Posture and Voice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of the External Branch of the Superior Laryngeal Nerve During Thyroidectomy
ORIGINAL ARTICLE Identification of the External Branch of the Superior Laryngeal Nerve During Thyroidectomy Nitin A. Pagedar, MD; Jeremy L. Freeman, MD, FRCSC Objectives: To determine the feasibility of identifica- sition according to Cernea classification and correlation tion of the external branch of the superior laryngeal nerve with patient and gland characteristics. (EBSLN) during routine thyroidectomy and to describe the EBSLN position according to the Cernea classifica- Results: Three of 178 EBSLNs (1.7%) could not be iden- tion system. tified using the routine technique. The EBSLN was found in the highest-risk position (Cernea type 2b, crossing the Design: Prospective case series. superior vascular pedicle below the upper border of the gland) in 48.3% of cases, and in the lowest-risk position Setting: Academic tertiary care center. (Cernea type 1, crossing more than 1 cm above the up- per border) in 7.3%. Specimens larger in weight and in Patients: One hundred twelve consecutive patients un- dimension were correlated with type 2b nerves. dergoing hemithyroidectomy or total thyroidectomy by the senior author between August 15 and December 31, Conclusions: The EBSLN can be routinely identified dur- 2007. ing thyroidectomy. Moreover, many EBSLNs are in po- sition to be at high risk of injury during ligation of the Interventions: None. superior vascular pedicle. Main Outcome Measure: Proportion of EBSLNs iden- tified. Secondary outcome measures included EBSLN po- Arch Otolaryngol Head Neck Surg. 2009;135(4):360-362 TUDIES HAVE SHOWN THAT SUB- identified than in cases in which no search jective voice disturbance after was performed. thyroidectomy is very com- Anatomic studies have sought to delin- mon,1,2 even without injury to eate the course of the nerve near the supe- the recurrent laryngeal nerves. -
Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy
ORIGINAL ARTICLE Superior Laryngeal Nerve Identification and Preservation in Thyroidectomy Michael Friedman, MD; Phillip LoSavio, BS; Hani Ibrahim, MD Background: Injury to the external branch of the su- recorded and compared on an annual basis for both be- perior laryngeal nerve (EBSLN) can result in detrimen- nign and malignant disease. Overall results were also com- tal voice changes, the severity of which varies according pared with those found in previous series identified to the voice demands of the patient. Variations in its ana- through a 50-year literature review. tomic patterns and in the rates of identification re- ported in the literature have discouraged thyroid sur- Results: The 3 anatomic variations of the distal aspect geons from routine exploration and identification of this of the EBSLN as it enters the cricothyroid were encoun- nerve. Inconsistent with the surgical principle of pres- tered and are described. The total identification rate over ervation of critical structures through identification, mod- the 20-year period was 900 (85.1%) of 1057 nerves. Op- ern-day thyroidectomy surgeons still avoid the EBSLN erations performed for benign disease were associated rather than identifying and preserving it. with higher identification rates (599 [86.1%] of 696) as opposed to those performed for malignant disease Objectives: To describe the anatomic variations of the (301 [83.4%] of 361). Operations performed in recent EBSLN, particularly at the junction of the inferior con- years have a higher identification rate (over 90%). strictor and cricothyroid muscles; to propose a system- atic approach to identification and preservation of this Conclusions: Understanding the 3 anatomic variations nerve; and to define the identification rate of this nerve of the distal portion of the EBSLN and its relation to the during thyroidectomy. -
Larynx Anatomy
LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation -
The Role of Strap Muscles in Phonation Laryngeal Model in Vivo
Journal of Voice Vol. 11, No. 1, pp. 23-32 © 1997 Lippincott-Raven Publishers, Philadelphia The Role of Strap Muscles in Phonation In Vivo Canine Laryngeal Model Ki Hwan Hong, *Ming Ye, *Young Mo Kim, *Kevin F. Kevorkian, and *Gerald S. Berke Department of Otolaryngology, Chonbuk National University, Medical School, Chonbuk, Korea; and *Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, California, U.S.A. Summary: In spite of the presumed importance of the strap muscles on laryn- geal valving and speech production, there is little research concerning the physiological role and the functional differences among the strap muscles. Generally, the strap muscles have been shown to cause a decrease in the fundamental frequency (Fo) of phonation during contraction. In this study, an in vivo canine laryngeal model was used to show the effects of strap muscles on the laryngeal function by measuring the F o, subglottic pressure, vocal in- tensity, vocal fold length, cricothyroid distance, and vertical laryngeal move- ment. Results demonstrated that the contraction of sternohyoid and sternothy- roid muscles corresponded to a rise in subglottic pressure, shortened cricothy- roid distance, lengthened vocal fold, and raised F o and vocal intensity. The thyrohyoid muscle corresponded to lowered subglottic pressure, widened cricothyroid distance, shortened vocal fold, and lowered F 0 and vocal inten- sity. We postulate that the mechanism of altering F o and other variables after stimulation of the strap muscles is due to the effects of laryngotracheal pulling, upward or downward, and laryngotracheal forward bending, by the external forces during strap muscle contraction. -
6. the Pharynx the Pharynx, Which Forms the Upper Part of the Digestive Tract, Consists of Three Parts: the Nasopharynx, the Oropharynx and the Laryngopharynx
6. The Pharynx The pharynx, which forms the upper part of the digestive tract, consists of three parts: the nasopharynx, the oropharynx and the laryngopharynx. The principle object of this dissection is to observe the pharyngeal constrictors that form the back wall of the vocal tract. Because the cadaver is lying face down, we will consider these muscles from the back. Figure 6.1 shows their location. stylopharyngeus suuperior phayngeal constrictor mandible medial hyoid bone phayngeal constrictor inferior phayngeal constrictor Figure 6.1. Posterior view of the muscles of the pharynx. Each of the three pharyngeal constrictors has a left and right part that interdigitate (join in fingerlike branches) in the midline, forming a raphe, or union. This raphe forms the back wall of the pharynx. The superior pharyngeal constrictor is largely in the nasopharynx. It has several origins (some texts regard it as more than one muscle) one of which is the medial pterygoid plate. It assists in the constriction of the nasopharynx, but has little role in speech production other than helping form a site against which the velum may be pulled when forming a velic closure. The medial pharyngeal constrictor, which originates on the greater horn of the hyoid bone, also has little function in speech. To some extent it can be considered as an elevator of the hyoid bone, but its most important role for speech is simply as the back wall of the vocal tract. The inferior pharyngeal constrictor also performs this function, but plays a more important role constricting the pharynx in the formation of pharyngeal consonants. -
Vocal Cord Paralysis
Vocal Cord Paralysis What Is Vocal Fold (cord) Paresis And Paralysis? Vocal fold (or cord) paresis and paralysis result from abnormal nerve input to the voice box muscles (laryngeal muscles). Paralysis is the total interruption of nerve impulse resulting in no movement of the muscle; Paresis is the partial interruption of nerve impulse resulting in weak or abnormal motion of laryngeal muscle(s). Vocal fold paresis/paralysis can happen at any age – from birth to advanced age, in males and females alike, from a variety of causes. The effect on patients may vary greatly depending on the patient’s use of his or her voice: A mild vocal fold paresis can be the end to a singer's career, but have only a marginal effect on a computer programmer's career. What Nerves Are Involved In Vocal Fold Paresis/Paralysis? Vocal fold movements are a result of the coordinated contraction of various muscles. These muscles are controlled by the brain through a specific set of nerves. The nerves that receive these signals are the: Superior laryngeal nerve (SLN), which carries signals to the cricothyroid muscle, located between the cricoid and thyroid cartilages. Since the cricothyroid muscle adjusts the tension of the vocal fold for high notes during singing, SLN paresis and paralysis result in abnormalities in voice pitch and the inability to sing with smooth change to each higher note. Sometimes, patients with SLN paresis/paralysis may have a normal speaking voice but an abnormal singing voice. The recurrent laryngeal nerve (RLN) carries signals to different voice box muscles responsible for opening vocal folds (as in breathing, coughing), closing vocal folds for vocal fold vibration during voice use, and closing vocal folds during swallowing. -
Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE -
Cervical Spine and Cervicothoracic Junction Alexander R
46 Cervical Spine and Cervicothoracic Junction Alexander R. Riccio, Tyler J. Kenning, John W. German SUMMARY OF KEY POINTS the approximate cervical spinal levels for the purposes of the skin incision. These include the hyoid bone (C3), thyroid • Understanding the anatomy of the cervical spine and cartilage (C4-5), cricoid cartilage (C6), and carotid tubercle neck is of the utmost importance for the surgeon (C6). These landmarks, however, may not be universally reli- operating in this region. able because, depending on a patient’s body habitus, they may be difficult to palpate reliably; moreover, the relationships are • The anatomy of this region can be classified from only an estimate and variability exists. superficial to deep and further analyzed by system, The most prominent structure of the upper dorsal surface including muscle, bone, nerves, vasculature, and soft of the nuchal region is the inion, or occipital protuberance. tissue. This may be palpated in the midline and is a part of the • Regarding the nerves in the neck, more focused occipital bone. The spinous processes of the cervical vertebrae consideration is taken for surgical purposes when may then be followed caudally to the vertebral prominence, discussing the laryngeal nerve as a result of the variably corresponding to the spinous process of C6, C7 (most potential morbidity associated with iatrogenic injury common), or T1. to this nerve. The prominent surface structure of the ventral neck is the • The vertebral artery is discussed in specific detail as laryngeal prominence, which is produced by the underlying well due to its clinical importance and proximity to thyroid cartilage. -
The Structure and Movement of Clarinet Playing D.M.A
The Structure and Movement of Clarinet Playing D.M.A. DOCUMENT Presented in Partial Fulfilment of the Requirements for the Degree Doctor of Musical Arts in the Graduate School of The Ohio State University By Sheri Lynn Rolf, M.D. Graduate Program in Music The Ohio State University 2018 D.M.A. Document Committee: Dr. Caroline A. Hartig, Chair Dr. David Hedgecoth Professor Katherine Borst Jones Dr. Scott McCoy Copyrighted by Sheri Lynn Rolf, M.D. 2018 Abstract The clarinet is a complex instrument that blends wood, metal, and air to create some of the world’s most beautiful sounds. Its most intricate component, however, is the human who is playing it. While the clarinet has 24 tone holes and 17 or 18 keys, the human body has 205 bones, around 700 muscles, and nearly 45 miles of nerves. A seemingly endless number of exercises and etudes are available to improve technique, but almost no one comments on how to best use the body in order to utilize these studies to maximum effect while preventing injury. The purpose of this study is to elucidate the interactions of the clarinet with the body of the person playing it. Emphasis will be placed upon the musculoskeletal system, recognizing that playing the clarinet is an activity that ultimately involves the entire body. Aspects of the skeletal system as they relate to playing the clarinet will be described, beginning with the axial skeleton. The extremities and their musculoskeletal relationships to the clarinet will then be discussed. The muscles responsible for the fine coordinated movements required for successful performance on the clarinet will be described. -
Shifteh Retropharyngeal Danger and Paraspinal Spaces ASHNR 2016
Acknowledgment • Illustrations Courtesy Amirsys, Inc. Retropharyngeal, Danger, and Paraspinal Spaces Keivan Shifteh, M.D. Professor of Clinical Radiology Director of Head & Neck Imaging Program Director, Neuroradiology Fellowship Montefiore Medical Center Albert Einstein College of Medicine Bronx, New York Retropharyngeal, Danger, and Retropharyngeal Space (RPS) Paraspinal Spaces • It is a potential space traversing supra- & infrahyoid neck. • Although diseases affecting these spaces are relatively uncommon, they can result in significant morbidity. • Because of the deep location of these spaces within the neck, lesions arising from these locations are often inaccessible to clinical examination but they are readily demonstrated on CT and MRI. • Therefore, cross-sectional imaging plays an important role in the evaluation of these spaces. Retropharyngeal Space (RPS) Retropharyngeal Space (RPS) • It is seen as a thin line of fat between the pharyngeal • It is bounded anteriorly by the MLDCF (buccopharyngeal constrictor muscles anteriorly and the prevertebral fascia), posteriorly by the DLDCF (prevertebral fascia), and muscles posteriorly. laterally by sagittaly oriented slips of DLDCF (cloison sagittale). Alar fascia (AF) Retropharyngeal Space • Coronally oriented slip of DLDCF (alar fascia) extends from • The anterior compartment is true or proper RPS and the the medial border of the carotid space on either side and posterior compartment is danger space. divides the RPS into 2 compartments: Scali F et al. Annal Otol Rhinol Laryngol. 2015 May 19. Retropharyngeal Space Danger Space (DS) • The true RPS extends from the clivus inferiorly to a variable • The danger space extends further inferiorly into the posterior level between the T1 and T6 vertebrae where the alar fascia mediastinum just above the diaphragm. -
The Five Diaphragms in Osteopathic Manipulative Medicine: Myofascial Relationships, Part 1
Open Access Review Article DOI: 10.7759/cureus.7794 The Five Diaphragms in Osteopathic Manipulative Medicine: Myofascial Relationships, Part 1 Bruno Bordoni 1 1. Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA Corresponding author: Bruno Bordoni, [email protected] Abstract Working on the diaphragm muscle and the connected diaphragms is part of the respiratory-circulatory osteopathic model. The breath allows the free movement of body fluids and according to the concept of this model, the patient's health is preserved thanks to the cleaning of the tissues by means of the movement of the fluids (blood, lymph). The respiratory muscle has several systemic connections and multiple functions. The founder of osteopathic medicine emphasized the importance of the thoracic diaphragm and body health. The five diaphragms (tentorium cerebelli, tongue, thoracic outlet, thoracic diaphragm and pelvic floor) represent an important tool for the osteopath to evaluate and find a treatment strategy with the ultimate goal of patient well-being. The two articles highlight the most up-to-date scientific information on the myofascial continuum for the first time. Knowledge of myofascial connections is the basis for understanding the importance of the five diaphragms in osteopathic medicine. In this first part, the article reviews the systemic myofascial posterolateral relationships of the respiratory diaphragm; in the second I will deal with the myofascial anterolateral myofascial connections. Categories: Medical Education, Anatomy, Osteopathic Medicine Keywords: diaphragm, osteopathic, fascia, myofascial, fascintegrity, physiotherapy Introduction And Background Osteopathic manual medicine (OMM) was founded by Dr AT Still in the late nineteenth century in America [1]. OMM provides five models for the clinical approach to the patient, which act as an anatomy physiological framework and, at the same time, can be a starting point for the best healing strategy [1]. -
Bilateral Variation of the Suboccipital Region Musculature
S Journal of O p s e s n Acce Anatomy and Physiological Studies CASE REPORT Bilateral Variation of the Suboccipital Region Musculature AR Dickerson*, CL Fisher PhD Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA Abstract Dissection of the posterior cervical and suboccipital regions of an embalmed 81-year-old male cadaver revealed bilateral variations in the muscular anatomy, including two accessory muscles lying deep to the semispinalis capitis on each side, as well as a bilateral doubling of the rectus capitis posterior major muscle. These two sets of anatomical variations have little to no previous documentation in the literature. The accessory muscle bands were observed to have unique relationships with the greater occipital nerve on each side. This case report describes the findings in detail and examines their precedent in the literature. The suboccipital region has been implicated in the etiology of cervicogenic pain, headaches, and occipital neuralgia. Variations in the muscular anatomy have the potential to create structural interactions with vascular and neurologic structures in the area. Anatomic variations like those reported here should be considered in the diagnosis and treatment of pain and other conditions of the suboccipital region. Keywords: Anatomic Variation, Suboccipital, Accessory Muscle, Greater Occipital Nerve, Rectus capitis posterior major muscle Background leading us to believe that we had encountered accessory muscles that had been previously unreported. The muscles This case report describes variation of the musculature in the were delicate and located in a region often removed to expose suboccipital region observed during dissection of an embalmed the suboccipital region just beneath, so we postulate that the 81-year-old male cadaver.