New Methods for Finding Minimum Genus Embeddings of Graphs On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Configurations of Points and Lines
Configurations of Points and Lines "RANKO'RüNBAUM 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/103 Configurations of Points and Lines Configurations of Points and Lines Branko Grünbaum Graduate Studies in Mathematics Volume 103 American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 01A55, 01A60, 05–03, 05B30, 05C62, 51–03, 51A20, 51A45, 51E30, 52C30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-103 Library of Congress Cataloging-in-Publication Data Gr¨unbaum, Branko. Configurations of points and lines / Branko Gr¨unbaum. p. cm. — (Graduate studies in mathematics ; v. 103) Includes bibliographical references and index. ISBN 978-0-8218-4308-6 (alk. paper) 1. Configurations. I. Title. QA607.G875 2009 516.15—dc22 2009000303 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. -
Graph Theory with Applications
GRAPH THEORY WITH APPLICATIONS J. A. Bondy and U. S. R. Murty Department of Combina tories and Optimization, University of Waterloo, Ontario, Canada NORfH-HOLLAND New York • Amsterdam • Oxford @J.A. Bondy and U.S.R. Muny 1976 First published in Great Britain 1976 by The Macmillan Press Ltd. First published in the U.S.A. 1976 by Elsevier Science Publishing Co., Inc. 52 Vanderbilt Avenue, New York, N.Y. 10017 Fifth Printing, 1982. Sole Distributor in the U.S.A: Elsevier Science Publishing Co., Inc. Library of Congress Cataloging in Publication Data Bondy, John Adrian. Graph theory with applications. Bibliography: p. lncludes index. 1. Graph theory. 1. Murty, U.S.R., joint author. II. Title. QA166.B67 1979 511 '.5 75-29826 ISBN 0.:444-19451-7 AU rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Printed in the United States of America To our parents Preface This book is intended as an introduction to graph theory. Our aim bas been to present what we consider to be the basic material, together with a wide variety of applications, both to other branches of mathematics and to real-world problems. Included are simple new proofs of theorems of Brooks, Chvâtal, Tutte and Vizing. The applications have been carefully selected, and are treated in some depth. We have chosen to omit ail so-called 'applications' that employ just the language of graphs and no theory. The applications appearing at the end of each chapter actually make use of theory developed earlier in the same chapter. -
SEMIOTIC MODELLING of the STRUCTURE John
SEMIOTIC MODELLING OF THE STRUCTURE John-Tagore Tevet Research Group of Structure Semiotics The University Euroacademy Tallinn Estonia & Honorary Professor Institute of Mathematics H-501 Palam Vihar Gurgaon India [email protected] www.graphs.ee www.dharwadker.org/iom Proceedings of the Institute of Mathematics Published by Amazon Books Copyright © John-Tagore Tevet 2014 2 Abstract Must be stated that the structure as a such, be studied very little, and if so, then either very generally or linked to specific objects. The structure is an integral attribute of all discrete phenomena, their constructional or organizational side . Unfortunately, the concept of structure has devalued to a vague adjective of all objects. In an attempt to explain the essence of structure, we proceed from the fact that the structure is given as a graph and isomorphic graphs have the same structure. However, the structure is something qualitative which with only quantitative graph-theoretical tools is not considered. It has been shown that the essence of structure consists in the relationships between its elements, and it has created a need to look the ways for presenting these relationships. Here is presented a way for recognition of the structure with exactness up to isomorphism and other structural properties. It is implemented in the form of a semiotic model that enables to explain the essential properties of structure and their transformations. John-Tagore Tevet Tallinn, Estonia November 2014 3 4 Contents 1. INITIAL PRINCIPLES 7 1.1. Essence of structure 7 1.2. Semiotic model of structure 9 1.3. Adjustment and simplification of the model 12 2. -
XYZ Decompositions of Graphs Dagstuhl Seminar 08191
XYZ decom- positions V. Batagelj XYZ decompositions of graphs Dagstuhl Seminar 08191 Motivation XYZ decom- Vladimir Batagelj positions Results University of Ljubljana, FMF, Dept. of Mathematics; and References IMFM Ljubljana, Dept. of Theoretical Computer Science joint work with Franz J. Brandenburg, Walter Didimo, Giuseppe Liotta, Maurizio Patrignani 23rd Leoben-Ljubljana Graph Theory Seminar Ljubljana, 14-15. November 2008 V. Batagelj XYZ decompositions Outline XYZ decom- positions V. Batagelj Dagstuhl Seminar 08191 Motivation 1 XYZ decom- Dagstuhl Seminar 08191 positions 2 Motivation Results 3 XYZ decompositions References 4 Results 5 References V. Batagelj XYZ decompositions Dagstuhl Seminar 08191 XYZ decom- positions V. Batagelj Dagstuhl Seminar 08191 Motivation XYZ decom- positions Results References Dagstuhl Seminar 08191: Graph Drawing with Applications to Bioinformatics and Social Sciences. Dagstuhl, May 4-9, 2008 V. Batagelj XYZ decompositions Motivation XYZ decom- positions For dense graphs the matrix representation is better [3]. Pajek - shadow [0.00,1.00] V. Batagelj uki fra wge jap net ita usa bel lux car swe kod den swi can nor par spa irn Dagstuhl yem mat irq pak ire nau aut bol hun Seminar 08191 lib hai isr nic sau alb kuw aus gua mon fin por zai hon bra arg pol syr cze kmr usr Motivation tri ege yug sri ind cha saf gre tur sie egy bul rum uru tai rum syr XYZ decom- leb upv cyp vnr ice arg tun gab cub liy positions pol mor usr lux alg spanor nig isr mli uga ins bul liy ken mex usa eth brm pan net tha cze fra jor sud gre -
Coverings of Cubic Graphs and 3-Edge Colorability
Discussiones Mathematicae Graph Theory 41 (2021) 311–334 doi:10.7151/dmgt.2194 COVERINGS OF CUBIC GRAPHS AND 3-EDGE COLORABILITY Leonid Plachta AGH University of Science and Technology Krak´ow, Poland e-mail: [email protected] Abstract Let h: G˜ → G be a finite covering of 2-connected cubic (multi)graphs where G is 3-edge uncolorable. In this paper, we describe conditions under which G˜ is 3-edge uncolorable. As particular cases, we have constructed regular and irregular 5-fold coverings f : G˜ → G of uncolorable cyclically 4-edge connected cubic graphs and an irregular 5-fold covering g : H˜ → H of uncolorable cyclically 6-edge connected cubic graphs. In [13], Steffen introduced the resistance of a subcubic graph, a char- acteristic that measures how far is this graph from being 3-edge colorable. In this paper, we also study the relation between the resistance of the base cubic graph and the covering cubic graph. Keywords: uncolorable cubic graph, covering of graphs, voltage permuta- tion graph, resistance, nowhere-zero 4-flow. 2010 Mathematics Subject Classification: 05C15, 05C10. 1. Introduction 1.1. Motivation and statement of results We will consider proper edge colorings of G. Let ∆(G) be the maximum degree of vertices in a graph G. Denote by χ′(G) the minimum number of colors needed for (proper) edge coloring of G and call it the chromatic index of G. Recall that according to Vizing’s theorem (see [14]), either χ′(G) = ∆(G), or χ′(G) = ∆(G)+1. In this paper, we shall consider only subcubic graphs i.e., graphs G such that ∆(G) ≤ 3. -
Semisymmetric Graphs from Polytopes
Semisymmetric Graphs from Polytopes Barry Monson¤ University of New Brunswick Fredericton, New Brunswick, Canada E3B 5A3 ([email protected]) Toma·z Pisanskiy University of Ljubljana, FMF Jadranska 19, Ljubljana 1111, Slovenia; and Faculty of Education, University of Primorska, Cankarjeva 5, Koper 6000, Slovenia ([email protected]) Egon Schultez Northeastern University Boston MA 02115, USA ([email protected]) Asia Ivi¶c Weissx York University Toronto, Ontario, Canada M3J 1P3 ([email protected]) Abstract Every ¯nite, self-dual, regular (or chiral) 4-polytope of type f3;q;3g has a trivalent 3-transitive (or 2-transitive) medial layer graph. Here, by drop- ping self-duality, we obtain a construction for semisymmetric trivalent graphs (which are edge- but not vertex-transitive). In particular, the Gray graph arises as the medial layer graph of a certain universal locally toroidal regular 4-polytope. Key Words: semisymmetric graphs, abstract regular and chiral polytopes. AMS Subject Classi¯cation (1991): Primary: 05C25. Secondary: 51M20. ¤Supported by the NSERC of Canada, grant 4818 ySupported by Ministry of Higher Education, Science and Technolgy of Slovenia grants P1-0294,J1-6062,L1-7230. zSupported by NSA-grant H98230-05-1-0027 xSupported by the NSERC of Canada, grant 8857 1 1 Introduction The theory of symmetric trivalent graphs and the theory of regular polytopes are each abundant sources of beautiful mathematical ideas. In [22], two of the authors established some general and unexpected connections between the two subjects, building upon a rich variety of examples appearing in the literature (see [4], [7], [10], [11], [28] and [29]). Here we develop these connections a little further, with speci¯c focus on semisymmetric graphs. -
LEOBEN-LJUBLJANA GRAPH THEORY SEMINAR 2016 Dedicated to Norbert Seifter's 60Th Birthday Special Session on the Occasion Of
LEOBEN-LJUBLJANA GRAPH THEORY SEMINAR 2016 Dedicated to Norbert Seifter's 60th Birthday Special session on the occasion of Bojan Mohar's 60th Birthday 25th - 28th September 2016, Judenburg, Austria Supported by TU Graz, MU Leoben, Austrian Science Fund, Austrian Mathematical Society and the Town of Judenburg. Titles and abstracts Vladimir Batagelj (Ljubljana - Koper): Widespread index Abstract. On January 12, 2016 Clement Levallois posted at SocNet a message asking for a measure of how widespread is the distribution of a node attribute in a network. In the paper we propose and study two indices for measuring the widespread of a node attribute value in a network: the (simple) widespread index and the domination index. A com- putation of the proposed indices using the program Pajek is illustrated on two networks: the Class network and the US Airports network. Chris Godsil (Waterloo): Graph isomorphism and quantum walks Abstract. It has been suggested that graph isomorphism may be one of the problems that can be solved faster on a quantum computer than on a clasical computer. Conse- quently physicists have devoted some effort to find algorithms for graph isomorphism. I will report on work undertaken by me and my colleagues, using tools from graph spec- tral theory and finite geometry, to show that the algorithms proposed to date do not work. Veronica Hern´andezMartinez (Madrid): On the diameter, minimum and maximum degree and hyperbolicity constant Abstract. In this work, we obtain good upper bounds for the diameter of any graph in terms of its minimum degree and its order, improving a classical theorem due to Erd¨os, Pach, Pollack and Tuza. -
The Wiener Dimension of a Graph
The Wiener dimension of a graph Yaser Alizadeh Department of Mathematics Tarbiat Modares University, Tehran, Iran [email protected] Sandi Klavˇzar∗ Faculty of Mathematics and Physics University of Ljubljana, Slovenia and Faculty of Natural Sciences and Mathematics University of Maribor, Slovenia [email protected] March 13, 2012 Abstract The Wiener dimension of a connected graph is introduced as the number of different distances of its vertices. For any integer d and any integer k, a graph of diameter d and of Wiener dimension k is constructed. An infinite family of non-vertex-transitive graphs with Wiener dimension 1 is also presented and it is proved that a graph of dimension 1 is 2-connected. Keywords: Wiener index; Cartesian product graphs; vertex-transitive graphs AMS subject classification (2010): 05C12, 05C25, 92E10 1 Introduction The distance considered in this paper is the usual shortest path distance. We assume throughout the paper that all graphs are connected unless stated otherwise. For terms not defined here we refer to [13]. Let G be a graph and u ∈ V (G). Then the distance of u is dG(u)= X dG(u, v) . v∈V (G) ∗ This work has been financed by ARRS Slovenia under the grant P1-0297 and within the EU- ROCORES Programme EUROGIGA/GReGAS of the European Science Foundation. The author is also with the Institute of Mathematics, Physics and Mechanics, Ljubljana. 1 In location theory, sets of vertices with the minimum (or maximum) distance in a graph play s special role because they form target sets for locations of facilities. -
Induced Saturation Number Jason James Smith Iowa State University
Iowa State University Digital Repository @ Iowa State University Graduate Theses and Dissertations Graduate College 2012 Induced Saturation Number Jason James Smith Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Smith, Jason James, "Induced Saturation Number" (2012). Graduate Theses and Dissertations. Paper 12465. This Dissertation is brought to you for free and open access by the Graduate College at Digital Repository @ Iowa State University. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact [email protected]. Induced saturation number by Jason James Smith A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Ryan Martin, Major Professor Leslie Hogben Maria Axenovich Ling Long Jack Lutz Iowa State University Ames, Iowa 2012 Copyright © Jason James Smith, 2012. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES . iv ACKNOWLEDGEMENTS . vi ABSTRACT . vii CHAPTER 1. INTRODUCTION . 1 1.1 Saturation in Graphs . .1 1.1.1 Definitions and Notation . .2 1.1.2 Applications . .4 CHAPTER 2. INDUCED SATURATION NUMBER AND BOUNDS . 5 2.1 Bounds for Induced Saturation Number . .5 2.2 Induced Saturation Number for a Few Families of Graphs . 12 n+1 CHAPTER 3. INDUCED SATURATION NUMBER OF P4 IS 3 ..... 15 3.1 Definitions and Notation . 15 3.2 Upper Bound by Construction . 17 3.3 Lower Bound by Induction . 19 3.4 Technical Lemma . -
Fundamental Properties and (5,0)-Nanotubical Fullerenes
MATCH MATCH Commun. Math. Comput. Chem. 72 (2014) 279-294 Communications in Mathematical and in Computer Chemistry ISSN 0340 - 6253 Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes Yaser Alizadeha, Vesna Andova b1, Sandi Klavˇzar c,d,e, Riste Skrekovskiˇ c,e,f,g aDepartment of Mathematics, Hakim Sabzevari University, Sabzevar, Iran E-mail: [email protected] 2Faculty of Electrical Engineering and Information Technologies, Ss Cyril and Methodius Univ., Ruger Boskovik, P. O. Box 574, 1000 Skopje, Macedonia E-mail: [email protected] cFaculty of Mathematics and Physics, University of Ljubljana, Slovenia dFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia eInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia E-mail: [email protected] f Faculty of Information Studies, Novo Mesto, Slovenia gFaculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Slovenia E-mail: [email protected] (Received January 24, 2014) Abstract The Wiener dimension of a connected graph is introduced as the number of different distances of its vertices. For any integer D and any integer k, a graph of diameter D and of Wiener dimension k is constructed. An infinite family of non-vertex-transitive graphs with Wiener dimension 1 is presented and it is proved that a graph of dimension 1 is 2-connected. It is shown that the (5, 0)-nanotubical fullerene graph on 10k (k ≥ 3) vertices has Wiener dimension k. As a consequence the Wiener index of these fullerenes is obtained. 1Corresponding author -280- 1 Introduction The distance considered in this paper is the usual shortest path distance. -
Not Every Bipartite Double Cover Is Canonical
Volume 82 BULLETIN of the February 2018 INSTITUTE of COMBINATORICS and its APPLICATIONS Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung Boca Raton, FL, U.S.A. ISSN1182-1278 BULLETIN OF THE ICA Volume 82 (2018), Pages 51{55 Not every bipartite double cover is canonical Tomaˇz Pisanski University of Primorska, FAMNIT, Koper, Slovenia and IMFM, Ljubljana, Slovenia. [email protected]. Abstract: It is explained why the term bipartite double cover should not be used to designate canonical double cover alias Kronecker cover of graphs. Keywords: Kronecker cover, canonical double cover, bipartite double cover, covering graphs. Math. Subj. Class. (2010): 05C76, 05C10. It is not uncommon to use different terminology or notation for the same mathematical concept. There are several reasons for such a phenomenon. Authors independently discover the same object and have to name it. It is• quite natural that they choose different names. Sometimes the same concept appears in different mathematical schools or in• different disciplines. By using particular terminology in a given context makes understanding of such a concept much easier. Sometimes original terminology is not well-chosen, not intuitive and it is difficult• to relate the name of the object to its meaning. A name that is more appropriate for a given concept is preferred. One would expect terminology to be as simple as possible, and as easy to connect it to the concept as possible. However, it should not be too simple. Received: 8 October 2018 51 Accepted: 21 January 2018 In other words it should not introduce ambiguity. Unfortunately, the term bipartite double cover that has been used lately in several places to replace an older term canonical double cover, also known as the Kronecker cover, [1,4], is ambiguous. -
Free Groups and Graphs: the Hanna Neumann Theorem
FREE GROUPS AND GRAPHS: THE HANNA NEUMANN THEOREM LAUREN COTE Abstract. The relationship between free groups and graphs is one of the many examples of the interaction between seemingly foreign branches of math- ematics. After defining and proving elementary relations between graphs and groups, this paper will present a result of Hanna Neumann on the intersection of free subgroups. Although Neumann's orginal upper bound on the rank of the intersection has been improved upon, her conjecture, that the upper bound is half of the one she originally proved, remains an open question. Contents 1. Groups 1 2. Graphs 3 3. Hanna Neumann Theorem 9 References 11 1. Groups Definition 1.1. Recall that a group G is a set S and a binary operation · with the properties that G is closed under ·, · is associative, there exists an identity e such that for all g 2 (G); g · e = e · g = g, and there exist inverses such that for each g 2 G; there exists g−1 2 G such that g · g−1 = g−1 · g = e. When working with groups, it is helpful to review the definitions of homomor- phism, an operation perserving map. For groups G1 = (S1; ·), G2 = (S2;?), the homomorphism φ : G1 ! G2 has the property that φ(x · y) = φ(x) ? φ(y). An isomorphism is a bijective homomorphism. Definition 1.2. This paper will focus on a particular kind of group, those which have the least possible amount of restriction: free groups. Let i : S ! F . A group F is free on a set S if for all groups G and for all f : S ! G, there exists a unique homomorphism : F ! G so that i ◦ = f.