00. Prelim 7/9/11 16:30 Page Iii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Common Native & Invasive Freshwater Plants in Alaska
Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting -
Aquatic Vascular Plant Species Distribution Maps
Appendix 11.5.1: Aquatic Vascular Plant Species Distribution Maps These distribution maps are for 116 aquatic vascular macrophyte species (Table 1). Aquatic designation follows habitat descriptions in Haines and Vining (1998), and includes submergent, floating and some emergent species. See Appendix 11.4 for list of species. Also included in Appendix 11.4 is the number of HUC-10 watersheds from which each taxon has been recorded, and the county-level distributions. Data are from nine sources, as compiled in the MABP database (plus a few additional records derived from ancilliary information contained in reports from two fisheries surveys in the Upper St. John basin organized by The Nature Conservancy). With the exception of the University of Maine herbarium records, most locations represent point samples (coordinates were provided in data sources or derived by MABP from site descriptions in data sources). The herbarium data are identified only to township. In the species distribution maps, town-level records are indicated by center-points (centroids). Figure 1 on this page shows as polygons the towns where taxon records are identified only at the town level. Data Sources: MABP ID MABP DataSet Name Provider 7 Rare taxa from MNAP lake plant surveys D. Cameron, MNAP 8 Lake plant surveys D. Cameron, MNAP 35 Acadia National Park plant survey C. Greene et al. 63 Lake plant surveys A. Dieffenbacher-Krall 71 Natural Heritage Database (rare plants) MNAP 91 University of Maine herbarium database C. Campbell 183 Natural Heritage Database (delisted species) MNAP 194 Rapid bioassessment surveys D. Cameron, MNAP 207 Invasive aquatic plant records MDEP Maps are in alphabetical order by species name. -
Protostane and Fusidane Triterpenes: a Mini-Review
Molecules 2013, 18, 4054-4080; doi:10.3390/molecules18044054 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Protostane and Fusidane Triterpenes: A Mini-Review Ming Zhao 1,*, Tanja Gödecke 1, Jordan Gunn 1, Jin-Ao Duan 2 and Chun-Tao Che 1 1 Department of Medicinal Chemistry & Pharmacognosy, and WHO Collaborative Center for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA 2 Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Traditional Chinese Medicine, Nanjing 210046, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-312-996-1557; Fax: +1-312-996-7107. Received: 6 March 2013; in revised form: 29 March 2013 / Accepted: 1 April 2013 / Published: 5 April 2013 Abstract: Protostane triterpenes belong to a group of tetracyclic triterpene that exhibit unique structural characteristics. Their natural distribution is primarily limited to the genus Alisma of the Alismataceae family, but they have also been occasionally found in other plant genera such as Lobelia, Garcinia, and Leucas. To date, there are 59 known protostane structures. Many of them have been reported to possess biological properties such as improving lipotropism, hepatoprotection, anti-viral activity against hepatitis B and HIV-I virus, anti-cancer activity, as well as reversal of multidrug resistance in cancer cells. On the other hand, fusidanes are fungal products characterized by 29-nor protostane structures. They possess antibiotic properties against staphylococci, including the methicillin-resistant Staphylococcus aureus (MRSA). Fusidic acid is a representative member which has found clinical applications. This review covers plant sources of the protostanes, their structure elucidation, characteristic structural and spectral properties, as well as biological activities. -
Aquatic Vascular Plants of New England, Station Bulletin, No.518
University of New Hampshire University of New Hampshire Scholars' Repository NHAES Bulletin New Hampshire Agricultural Experiment Station 4-1-1981 Aquatic vascular plants of New England, Station Bulletin, no.518 Hellquist, C. B. Crow, G. E. New Hampshire Agricultural Experiment Station Follow this and additional works at: https://scholars.unh.edu/agbulletin Recommended Citation Hellquist, C. B.; Crow, G. E.; and New Hampshire Agricultural Experiment Station, "Aquatic vascular plants of New England, Station Bulletin, no.518" (1981). NHAES Bulletin. 479. https://scholars.unh.edu/agbulletin/479 This Text is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NHAES Bulletin by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. S lTION bulletin 518 April, 1981 Aquatic Vascular Plants of New England: Part 3. Alismataceae BIO SCI by LIBRARY C. B. Hellquist and G. E. Crow NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 S lTION bulletin 518 April, 1981 Aquatic Vascular Plants of New England: Part 3. Alismataceae BIO SCI by LIBRARY C. B. Hellquist and G. E. Crow NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 S ?1Hi ACKNOWLEDGEMENTS '^^ ^l<^ We wish to thank Drs. Robert K. Godfrey, Robert R. Haynes, and Arthur C. Mathieson for their helpful comments on the manuscript. Bruce Sorrie kindly supplied locality data not documented in herbaria for some of the rarer taxa occurring in southeastern Massachusetts. -
Shoreline Plants
SHORELINE PLANTS Species: Alisma triviale Pursh (Synonym: Alisma plantago-aquatica), northern water plantain, American water- plantain, large water-plantain, broad-leaved water plantain Family: Alismataceae NATIVE Leaf: Leaves with parallel-looking veins arise from the plant base and are stiff when growing above the water. Submerged leaves may be ribbon-like and flexible. To 45 cm long including the stalk, oval-shaped blade to 15 cm long, 10 cm wide. Stem: What appear to be stems are actually stalks of the inflorescence (peduncle). Stem is a bulb- like fleshy corm, usually buried in sediment. Flower: White to pinkish individual flowers to 7 mm across; each has 3 sepals and 3 petals. They occur in whorls on slender branches arranged around a central flower stalk. Whorls form a cone-shaped outline. Stalks to 1.2 m long, much longer than leaves. Fruit: Dry, brown, flattened, oval- shaped achenes are arranged in a ring on small, flat receptacles. Edge of achene with 1 grove. Root: Fibrous, arising from the corm. Moose and ducks will often dig up the roots for food. Propagation: Seeds or division of corms. Habitat: Marshy areas and along shorelines; occasionally completely submerged. Arthur Haines, New England Wild Flower Society Arthur Haines, New England Wild 82 83 SHORELINE PLANTS Species: Limosella aquatica, water mudwort, northern mudwort Family: Scrophulariaceae NATIVE Leaf: Leaves arise from the plant base with transparent stipules located at the base of the leaf stalks. Spoon-shaped to oval blades are 5-30 mm long and 2-8 mm wide; leaf stalks (70 10 cm long) are generally distinct from the blade. -
Reference Plant List
APPENDIX J NATIVE & INVASIVE PLANT LIST The following tables capture the referenced plants, native and invasive species, found throughout this document. The Wildlife Action Plan Team elected to only use common names for plants to improve the readability, particular for the general reader. However, common names can create confusion for a variety of reasons. Common names can change from region-to-region; one common name can refer to more than one species; and common names have a way of changing over time. For example, there are two widespread species of greasewood in Nevada, and numerous species of sagebrush. In everyday conversation generic common names usually work well. But if you are considering management activities, landscape restoration or the habitat needs of a particular wildlife species, the need to differentiate between plant species and even subspecies suddenly takes on critical importance. This appendix provides the reader with a cross reference between the common plant names used in this document’s text, and the scientific names that link common names to the precise species to which writers referenced. With regards to invasive plants, all species listed under the Nevada Revised Statute 555 (NRS 555) as a “Noxious Weed” will be notated, within the larger table, as such. A noxious weed is a plant that has been designated by the state as a “species of plant which is, or is likely to be, detrimental or destructive and difficult to control or eradicate” (NRS 555.05). To assist the reader, we also included a separate table detailing the noxious weeds, category level (A, B, or C), and the typical habitats that these species invade. -
Sagittaria Cuneata E.Sheld., 1893
Sagittaria cuneata E.Sheld., 1893 Identifiants : 28518/sagcun Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 25/09/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Monocotylédones ; Ordre : Alismatales ; Famille : Alismataceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Liliopsida ; Ordre : Alismatales ; Famille : Alismataceae ; Genre : Sagittaria ; Synonymes : Sagittaria arifolia Nutt. ex J. G. Sm, Sagittaria hebetiloba A. Nelson, Sagittaria paniculata Blank, Sagittaria suksdorfii Gand ; Nom(s) anglais, local(aux) et/ou international(aux) : wapato, arumleaf arrowhead ; Rusticité (résistance face au froid/gel) : zone 5-9 ; Note comestibilité : **** Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Racine - crue ou cuite ; légèrement amers crus, les tubercules torréfiés ont un goût sucré ; les tubercules trouvés à l'extrémité sont les meilleurs ; une fois détachés des racines, les tubercules remontent à la surface de l'eau et sont ensuite facilement ramassés{{{5(+). Les bulbes sont bouillis et mangés. Ils peuvent être bouillis frais, séchés ou confits avec du sirop d'érable néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Page 1/2 Distribution : C'est une plante tempérée{{{0(+x) -
Methyl Jasmonate Promote Protostane Triterpenes Accumulation by Up
www.nature.com/scientificreports OPEN Methyl jasmonate promote protostane triterpenes accumulation by up-regulating the expression of squalene epoxidases in Alisma orientale Rong Tian, Wei Gu*, Yuchen Gu, Chao Geng, Fei Xu, Qinan Wu, Jianguo Chao, Wenda Xue, Chen Zhou & Fan Wang Protostane triterpenes, which are found in Alisma orientale, are tetracyclic triterpenes with distinctive pharmacological activities. The natural distribution of protostane triterpenes is limited mainly to members of the botanical family Alismataceae. Squalene epoxidase (SE) is the key rate-limiting enzyme in triterpene biosynthesis. In this study, we report the characterization of two SEs from A. orientale. AoSE1 and AoSE2 were expressed as fusion proteins in E. coli, and the purifed proteins were used in functional research. In vitro enzyme assays showed that AoSE1 and AoSE2 catalyze the formation of oxidosqualene from squalene. Immunoassays revealed that the tubers contain the highest levels of AoSE1 and AoSE2. After MeJA induction, which is the main elicitor of triterpene biosynthesis, the contents of 2,3-oxidosqualene and alisol B 23-acetate increased by 1.96- and 2.53-fold, respectively. In addition, the expression of both AoSE proteins was signifcantly increased at four days after MeJA treatment. The contents of 2,3-oxidosqualene and alisol B 23-acetate were also positively correlated with AoSEs expression at diferent times after MeJA treatment. These results suggest that AoSE1 and AoSE2 are the key regulatory points in protostane triterpenes biosynthesis, and that MeJA regulates the biosynthesis of these compounds by increasing the expression of AoSE1 and AoSE2. Alisma orientale is one of the most important perennial medicinal plants in traditional Chinese medicine, where its rhizomes have been used for nearly 2000 years to eliminate “dampness”, reduce edema, and promote urinary 1 excretion . -
Ecological Site R107BY018MO Ponded Floodplain Marsh
Natural Resources Conservation Service Ecological site R107BY018MO Ponded Floodplain Marsh Last updated: 5/21/2020 Accessed: 10/01/2021 General information Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. MLRA notes Major Land Resource Area (MLRA): 107B–Iowa and Missouri Deep Loess Hills The Iowa and Missouri Deep Loess Hills (MLRA 107B) includes the Missouri Alluvial Plain, Loess Hills, Southern Iowa Drift Plain, and Central Dissected Till Plains landform regions (Prior 1991; Nigh and Schroeder 2002). It spans four states (Iowa, 53 percent; Missouri, 32 percent; Nebraska, 12 percent; and Kansas 3 percent), encompassing over 14,000 square miles (Figure 1). The elevation ranges from approximately 1565 feet above sea level (ASL) on the highest ridges to about 600 feet ASL along the Missouri River near Glasgow in central Missouri. Local relief varies from 10 to 20 feet in the major river floodplains, to 50 to 100 feet in the dissected uplands, and loess bluffs of 200 to 300 feet along the Missouri River. Loess deposits cover most of the area, with deposits reaching a thickness of 65 to 200 feet in the Loess Hills and grading to about 20 feet in the eastern extent of the region. Pre-Illinoian till, deposited more than 500,000 years ago, lies beneath the loess and has experienced extensive erosion and dissection. -
Vascular Plants of the Forest River Bi- Ology Station, North Dakota
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2015 VASCULAR PLANTS OF THE FOREST RIVER BI- OLOGY STATION, NORTH DAKOTA Alexey Shipunov Kathryn A. Yurkonis John C. La Duke Vera L. Facey Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Prairie Naturalist 47:29–35; 2015 VASCULAR PLANTS OF THE FOREST RIVER BI- known to occur at the site. Despite this effort, 88 species OLOGY STATION, NORTH DAKOTA—During sum- in La Duke et al. (unpublished data) are not yet supported mer 2013 we completed a listing of the plant species of the with collections, but have been included with this list. No- joint University of North Dakota (UND) Forest River Biol- menclature and taxon concepts are given in the accordance ogy Station and North Dakota Game and Fish Department with USDA PLANTS database (United States Department of Wildlife Management Area (FRBS).The FRBS is a 65 ha Agriculture 2013), and the Flora of North America (Flora of tract of land that encompasses the south half of the SW ¼ of North America Editorial Committee 1993). section 11 (acquired by UND in 1952) and the north half of We recorded 498 plant species from 77 families in the the NW ¼ of section 14 (acquired by UND in 1954) in Ink- FRBS (Appendix A), which is greater than the number of ster Township (T154N, R55W). -
Table S1. Primer List for Expression Profiling of PT Genes
Table S1. Primer list for expression profiling of PT genes Genes Primer sequences Gene ID 5'-CCCGAAGCTGCTCGGCGTCGACAAGG-3' OsGPS Os01g14630 5'-GAGCCATCAATTAATGCTGCCTGTAG-3' 5'-AGGCTCCGAGGGCCTAGTCGCCGGCCAGGTTGTTG-3' OsGGPS1 Os07g39270 5'-ATTGCCCCAATAACCACTGATGCCTC-3' 5'-ACGGCCGCACCATCGGCGTCCTGTACCAGCTCGTC-3' OsGRP Os02g44780 5'-TGCGCTTTGAGCTCCTCTACGATGCC-3' 5'-TCGCATATGAATATGGTCGAAACCTGGGTTTAGCC-3' OsSPS1 Os06g46450 5'-ATAGGTGCGGTAATGATTCCATGACG-3' 5'-CCAGTTCAGAAGTACCCTTGAGAACGTG-3' OsSPS2 Os05g50550 5'-CAAGATGAACTTCTTTGGGAGCTACTAAC-3' 5'-ACTGCAATAGAGCTAGTTCATAGAAGTGG-3' OsSPS3 Os12g17320 5'-GGAGCTACTGTAAGCTCACAAAGGAGG-3' 5'-ACCCCTCAAATGTAGACGCAGCCCTT-3' OsSPS4 Os08g09370 5'-CTTGCTCTCAGGAAGAGCATCGATTGCG-3' 5'-GATCTGTATAAAGAACTTAATCTGGAGGCCG-3' OsFPS1 Os01g50760 5'-AACATGAAACAGCTTCTCCATGA-3' 5'-AGAGAACTAAACCTAGAGGCGGTC-3' OsFPS2 Os05g46580 5'-CTAGAGAAGAAACATGCAACAATGGACAGC-3' 5'-AACGAACTTCATCTCCAGCGGGTG-3' OsFPS3 Os01g50050 5'-GCCAAGAACCAGAATAATCCACGAGATGCC-3' 5'-ACAGGGAGCTTGATCTTCAGGAC-3' OsFPS4 Os04g56230 5'-ATCTTCTTCAGAAACGACTTCAAAATATCCCG-3' 5'-GCTGACAACAATCAAATAGAAGTACTACATAGG-3' OsFPS5 Os04g56210 5'-GCATGATCCTTCTGAGCTTCGATAG-3' 5'-GCATATACATTTTCGAAGTATCATCAGGGA-3' OsTPS19 Os04g27190 5'-GATTTATGTACAAAAGTGAACTTATTTTAAGAT-3' 5'-GGGAAGATGATGAGCAGGTTA-3' OsPSY1 Os06g51290 5'-GCATTTTCCCTATACATGCT-3' 5'-ACGTCGGCGACTCGTTGCAGGTTC-3' OsGA2ox3 Os01g55240 5'-CAGCTGTGGCAATGGTGCAATCCTC-3' 5'-GAAGTAAGGAAGGAGGAGGA-3' OsUbi5 Os01g22490 5'-AAGGTGTTCAGTTCCAAGG-3' 5'-CTGCAGACATGCAAACCACCATTTGAAC-3' OsEF1a Os03g08050 5'-AGGCAAACGGTGGCTGTTGGCGTCATC-3' Table -
Expert Consultation on Promotion of Medicinal and Aromatic Plants in the Asia-Pacific Region
Expert Consultation on Promotion of Medicinal and Aromatic Plants in the Asia-Pacific Region Bangkok, Thailand 2-3 December, 2013 PROCEEDINGS Editors Raj Paroda, S. Dasgupta, Bhag Mal, S.P. Ghosh and S.K. Pareek Organizers Asia-Pacific Association of Agricultural Research Institutions (APAARI) Food and Agriculture Organization of the United Nations - Regional Office for Asia and the Pacific (FAO RAP) Citation : Raj Paroda, S. Dasgupta, Bhag Mal, S.P. Ghosh and S.K. Pareek. 2014. Expert Consultation on Promotion of Medicinal and Aromatic Plants in the Asia-Pacific Region: Proceedings, Bangkok, Thailand; 2-3 December, 2013. 259 p. For copies and further information, please write to: The Executive Secretary Asia-Pacific Association of Agricultural Research Institutions (APAARI) C/o Food and Agriculture Organization of the United Nations Regional Office for Asia & the Pacific 4th Floor, FAO RAP Annex Building 201/1 Larn Luang Road, Klong Mahanak Sub-District Pomprab Sattrupai District, Bangkok 10100, Thailand Tel : (+662) 282 2918 Fax : (+662) 282 2919 E-mail: [email protected] Website : www.apaari.org Printed in July, 2014 The Organizers APAARI (Asia-Pacific Association of Agricultural Research Institutions) is a regional association that aims to promote the development of National Agricultural Research Systems (NARS) in the Asia-Pacific region through inter-regional and inter-institutional cooperation. The overall objectives of the Association are to foster the development of agricultural research in the Asia- Pacific region so as to promote the exchange of scientific and technical information, encourage collaborative research, promote human resource development, build up organizational and management capabilities of member institutions and strengthen cross-linkages and networking among diverse stakeholders.