2 + ATP (+ heat) Fermentation exergonic (releases E) C6H12O6 2-3 C products + ATP (small amounts) Photosynthesis: endergonic (requires E) 6H2O + 6CO2 + Light C6H12O6 + 6O2 oxidation (donor) lose e- Xe- + Y X + Ye- reduction (acceptor) gain e- Oxidation = lose e- OiLRiG or LeoGer Reduction = gain e- oxidation C6H12O6 + 6O2 6H2O + 6CO2 + ATP reduction Energy is released as electrons “fall” from organic molecules to O2 Broken down into steps: Food (Glucose) NADH ETC O2 . Coenzyme NAD+ = electron acceptor . NAD+ picks up 2e- and 2H+ NADH (stores E) . NADH carries electrons to the electron transport chain (ETC) - . ETC: transfers e to O2 to make H2O ; releases energy Generate small amount of ATP Phosphorylation: enzyme transfers a phosphate to other -
Chapter 11 – PROKARYOTES: Survey of the Bacteria & Archaea
Chapter 11 – PROKARYOTES: Survey of the Bacteria & Archaea 1. The Bacteria 2. The Archaea Important Metabolic Terms Oxygen tolerance/usage: aerobic – requires or can use oxygen (O2) anaerobic – does not require or cannot tolerate O2 Energy usage: autotroph – uses CO2 as a carbon source • photoautotroph – uses light as an energy source • chemoautotroph – gets energy from inorganic mol. heterotroph – requires an organic carbon source • chemoheterotroph – gets energy & carbon from organic molecules …more Important Terms Facultative vs Obligate: facultative – “able to, but not requiring” e.g. • facultative anaerobes – can survive w/ or w/o O2 obligate – “absolutely requires” e.g. • obligate anaerobes – cannot tolerate O2 • obligate intracellular parasite – can only survive within a host cell The 2 Prokaryotic Domains Overview of the Bacterial Domain We will look at examples from several bacterial phyla grouped largely based on rRNA (ribotyping): Gram+ bacteria • Firmicutes (low G+C), Actinobacteria (high G+C) Proteobacteria (Gram- heterotrophs mainly) Gram- nonproteobacteria (photoautotrophs) Chlamydiae (no peptidoglycan in cell walls) Spirochaetes (coiled due to axial filaments) Bacteroides (mostly anaerobic) 1. The Gram+ Bacteria Gram+ Bacteria The Gram+ bacteria are found in 2 different phyla: Firmicutes • low G+C content (usually less than 50%) • many common pathogens Actinobacteria • high G+C content (greater than 50%) • characterized by branching filaments Firmicutes Characteristics associated with this phylum: • low G+C Gram+ bacteria -
Fermentation and Anaerobic Decomposition in a Hot Spring
Fermentation and anaerobic decomposition in a hot spring microbial mat by Karen Leigh Anderson A thesis submitted in partial fulfillment of requirements for the degree of Master of Science in Microbiology Montana State University © Copyright by Karen Leigh Anderson (1984) Abstract: Fermentation was investigated in a low sulfate hot spring microbial mat (Octopus Spring) according to current models on anaerobic decomposition. The mat was studied to determine what fermentation products accumulated, where in the mat they accumulated, and what factors affected their accumulation. Mat samples were incubated under dark anaerobic conditions to measure accumulation of fermentation products. Acetate and propionate (ca. 3:1) were the major products to accumulate in a 55°,C mat. Other products accumulated to a much lesser extent. Incubation of mat samples of varying thickness showed that fermentation occurred in the top 4mm of the mat. This has interesting implications for fermentative organisms in the mat due to the diurnal changes in mat oxygen concentrations. Fermentation measured in mat samples collected at various temperatures (50°,-70°C) showed acetate and propionate to be the major accumulation products. According to the interspecies hydrogen transfer model, the hydrogen concentration in a system affects the types of fermentation products produced. At a 65° C site, with natural high hydrogen levels, and at a 55°C site, with active methanogenesis, fermentation product accumulation was compared. There was a greater ratio of reduced fermentation products to acetate, with the exception of propionate, at 65°C. Ethanol accumulated at the 65°C site, as did lactate, though to a lesser extent. -
Principles of Ecology Section ●2 Flow of Energy in an Ecosystem
chapter 2 Principles of Ecology section ●2 Flow of Energy in an Ecosystem -!). )DEA Before You Read Autotrophs capture energy, making it available for all If a pet had to survive without your care, how would its diet members of a food web. change? Write your ideas on the lines below. Read about how What You’ll Learn organisms get food and energy in their environment. ■ the fl ow of energy through an ecosystem ■ food chains, food webs, and pyramid models 3TUDY#OACH Read to Learn Make Flash Cards Make a fl ash card for each question Energy in an Ecosystem heading in this section. On the One way to study the interactions within an ecosystem is to back of the fl ash card, write the trace how energy fl ows through the system. All organisms are answer to the question. Use the classifi ed by the way they obtain energy. fl ash cards to review what you have learned. How do autotrophs obtain energy? All green plants and other organisms that produce their own food are the primary producers of food in an ecosystem. They are called autotrophs. An autotroph (AW tuh trohf) is an organism that captures energy from sunlight or inorganic substances to produce food. Autotrophs make energy available for all other organisms in the ecosystem. How do heterotrophs differ from autotrophs? A heterotroph (HE tuh roh trohf), also called a consumer, is an organism that obtains energy by consuming other organisms. A heterotroph that consumes only plants is an herbivore (HUR buh vor). Cows, rabbits, and grasshoppers are herbivores. -
BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 10
BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 10 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge © 2014 Pearson Education, Inc. Roadmap 10 In this chapter you will learn how Photosynthesis links life to the power of the Sun by previewing by examining Conversion of light How photosynthetic pigments energy into chemical capture light energy 10.2 energy 10.1 then looking closer at Energy flow and ATP Photosystem II production10.3 Photosystem I and exploring CO2 fixation and reduction to The Calvin cycle form sugars 10.4 © 2014 Pearson Education, Inc. ▪ Photosynthesis – Is the process of using sunlight to produce carbohydrate – Requires sunlight, carbon dioxide, and water – Produces oxygen as a by-product ▪ The overall reaction when glucose is the carbohydrate: 6 CO2 6 H2O light energy C6H12O6 6 O2 © 2014 Pearson Education, Inc. ▪ Photosynthesis contrasts with cellular respiration – Photosynthesis is endergonic – Reduces CO2 to sugar – Cellular respiration is exergonic – Oxidizes sugar to CO2 Electrons are Electrons are pulled __________; pulled _______________; C is _________ O is _________ Potential energy increases 6 CO2 6 H2O Input of 6 O2 (carbon dioxide) (water) energy Glucose (oxygen) © 2014 Pearson Education, Inc. ▪ Light-dependent reactions – Produce O2 from H2O ▪ Calvin cycle reactions – Produce sugar from CO2 ▪ The reactions are linked by electrons – Released in the light-dependent reactions – When water is split to form oxygen gas – Then transferred to the electron carrier NADP+, forming NADPH © 2014 Pearson Education, Inc. ▪ The Calvin cycle Figure 10.2 then uses Sunlight (Light – These electrons energy) – The potential Light- energy in ATP capturing reactions – To reduce CO2 to (Chemical make sugars energy) Calvin cycle (Chemical energy) © 2014 Pearson Education, Inc. -
AP Biology-00001310.Cdr
® INTERNATIONAL ACADEMY OF SCIENCE Acellus AP Biology AP Biology Course Curriculum Unit 1 - Evolution Drives the Diversity and Unity of Life 46 Photosystems 1 Intro to AP Biology 47 Photophosphorylation 2 Nature of Science 48 Carbon Fixation (or Calvin Cycle) 3 Evidence for Evolution 49 Putting It Together - Photosynthesis and Respiration 4 Natural Selection - Descent with Modification 50 Feedback Mechanisms 5 Hardy - Weinberg Theorem 51 Cell Communication 6 Hardy - Weinberg Equilibrium Unit 6 - The Cell Cycle 7 Biological Evolution 52 Why Do Cells Divide? 8 Phylogeny - Evolutionary History 53 Origin of the Cell Cycle 9 Modern Synthesis Theory of Evolution 54 Chromosome Structure Unit 2 - Water Potential 55 Phases of the Cycle 10 Abiogenesis 56 Lab: Cell Division - Part I 11 Properties of Water 57 Lab: Cell Division - Part II 12 Organic Molecules 58 Variances in the Cell Cycle 13 Origin of Cells 59 Control of the Cell Cycle 14 Endosymbiosis 60 Uncontrolled Cell Cycle 15 Characteristics of Life 61 Lab: Cell Division - Part III 16 Cell Membranes - Structure Unit 7 - Mitosis and Meiosis 17 Selective Permeability 62 Two Types of Cell Reproduction 18 Diffusion and Cell Size 63 Meiosis Overview 19 Water Potential - Concentration Gradient 64 The Phases of Meiosis 20 Lab: Water Potential 65 Meiosis and Genetic Variation Unit 3 - Cell Structure 66 Lab: Cell Division - Part IV 21 Basic Cell Structure 67 Lab: Cell Division - Part V 22 Prokaryotes 68 Meiosis and Gamete Formation 23 Eukaryotes Unit 8 - History of Genetics 24 Mitochondria and Chloroplasts -
Photorespiration
Arjun Adhikari, Asst. Prof. M.C. College, Barpeta Photorespiration Photorespiration is a wasteful pathway that competes with the Calvin cycle. It begins when rubisco acts on oxygen instead of carbon dioxide. RuBP oxygenase-carboxylase (rubisco ), a key enzyme in photosynthesis. In the process of carbon fixation , rubisco incorporates carbon dioxide into an organic molecule during the first stage of the Calvin cycle . Rubisco is so important to plants that it makes upto 30% percent or more of the soluble protein in a typical plant leaf. But rubisco also has a major flaw: instead of always using CO 2 as a substrate, it sometimes picks up O2 instead. This side reaction initiates a pathway called photorespiration , which, rather than fixing carbon, actually leads to the loss of already -fixed carbon as CO 2. Photorespiration wastes energy and decreases sugar synthesis, so when rubisco initiates this pathway, it's committing a serious molecular mess. Rubisco binds to either CO 2 or O2 As we know , the enzyme rubisco can use either CO 2 or O2 as a substrate. Rubisco adds whichever molecule it binds to a five -carbon compound called ribulose -1,5-bisphosphate (RuBP). The reaction that uses CO 2 is the first step of the Calvin cycle and leads to the production of sugar. The reaction that uses O2 is the first step o f the photorespiration pathway, which wastes energy and "undoes" the work of the Calvin cycle . When a plant has its stomata, or leaf pores, open CO 2 diffuses in, O2 and water vapor diffuse out, and photorespiration is minimized. -
Spontaneous Generation & Origin of Life Concepts from Antiquity to The
SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R.