Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Review 2008 1
UCL DEPARTMENT OF PHYSICS AND ASTRONOMY PHYSICS AND ASTRONOMY ANNUAL REVIEW 2008 Contents Introduction 1 Students 2 Careers 5 Highlights and News 8 Astrophysics 17 High Energy Physics 19 Atomic, Molecular, Optical and Position Physics 21 Condensed Matter and Material Physics 25 Grants and Contracts 27 Publications 31 Staff 40 Cover image: Threaded molecular wire This image was produced by Dr Sergio Brovelli and refers to recent results obtained by the group of Professor Franco Cacialli. The molecular wire consists of a semiconducting conjugated polymer supramolecularly encapsulated (i.e. with no covalent bonds) into cyclodextrin macrocycles (in green). This class of organic functional materials gives highly controllable optical properties and higher luminescence efficiency when employed as the active layer in light-emitting diodes. The supramolecular shield prevents potentially detrimental intermolecular interactions and preserves single-molecule photophysics even at high concentration. PHYSICS AND ASTRONOMY ANNUAL REVIEW 2008 1 Introduction in trying to help pilot STFC through maintaining a flourishing Department. very choppy waters and as major It is therefore with particular pleasure recipients of their funding support. Our that I note the award of no less than six Astrophysics group were particularly long-term Fellowships to young scientists unfortunate in the timing of the crisis, wishing to start their independent as it arrived just as the majority of the academic careers at UCL, see page 8. groups funding was due to be renewed. These Fellowships are deeply UCL has moved to ensure that years competitive as they attract world wide of research excellence in fundamental attention resulting in success rates of physics are not destroyed by what I hope 5% or less. -
Foundations of Newtonian Dynamics: an Axiomatic Approach For
Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that -
Overview of the CALET Mission to the ISS 1 Introduction
32ND INTERNATIONAL COSMIC RAY CONFERENCE,BEIJING 2011 Overview of the CALET Mission to the ISS SHOJI TORII1,2 FOR THE CALET COLLABORATION 1Research Institute for Scinece and Engineering, Waseda University 2Space Environment Utilization Center, JAXA [email protected] DOI: 10.7529/ICRC2011/V06/0615 Abstract: The CALorimetric Electron Telescope (CALET) mission is being developed as a standard payload for the Exposure Facility of the Japanese Experiment Module (JEM/EF) on the International Space Station (ISS). The instrument consists of a segmented plastic scintillator charge measuring module, an imaging calorimeter consisting of 8 scintillating fiber planes with a total of 3 radiation lengths of tungsten plates interleaved with the fiber planes, and a total absorption calorimeter consisting of crossed PWO logs with a total depth of 27 radiation lengths. The major scientific objectives for CALET are to search for nearby cosmic ray sources and dark matter by carrying out a precise measurement of the electron spectrum (1 GeV - 20 TeV) and observing gamma rays (10 GeV - 10 TeV). CALET has a unique capability to observe electrons and gamma rays in the TeV region since the hadron rejection power is larger than 105 and the energy resolution better than 2 % above 100 GeV. CALET has also the capability to measure cosmic ray H, He and heavy nuclei up to 1000 TeV.∼ The instrument will also monitor solar activity and search for gamma ray transients. The phase B study has started, aimed at a launch in 2013 by H-II Transfer Vehicle (HTV) for a 5 year observation period on JEM/EF. -
Chapter 11.Pdf
Chapter 11. Kinematics of Particles Contents Introduction Rectilinear Motion: Position, Velocity & Acceleration Determining the Motion of a Particle Sample Problem 11.2 Sample Problem 11.3 Uniform Rectilinear-Motion Uniformly Accelerated Rectilinear-Motion Motion of Several Particles: Relative Motion Sample Problem 11.5 Motion of Several Particles: Dependent Motion Sample Problem 11.7 Graphical Solutions Curvilinear Motion: Position, Velocity & Acceleration Derivatives of Vector Functions Rectangular Components of Velocity and Acceleration Sample Problem 11.10 Motion Relative to a Frame in Translation Sample Problem 11.14 Tangential and Normal Components Sample Problem 11.16 Radial and Transverse Components Sample Problem 11.18 Introduction Kinematic relationships are used to help us determine the trajectory of a snowboarder completing a jump, the orbital speed of a satellite, and accelerations during acrobatic flying. Dynamics includes: Kinematics: study of the geometry of motion. Relates displacement, velocity, acceleration, and time without reference to the cause of motion. Fdownforce Fdrive Fdrag Kinetics: study of the relations existing between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by given forces or to determine the forces required to produce a given motion. Particle kinetics includes : • Rectilinear motion: position, velocity, and acceleration of a particle as it moves along a straight line. • Curvilinear motion : position, velocity, and acceleration of a particle as it moves along a curved line in two or three dimensions. Rectilinear Motion: Position, Velocity & Acceleration • Rectilinear motion: particle moving along a straight line • Position coordinate: defined by positive or negative distance from a fixed origin on the line. -
Formation of Dust and Molecules in Supernovae
2019/02/06 Formation of dust and molecules in supernovae Takaya Nozawa (National Astronomical Observatory of Japan) SN 1987A Cassiopeia A SNR 0509-67.5 1-1. Introduction Question : Can supernovae (SNe) produce molecules and dust grains? Nozawa 2014, Astronomical Herald 2-1. Thermal emission from dust in SN 1987A light curve 60day 200day (optical luminosity) 415day 615day Whitelock+89 - dust starts to form in the 755day ejecta at ~400 days - dust mass ay 775 day: > ~10-4 Msun (optically thin assumed) Wooden+93 2-2. CO and SiO detection in SN 1987A CO first overtone: 2.29-2.5 μm 97 day CO fundamental: 4.65-6.0 μm SiO fundamental: 7.6-9.5 μm 200day SN Ic 2000ew, Gerardy+2002 415day 615day 58 day 755day SN II-pec 1987A, Wooden+1993 SN II-P 2016adj, Banerjee+2018 2-3. CO and SiO masses in SN 1987A CO Gerardy+2002, see also Banerjee+2018 Liu+95 ‐CO emission is seen in various SiO types of CCSNe from ~50 day ‐CO/SiO masses in SN 1987A Mco > ~4x10-3 Msun MSiO > ~7x10-4 Msun Liu & Dalgarno 1996 2-4. Dust mass in Cassiopeia A (Cas A) SNR ○ Estimated mass of dust in Cas A ・ warm/hot dust (80-300K) (3-7)x10-3 Msun (IRAS, Dwek et al. 1987) ~7.7x10-5 Msun (ISO, Arendt et al. 1999) 0.02-0.054 Msun (Spitzer, Rho+2008) ➜ Mdust = 10-4-10-2 Msun consistent with >10-4 Msun in SN 1987A Dwek+1987, IRAS Rho+2008 Spitzer Arendt+1999, ISO 3-1. -
Chapter 3 Motion in Two and Three Dimensions
Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a. -
Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics
galaxies Article Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics Chandra B. Singh 1,*,†, David Garofalo 2,† and Benjamin Lang 3 1 South-Western Institute for Astronomy Research, Yunnan University, University Town, Chenggong, Kunming 650500, China 2 Department of Physics, Kennesaw State University, Marietta, GA 30060, USA; [email protected] 3 Department of Physics & Astronomy, California State University, Northridge, CA 91330, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The discovery of 3C 273 in 1963, and the emergence of the Kerr solution shortly thereafter, precipitated the current era in astrophysics focused on using black holes to explain active galactic nuclei (AGN). But while partial success was achieved in separately explaining the bright nuclei of some AGN via thin disks, as well as powerful jets with thick disks, the combination of both powerful jets in an AGN with a bright nucleus, such as in 3C 273, remained elusive. Although numerical simulations have taken center stage in the last 25 years, they have struggled to produce the conditions that explain them. This is because radiatively efficient disks have proved a challenge to simulate. Radio quasars have thus been the least understood objects in high energy astrophysics. But recent simulations have begun to change this. We explore this milestone in light of scale-invariance and show that transitory jets, possibly related to the jets seen in these recent simulations, as some have proposed, cannot explain radio quasars. We then provide a road map for a resolution. -
Pos(MQW7)111 Ce
Long-term optical activity of the microquasar V4641 Sgr PoS(MQW7)111 Vojtechˇ Šimon Astronomical Institute, Academy of Sciences of the Czech Republic, 25165 Ondˇrejov, Czech Republic E-mail: [email protected] Arne Henden AAVSO, 49 Bay State Road, Cambridge, MA 02138, USA E-mail: [email protected] We present an analysis of the optical activity of the microquasar V4641 Sgr using the visual and photographic data. We analyze four smaller (echo) outbursts that followed the main outburst (1999). Their mean recurrence time TC is 377 days, with a trend of a decrease. We interpret the characteristic features of the recent activity of V4641 Sgr (the narrow outbursts separated by a long quiescence, a clear trend in the evolution of their TC) as the thermal instability of the accre- tion disk operating in dwarf novae and soft X-ray transients. We argue that the luminosity of four echo outbursts is too high to be explained by the thermal emission of the accretion disk. We inter- pret them as due to the thermal instability, in which the outburst gives rise to a jet radiating also in the optical. This supports the finding by Uemura et al., PASJ 54, L79 (2002). The pre-outburst observations (1964–1967) reveal ongoing activity of the system. It displays low-amplitude fluc- tuations on the timescale of several weeks, independent on the orbital phase. In addition, a larger brightening which lasted for several tens of days and occurred from the level of brightness higher than in other years can be resolved. VII Microquasar Workshop: Microquasars and Beyond September 1 - 5, 2008 Foca, Izmir, Turkey c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. -
A Uniformly Moving and Rotating Polarizable Particle in Thermal Radiation Field: Frictional Force and Torque, Radiation and Heating
A uniformly moving and rotating polarizable particle in thermal radiation field: frictional force and torque, radiation and heating G. V. Dedkov1 and A.A. Kyasov Nanoscale Physics Group, Kabardino-Balkarian State University, Nalchik, 360000, Russia Abstract. We study the fluctuation-electromagnetic interaction and dynamics of a small spinning polarizable particle moving with a relativistic velocity in a vacuum background of arbitrary temperature. Using the standard formalism of the fluctuation electromagnetic theory, a complete set of equations describing the decelerating tangential force, the components of the torque and the intensity of nonthermal and thermal radiation is obtained along with equations describing the dynamics of translational and rotational motion, and the kinetics of heating. An interplay between various parameters is discussed. Numerical estimations for conducting particles were carried out using MATHCAD code. In the case of zero temperature of a particle and background radiation, the intensity of radiation is independent of the linear velocity, the angular velocity orientation and the linear velocity value are independent of time. In the case of a finite background radiation temperature, the angular velocity vector tends to be oriented perpendicularly to the linear velocity vector. The particle temperature relaxes to a quasistationary value depending on the background radiation temperature, the linear and angular velocities, whereas the intensity of radiation depends on the background radiation temperature, the angular and linear velocities. The time of thermal relaxation is much less than the time of angular deceleration, while the latter time is much less than the time of linear deceleration. Key words: fluctuation-electromagnetic interaction, thermal radiation, rotating particle, frictional torque and tangential friction force 1. -
Elliptical Galaxies Where Star Formation Is Thought to Have Ceased Long Ago → the Star That Explodes Is Old, Billions of Years
Monday, February 3, 2014 First Exam, Skywatch, Friday February 7. Review sheet posted today. Review session Thursday, 5 – 6 PM, RLM 7.104 Reading: Section 5.1 (white dwarfs), 1.2.4 (quantum theory), Section 2.3 (quantum deregulation), Section 6.1 (supernovae; not Type Ib, Type Ic, next exam). Astronomy in the news? Update on new “nearby” supernova SN 2014J in M82 Our second attempt to measure the shape of the explosion with a telescope at Calar Alto, Spain, was messed up by weather. We are attempting to schedule time on MONET, a newly-robotocized telescope at McDonald Observatory, operated by collaborators in Germany. First spectrum Sulfur from Hubble Space Telescope Intensity Silicon Calcium Magnesium Wavelength Goal: To understand the observed nature of supernovae and determine whether they came from white dwarfs or massive stars that undergo core collapse. Categories of Supernovae 1st category discovered Type Ia – near peak light, no detectable Hydrogen or Helium in the spectrum, rather “intermediate mass elements” such as oxygen, magnesium, silicon, sulfur, calcium. Iron appears later as the light fades. Type Ia occur in all galaxy types: In spiral galaxies they tend to avoid the spiral arms, they have had time to drift away from the birth site → the star that explodes is old In elliptical galaxies where star formation is thought to have ceased long ago → the star that explodes is old, billions of years" the progenitor that explodes must be long-lived, not very massive, suggesting a white dwarf. Sun is long-lived, but won’t explode weeks Type Ia - no hydrogen or helium, Luminosity intermediate mass elements early, iron later SN 2014J about here Light Curve - brightness vs. -
Science from the Mev Gamma Ray Sky
Science from the MeV Gamma Ray Sky Reshmi Mukherjee Barnard College, Columbia University, NY Reshmi Mukherjee The need …. - A sensitive survey of the γ-ray sky between 100 keV and 100 MeV 10-9 10-10 10-12 10-14 10-16 10-18 10-20 m 100 keV 0.5 MeV 100 TeV Reshmi Mukherjee Energy range & challenges . Energy range 300 keV to ~100 MeV . “Compton regime” -- notoriously difficult & challenging . Requires an efficient instrument with an excellent background subtraction . Last instrument to operate in this range: COMPTEL . Neither Fermi-LAT nor AGILE are optimized for observations below ~200 MeV or for polarization sensitivity. Freytag, Handbook of Accel. Phys. & Eng. (1971) Reshmi Mukherjee Compton Imaging McConnell, AAS 225th Reshmi Mukherjee Sensitivities - The MeV “Gap” / VERITAS From Takahashi 2012 Reshmi Mukherjee Talk Outline . Science motivation . Review highlights from “MeV” missions . Synergy with VHE and keV regime . Wish list for a future medium-energy instrument Reshmi Mukherjee Science goals for the “medium energy” . Explosive nucleosynthesis : a close look at core-collapse and thermonuclear supernovae . γ-ray lines (e.g. 511 keV, 70 MeV, + + + ) . Large number of soft γ-ray sources in the Galactic plane, yet to be discovered . Contribution of soft γ-ray sources to the medium-energy Galactic diffuse emission . The laws of physics around neutron stars and black holes . Measurements of transient phenomena . Spatially resolve variation between electron dominated and hadron dominated processes in the 70-200 MeV range.. Origin of cosmic rays? Reshmi Mukherjee from AstroMeV Origin of the highest energy cosmic rays? . >100 year old mystery ! . Enormous E range . -
Asymmetries in Sn 2014J Near Maximum Light Revealed Through Spectropolarimetry
ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Item Type Article Authors Porter, Amber; Leising, Mark D.; Williams, G. Grant; Milne, P. A.; Smith, Paul; Smith, Nathan; Bilinski, Christopher; Hoffman, Jennifer L.; Huk, Leah; Leonard, Douglas C. Citation ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY 2016, 828 (1):24 The Astrophysical Journal DOI 10.3847/0004-637X/828/1/24 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2016. The American Astronomical Society. All rights reserved. Download date 27/09/2021 22:28:24 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622057 The Astrophysical Journal, 828:24 (12pp), 2016 September 1 doi:10.3847/0004-637X/828/1/24 © 2016. The American Astronomical Society. All rights reserved. ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Amber L. Porter1, Mark D. Leising1, G. Grant Williams2,3, Peter Milne2, Paul Smith2, Nathan Smith2, Christopher Bilinski2, Jennifer L. Hoffman4, Leah Huk4, and Douglas C. Leonard5 1 Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA; [email protected] 2 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 3 MMT Observatory, P.O. Box 210065, University of Arizona, Tucson, AZ 85721-0065, USA 4 Department of Physics and Astronomy, University of Denver, 2112 East Wesley Avenue, Denver, CO 80208, USA 5 Department of Astronomy, San Diego State University, PA-210, 5500 Campanile Drive, San Diego, CA 92182-1221, USA Received 2016 February 14; revised 2016 May 11; accepted 2016 May 12; published 2016 August 24 ABSTRACT We present spectropolarimetric observations of the nearby Type Ia supernova SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum.