Pickup Ion Processes Associated with Spacecraft Thrusters •Fi Implications for Solar Probe Plus

Total Page:16

File Type:pdf, Size:1020Kb

Pickup Ion Processes Associated with Spacecraft Thrusters •Fi Implications for Solar Probe Plus Astronomy Unit School of Physics and Astronomy Queen Mary University of London Pickup Ion Processes Associated with Spacecraft Thrusters Implications for Solar Probe Plus Adam Clemens Submitted in partial fulfillment of the requirements of the Degree of Doctor of Philosophy 1 Declaration I, Adam Clemens, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previ- ously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party's copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 24/09/2015 2 Abstract Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They produce a plume of neutral gas which produces ions via pho- toionisation and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionisation over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. A parameter survey was performed for varying angles of injection and injection rates, particle kinetics were also investigated. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moder- ate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi periodically and the ways in which these features are modified by the degree of solar wind mass loading and the relative ori- entation of the magnetic field to the angle of injection. This may affect Solar Probe Plus for a significant duration as data taking and delicate sensory equipment may be required to cease operation until local fluctuations return to a more moderate level. The scale of the fluctuations seen are dependent upon the duration of the thruster firing and the specific geometry and therefore effects may vary in-situ. 3 Acknowledgements First and foremost I would like to thank Prof. David Burgess for all of the help and support he has given me over the last four years, without his friendly advice and guidance this thesis would never have been completed. Even when things took a turn for the worse his relentless optimism made me believe that perhaps it wasn't so bad and as it turned out we had the technology and we did rebuild! I would also like to thank Chris Haynes for the many discussions, hints, tips and examples on everything MATLAB related without which I would likely still be smashing my head against today. Of course I have to thank all of my fellow PhD students, both current and past for the company, discussions, help and most importantly for the beer and vodka at the SCR. You all helped keep me (kind of) sane! I thank my mother and family for the continuous moral support and belief. Even when I lost faith in myself you were there to say \You can do it!" Last, but certainly not least, I would like to thank Harriet. You helped, supported and encouraged me throughout this PhD and more in ways I probably never even knew, especially when the proverbial hit the fan. Thank you, I wouldn't be here without you. This work was supported by the Science and Technology Facilities Council (STFC), grant number ST/J500860/1 4 Contents Abstract 3 Acknowledgements 4 1. Introduction 8 2. The Physics of Pickup Ions 14 2.1. Introduction . 14 2.2. Interstellar Pickup Ions . 21 2.2.1. Source of Neutral Particles . 21 2.2.2. Filtration and Other Effects . 23 2.2.3. Anomalous Cosmic Rays . 25 2.2.4. Shock Acceleration of Interstellar Pickup Ions . 27 2.3. Pickup Ions at Comets . 30 2.4. Pickup Ions at Planets and Moons . 39 2.4.1. Jupiter . 40 2.4.2. Mars . 41 2.4.3. Saturn . 42 2.4.4. Mercury . 42 2.4.5. Earth . 43 2.4.6. Venus . 44 2.5. Active Release Experiments . 45 2.5.1. CRRES . 46 2.5.2. AMPTE . 47 2.5.3. CRIT II . 49 3. Modelling Spacecraft Thruster Pickup Ions 52 3.1. Introduction . 52 3.2. Neutral Expansion . 61 3.3. Ionisation . 72 3.4. Implementation . 74 3.5. Hybrid Model . 76 4. Interaction of Spacecraft Thrusters with the Solar Wind - An Overview 80 4.1. Introduction . 80 4.2. Simulation Setup . 81 4.3. Results . 82 4.4. Conclusions . 100 5 Contents 6 5. Interaction of Spacecraft Thrusters with the Solar Wind - A Pa- rameter Survey 102 5.1. A Qualitative Overview . 102 5.1.1. Injection at 45◦ to the Initial Magnetic Field . 102 5.1.2. Injection at 0◦ to the Initial Magnetic Field . 104 5.1.3. Low Injection Rate at 90◦ to the Initial Magnetic Field . 105 5.1.4. High Injection Rate at 90◦ to the Initial Magnetic Field . 107 5.2. Magnetic Pileup . 108 5.2.1. Injection at 45◦ to the Initial Magnetic Field . 108 5.2.2. Injection at 0◦ to the Initial Magnetic Field . 110 5.2.3. Low Injection Rate at 90◦ to the Initial Magnetic Field . 112 5.2.4. High Injection Rate at 90◦ to the Initial Magnetic Field . 114 5.3. Magnetic Field Draping . 114 5.3.1. Injection at 45◦ to the Initial Magnetic Field . 114 5.3.2. Injection at 0◦ to the Initial Magnetic Field . 118 5.3.3. Low Injection Rate at 90◦ to the Initial Magnetic Field . 119 5.3.4. High Injection Rate at 90◦ to the Initial Magnetic Field . 119 5.4. Bow Waves . 122 5.4.1. Injection at 45◦ to the Initial Magnetic Field . 122 5.4.2. Injection at 0◦ to the Initial Magnetic Field . 125 5.4.3. Low Injection Rate at 90◦ to the Initial Magnetic Field . 126 5.4.4. High Injection Rate at 90◦ to the Initial Magnetic Field . 126 5.5. Interaction Region . 129 5.5.1. Injection at 45◦ to the Initial Magnetic Field . 129 5.5.2. Injection at 0◦ to the Initial Magnetic Field . 131 5.5.3. Low Injection Rate at 90◦ to the Initial Magnetic Field . 134 5.5.4. High Injection Rate at 90◦ to the Initial Magnetic Field . 134 5.6. Mass Loading . 137 5.6.1. Injection at 45◦ to the Initial Magnetic Field . 137 5.6.2. Injection at 0◦ to the Initial Magnetic Field . 137 5.6.3. Low Injection Rate at 90◦ to the Initial Magnetic Field . 140 5.6.4. High Injection Rate at 90◦ to the Initial Magnetic Field . 140 6. Interaction of Spacecraft Thrusters with the Solar Wind - Particle Trajectories 143 6.1. Reference Simulation . 143 6.2. Low Injection Rate Simulation . 151 6.3. High Injection Rate Simulation . 157 6.4. 45◦ Injection Simulation . 163 6.5. 0◦ Injection Simulation . 169 6.6. Conclusions . 175 7. Conclusions and Further Work 177 Appendix A. Ionisation Calculations for H2 182 Appendix A.0.1. Rate of decay of H2 .................. 183 Contents 7 + Appendix A.0.2. Rate of production and decay of H2 ......... 183 Appendix A.0.3. Rate of production and decay of H . 183 Appendix A.0.4. Rate of production of H+ ............... 184 Appendix A.0.5. Rate of production of electrons . 184 Appendix B. Ionisation Calculations for N2 186 Appendix B.0.6. Rate of Decay of N2 .................. 186 + Appendix B.0.7. Rate of production and decay of N2 ......... 186 Appendix B.0.8. Rate of production and ionisation of N . 187 Appendix B.0.9. Rate of production of N+ ............... 188 References 189 1. Introduction The solar wind is a continuous stream of ions and electrons which are emitted from the Sun's outer corona. These ions are accelerated as they travel outward until it becomes a supersonic flow of plasma. The interplanetary magnetic field (IMF) is embedded in the solar wind due to its very high conductivity and is carried outwards along with it, in the limit of infinite conductivity the magnetic field lines move with the fluid flow in the so-called `frozen-in' approximation. The solar wind with its frozen-in magnetic field fills the solar system and defines the boundaries of the heliosphere and interacts with many different types of celestial object along the way. If the interaction is with a magnetised body then the solar wind will be deflected due to the inability of the separate magnetic fields to mix and, if the body's magnetic field is sufficiently powerful, can form a magnetosphere which shields any neutral atmosphere/exosphere it may have from the effects of the solar wind.
Recommended publications
  • Science Objectives May Be Summarized As Follows
    MAGNETOSPHERE IMAGING INSTRUMENT (MIMI) 9 ON THE CASSINI MISSION TO SATURN/TITAN 2. Scientific Objectives MIMI science objectives may be summarized as follows: Saturn • Determine the global configuration and dynamics of hot plasma in the magneto- sphere of Saturn through energetic neutral particle imaging of ring current, radia- tion belts, and neutral clouds. • Study the sources of plasmas and energetic ions through in situ measurements of energetic ion composition, spectra, charge state, and angular distributions. • Search for, monitor, and analyze magnetospheric substorm-like activity at Saturn. • Determine through the imaging and composition studies the magnetosphere– satellite interactions at Saturn and understand the formation of clouds of neutral hydrogen, nitrogen, and water products. •Investigate the modification of satellite surfaces and atmospheres through plasma and radiation bombardment. • Study Titan’s cometary interaction with Saturn’s magnetosphere (and the solar wind) via high-resolution imaging and in situ ion and electron measurements. • Measure the high energy (Ee > 1 MeV, Ep > 15 MeV) particle component in the inner (L < 5 RS) magnetosphere to assess cosmic ray albedo neutron decay (CRAND) source characteristics. •Investigate the absorption of energetic ions and electrons by the satellites and rings in order to determine particle losses and diffusion processes within the mag- netosphere. • Study magnetosphere–ionosphere coupling through remote sensing of aurora and in situ measurements of precipitating energetic ions and electrons. Jupiter • Study ring current(s), plasma sheet, and neutral clouds in the magnetosphere and magnetotail of Jupiter during Cassini flyby, using global imaging and in situ mea- surements. S. M. KRIMIGIS ET AL. 10 Interplanetary • Determine elemental and isotopic composition of local interstellar medium through measurements of interstellar pickup ions.
    [Show full text]
  • Alabama Research Experiences for Undergraduates (ALREU)
    Alabama Research Experiences for Undergraduates (ALREU) Project Title: Space Plasma Physics: Pickup ions, turbulence, solar wind, and waves Project Reference Code: UAH-Zank Hosting Institution: The University of Alabama in Huntsville Hosting Institution Location: Huntsville, AL Project Description: The Sun plays a major role in space plasma physics. The atmosphere of the Sun expands outwards at a supersonic velocity, which we call the solar wind, until the ram pressure of the solar wind is balanced by the interstellar medium pressure. When the expansion of the solar wind stops, a bubble-like region of space is formed in the interstellar medium, known as the heliosphere. The solar wind provides a unique opportunity to study a variety of plasma processes. In the solar wind, waves and turbulence occur everywhere, and is advected by the solar wind flow. Similarly, we can also observe unusual charged particles called pickup ions (PUIs) in the solar wind. PUIs are created by charge exchange between solar wind protons and interstellar neutral atoms that drift from the interstellar medium into the heliosphere. Waves, turbulence, and PUIs have particular properties and can modify the physics of the heliosphere, and the heliospheric termination shock (HTS). Here, we divide our project into four subprojects. The projects are related to investigating the pickup ion distribution function in the distant solar wind, turbulence in the solar wind, solar wind simulations, and waves in the solar wind. The student is free to choose any one of the projects. Students will be involved with state-of-the-art research under the general direction of Dr.
    [Show full text]
  • Interstellar Pickup Ion Observations to 38 AU
    McComas et al. - Interstellar Pickup Ions from 20 to 40 AU Interstellar Pickup Ion Observations to 38 AU D.J. McComas1,2, E.J. Zirnstein1, M. Bzowski3, H.A. Elliott2, B. Randol4, N.A. Schwadron5, J.M. Sokół3, J.R. Szalay1, C. Olkin6, J. Spencer6, A. Stern6, H. Weaver7 1Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA ([email protected]) 2Southwest Research Institute, San Antonio, TX 78228, USA 3Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland 4Goddard Space Flight Center, Greenbelt, MD 20771, USA 5University of New Hampshire, Space Science Center, Durham, NH 03824, USA 6Southwest Research Institute, Boulder, CO 80302, USA 7Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA ABSTRACT This study provides the first direct observations of interstellar H+ and He+ pickup ions in the solar wind from 22 AU to beyond 38 AU. We use the functional form of the Vasyliunas and Siscoe model, including pickup ion isotropization, convection, and adiabatic cooling, to fit to SWAP pickup ion observations. We are able to fit most observed distributions, although the fit parameters generally lie outside their physically expected ranges. None- the-less, this functional form allows fits that quantify the pickup H+ density, temperature, and pressure over this range of distances. By ~20 AU, the pickup ions already provide the dominant internal pressure in the solar wind. We determine the radial trends of the pickup H+ parameters, and extrapolate them to the termination shock at ~90 AU. There, the inferred ratio of the pickup H+ to core solar wind density of ~0.14.
    [Show full text]
  • Interstellar Heliospheric Probe/Heliospheric Boundary Explorer Mission—A Mission to the Outermost Boundaries of the Solar System
    Exp Astron (2009) 24:9–46 DOI 10.1007/s10686-008-9134-5 ORIGINAL ARTICLE Interstellar heliospheric probe/heliospheric boundary explorer mission—a mission to the outermost boundaries of the solar system Robert F. Wimmer-Schweingruber · Ralph McNutt · Nathan A. Schwadron · Priscilla C. Frisch · Mike Gruntman · Peter Wurz · Eino Valtonen · The IHP/HEX Team Received: 29 November 2007 / Accepted: 11 December 2008 / Published online: 10 March 2009 © Springer Science + Business Media B.V. 2009 Abstract The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current under- standing of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of The IHP/HEX Team. See list at end of paper. R. F. Wimmer-Schweingruber (B) Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 11, 24098 Kiel, Germany e-mail: [email protected] R. McNutt Applied Physics Laboratory, John’s Hopkins University, Laurel, MD, USA N. A. Schwadron Department of Astronomy, Boston University, Boston, MA, USA P. C. Frisch University of Chicago, Chicago, USA M. Gruntman University of Southern California, Los Angeles, USA P. Wurz Physikalisches Institut, University of Bern, Bern, Switzerland E. Valtonen University of Turku, Turku, Finland 10 Exp Astron (2009) 24:9–46 interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region.
    [Show full text]
  • A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars
    Project Icarus: A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars (Accepted for publication in Acta Astronautica) Ian A. Crawford* Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK *Tel: +44 207 679 3431; Email: [email protected] Abstract I review those properties of the interstellar medium within 15 light-years of the Sun which will be relevant for the planning of future rapid (v ≥ 0.1c) interstellar space missions to the nearest stars. As the detailed properties of the local interstellar medium (LISM) may only become apparent after interstellar probes have been able to make in situ measurements, the first such probes will have to be designed conservatively with respect to what can be learned about the LISM from the immediate environment of the Solar System. It follows that studies of interstellar vehicles should assume the lowest plausible density when considering braking devices which rely on transferring momentum from the vehicle to the surrounding medium, but the highest plausible densities when considering possible damage caused by impact of the vehicle with interstellar material. Some suggestions for working values of these parameters are provided. This paper is a submission of the Project Icarus Study Group. Keywords: Interstellar medium; Interstellar travel 1 Introduction The growing realisation that planets are common companions of stars [1,2] has reinvigorated astronautical studies of how they might be explored using interstellar space probes. The history of Solar System exploration to-date shows us that spacecraft are required for the detailed study of planets, and it seems clear that we will eventually require spacecraft to make in situ studies of other planetary systems as well.
    [Show full text]
  • The Interstellar Medium Surrounding the Sun
    AA49CH07-Frisch ARI 5 August 2011 9:10 The Interstellar Medium Surrounding the Sun Priscilla C. Frisch,1 Seth Redfield,2 and Jonathan D. Slavin3 1Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637; email: [email protected] 2Astronomy Department, Wesleyan University, Middletown, Connecticut 06459; email: sredfi[email protected] 3Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, 02138; email: [email protected] Annu. Rev. Astron. Astrophys. 2011. 49:237–79 Keywords First published online as a Review in Advance on interstellar medium, heliosphere, interstellar dust, magnetic fields, May 31, 2011 interstellar abundances, exoplanets The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org Abstract This article’s doi: The Solar System is embedded in a flow of low-density, warm, and partially 10.1146/annurev-astro-081710-102613 ionized interstellar material that has been sampled directly by in situ mea- Copyright c 2011 by Annual Reviews. surements of interstellar neutral gas and dust in the heliosphere. Absorption All rights reserved line data reveal that this interstellar gas is part of a larger cluster of local 0066-4146/11/0922-0237$20.00 interstellar clouds, which is spatially and kinematically divided into addi- by Wesleyan University - CT on 01/05/12. For personal use only. tional small-scale structures indicating ongoing interactions. An origin for the clouds that is related to star formation in the Scorpius-Centaurus OB association is suggested by the dynamic characteristics of the flow. Variable Annu. Rev. Astro. Astrophys. 2011.49:237-279. Downloaded from www.annualreviews.org depletions observed within the local interstellar medium (ISM) suggest an in- homogeneous Galactic environment, with shocks that destroy grains in some regions.
    [Show full text]
  • Interstellar Helium Pickup Ion Flux Variations Observed with SOHO
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2005 Interstellar helium pickup ion flux ariationsv observed with SOHO/ CELIAS Lukas A. Saul University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Saul, Lukas A., "Interstellar helium pickup ion flux ariationsv observed with SOHO/CELIAS" (2005). Doctoral Dissertations. 272. https://scholars.unh.edu/dissertation/272 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. NOTE TO USERS Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was scanned as received. 4, 6, 9, 28, 40, 42, 49, 51, 55, 56, 63, 64, 67, 78-80, 86, 90-92, 107, 709-110, and 112 This reproduction is the best copy available. ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INTERSTELLAR HELIUM PICKUP ION FLUX VARIATIONS OBSERVED WITH SOHO/CELIAS BY LUKAS A. SAUL BS Yale University, 1997 Submitted to the University of New Hampshire In Partial Fulfillment o f The Requirements for the Degree of Doctor of Philosophy In Physics May, 2005 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3169089 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Interstellar Pickup Ions and Injection Problem for Anomalous Cosmic Rays: Theoretical Aspect
    — 8 — Interstellar Pickup Ions and Injection Problem for Anomalous Cosmic Rays: Theoretical Aspect Sergey Chalov1 Institute for Problems in Mechanics Moscow, Russia Abstract. The physical properties of pickup ions originating in the so- lar wind due to ionization of interstellar atoms penetrating the helio- sphere are considered here. The equation for the anisotropic velocity distribution function of the ions is derived and some particular solutions illustrating their transport in the heliosphere are presented. Special at- tention is concentrated on stochastic acceleration of pickup ions in the solar wind and shock-drift acceleration at the termination shock. The injection problem for anomalous cosmic rays at the termination shock is discussed. 8.1 Introduction The local interstellar medium (LISM) surrounding the Solar System is a partly ionized medium consisting mainly of neutral components. It has become evident in recent years that the interstellar atoms have a pronounced effect on the global structure of the extensive region separating the supersonic solar wind and LISM and on the physical processes operating in the heliosphere. Apart from the fact that the position and shape of the heliospheric termination shock and heliopause are significantly determined by the action of the atoms, they give rise to a peculiar hot population of pickup ions in the solar wind. Due to large mean free paths, which are comparable with the dimensions of the heliosphere, interstellar atoms can penetrate close to the Sun. In the heliosphere some portion of the atoms is ionized through charge exchange with protons or through the processes of photoionization and electron impact ionization. According to current knowledge, the speed of the interstellar wind relative to the Sun is about 26 km/s.
    [Show full text]
  • Heliophysics Senior Review 2017 FINAL
    The 2017 Senior Review of the Heliophysics Operating Missions December 1, 2017 Submitted to: The Heliophysics Advisory Committee Submitted by the 2017 Heliophysics Senior Review panel: James Spann (Chair), Joan Burkepile, Anthea Coster, Vladimir Florinski, David Klumpar, Harald Kucharek, Merav Opher, Linda Parker, Alexei Pevtsov, Robert Pfaff, Bala Poduval, Douglas Rabin, Roger Smith, Daniel Winterhalter Executive Summary The 2017 Heliophysics Senior Review panel undertook a review of 16 missions currently in operation in October 2017. The panel found that all the missions continue to produce science that is highly valuable to the scientific community and that they are an excellent investment by the public that funds them. At the top level, the panel finds: • NASA’s Heliophysics Division has an excellent fleet of spacecraft to study the Sun, heliosphere, geospace, and the interaction between the solar system and interstellar space as a connected system. The extended missions collectively contribute to all three of the overarching objectives of the Heliophysics Division. o Explore the physical processes in the space environment from the Sun to the Earth and throughout the solar system. o Advance our understanding of the connections that link the Sun, the Earth, planetary environments, and the outer reaches of our solar system. o Develop the knowledge and capability to detect and predict extreme conditions in space to protect life and society and to safeguard human and robotic explorers beyond Earth. • All the missions reviewed here contribute to study this connected system. • Progress in the collection of high quality data and in the application of these data to computer models to better understand the physics has been exceptional.
    [Show full text]
  • 3 Suprathermal Ion Velocity Distributions in the Heliosheath 4 5
    1 2 3 Hybrid Simulations of the Termination Shock: 4 Suprathermal Ion Velocity Distributions in the Heliosheath 5 6 Pin Wu,1,2,3 Kaijun Liu,1 Dan Winske,1 S. Peter Gary,1 Nathan A. Schwadron,2 7 and Herbert O. Funsten1 8 9 3 June 2010 10 11 12 13 14 15 16 1. International Space and Response Division, Los Alamos National Laboratory, Los 17 Alamos, New Mexico, USA 18 2. Department of Astronomy, Boston University, Boston, Massachusetts, USA 19 3. Current address: Department of Physics and Astronomy, University of Delaware, 20 Newark, Delaware, USA 21 22 1 22 23 Abstract 24 25 The Los Alamos hybrid simulation code is used to examine kinetic properties of 26 pickup ions at the heliospheric termination shock and in the downstream heliosheath. All 27 simulations are one-dimensional in spatial variations, represent the electrons as a zero- 28 mass fluid, and address only perpendicular shocks. Interpretation of measurements from 29 the IBEX and Voyager spacecraft depend sensitively on the properties of the 30 suprathermal ions downstream of the termination shock, so this research addresses three 31 topics concerning such ions. First, a careful examination of pickup ion trajectories shows 32 that their initial acceleration does not require specular reflection at the shock, as is 33 sometimes assumed, but is the consequence of gyromotion by selected ions at the shock. 34 The primary factor in this energy gain is a gyro-phase-dependent interaction with the 35 motional electric field upstream of, and the magnetic field at, the shock. Second, shock 36 simulations are carried out in which the upstream pickup ions are assumed to have four 37 different types of velocity distributions.
    [Show full text]
  • Composition of Inner-Source Heavy Pickup Ions at 1 AU: SOHO/CELIAS/CTOF Observations Implications for the Production Mechanisms A
    A&A 576, A55 (2015) Astronomy DOI: 10.1051/0004-6361/201425139 & c ESO 2015 Astrophysics Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations Implications for the production mechanisms A. Taut, L. Berger, C. Drews, and R. F. Wimmer-Schweingruber Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany e-mail: [email protected] Received 10 October 2014 / Accepted 22 January 2015 ABSTRACT Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the com- position of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims. Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time- Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition.
    [Show full text]
  • Modeling and Observation of He+ Pickup Ions in the Inner Heliosphere
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2017 Modeling and Observation of He+ Pickup Ions in the Inner Heliosphere Junhong Chen University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Chen, Junhong, "Modeling and Observation of He+ Pickup Ions in the Inner Heliosphere" (2017). Doctoral Dissertations. 140. https://scholars.unh.edu/dissertation/140 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Modeling and Observation of Interstellar He+ Pickup Ions in the Inner Heliosphere BY JUNHONG CHEN M.S. in Space Physics, University of Science and Technology of China 2009 DISSERTATION Submitted to the University of New Hampshire in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics May, 2017 This dissertation has been examined and approved in partial fulfillment of the re- quirements for the degree of Doctor of Philosophy in Physics by: Dissertation Director, Eberhard M¨obius Professor of Physics Space Science Center and Department of Physics, University of New Hampshire Nathan A. Schwadron Professor of Physics Philip A. Isenberg Research Professor of Physics Martin Lee Professor of Physics Dawn C. Meredith Professor of Physics On April 17, 2017 Original approval signatures are on file with the University of New Hampshire Grad- uate School.
    [Show full text]