Bachelor Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Bachelor Thesis Freie Universität Berlin • Institute of Chemistry and Biochemistry Genetic diversity in green algae (Hydrodictyaceae) obtained from modern and ancient sedimentary DNA of Siberian lakes Bachelor thesis Submitted by Jan Patrick Lütje September 2014 Supervisor: Prof. Dr. Ulrike Herzschuh, Second Referee: Dr. Jens Peter Fürste, Alfred Wegener Institute for Polar and Institute of Chemistry and Marine Research, Potsdam Biochemistry, Freie Universität Berlin The present work was written between the 4th of August and 29th of September 2014. By submitting this work, I declare that it was solely undertaken by me and that no help was provided from other sources as those allowed. All source material that was used is listed in part 6 “References”. Furthermore, I declare no competing financial interests or any other conflict of interest. Potsdam, 29th of September 2014 Jan Lütje Bachelor thesis Note of thanks I wish to thank Prof. Dr. Ulrike Herzschuh (Alfred Wegener Institute for Polar and Marine Research, Potsdam) and Dr. Jens Peter Fürste (Freie Universität Berlin) for their willingness to review my work as supervisor and second referee, and Bastian Niemeyer (AWI) for cartographic and algae pictures. In particular, my gratitude goes to Dr. Kathleen Stoof-Leichsenring (AWI) for her supervision of my lab work and her constant help and support during the process of data analysis, writing and review of my thesis. Thank you also to the whole lab group at the AWI; your help and the pleasant working atmosphere is greatly appreciated. 3 Bachelor thesis Index Abstract ............................................................................................................................. 6 Zusammenfassung ............................................................................................................ 7 1. Introduction ............................................................................................................... 9 1.1. Hydrodictyaceae ................................................................................................. 9 1.2. Pediastrum as bioindicator ............................................................................... 10 1.3. RbcL as genetic marker .................................................................................... 11 1.4. Environmental DNA and metabarcoding ......................................................... 11 1.5. Study area ......................................................................................................... 12 2. Objective .................................................................................................................. 14 3. Materials and Methods ............................................................................................ 15 3.1. Materials ........................................................................................................... 15 3.1.1. Chemicals and buffers .............................................................................. 15 3.1.2. Kits and other materials ............................................................................ 15 3.1.3. Laboratory equipment ............................................................................... 16 3.1.4. Samples ..................................................................................................... 17 3.2. Methods ............................................................................................................ 19 3.2.1. Security and decontamination measures ................................................... 19 3.2.2. DNA isolation ........................................................................................... 19 3.2.3. Preliminary experiment: primer test and PCR .......................................... 21 3.2.4. PCR ........................................................................................................... 22 3.2.5. Gel electrophoresis ................................................................................... 23 3.2.6. Purification ................................................................................................ 24 3.2.7. Cloning ...................................................................................................... 24 3.2.8. Sanger sequencing .................................................................................... 26 3.2.9. Sequence alignment and verification ........................................................ 27 3.2.10. Phylogenetic analyses ............................................................................... 28 4. Results ..................................................................................................................... 29 4.1. DNA isolation and quantification .................................................................... 29 4.2. Preliminary experiment: primer test ................................................................. 29 4.3. Sequence verification ....................................................................................... 32 4 Bachelor thesis 4.4. Diversity, distribution and classification of Hydrodictyaceae lineages ........... 32 4.4.1. Diversity and distribution of Hydrodictyaceae lineages ........................... 32 4.4.2. Taxonomic assignment (NCBI BLAST) .................................................. 36 4.5. Phylogenetic analyses ...................................................................................... 37 4.5.1. Bayesian phylogenetic tree based on the 82 bp rbcL fragment ................ 37 4.5.2. Bayesian phylogenetic tree based on a 1052 bp rbcL fragment ............... 37 5. Discussion ................................................................................................................ 40 5.1. Specificity and reliability of tested primers ..................................................... 40 5.2. Distribution of lineages obtained from surface and core sediments ................ 40 5.3. Phylogenetic analyses and comparison of 82 bp and 1052 bp fragments ........ 42 5.4. Indications for the use of sedDNA analyses in paleoecological studies .......... 43 6. References ............................................................................................................... 45 7. List of figures and tables ......................................................................................... 47 8. List of symbols and abbreviations ........................................................................... 48 9. Appendix ................................................................................................................. 49 5 Bachelor thesis Abstract Abstract Pediastrum and other representatives of the green algae family Hydrodictyaceae (Chlorophyta), commonly found in freshwater environments, are potential bioindicators for paleolimnological studies as they are preserved in sediments and morphologically classified as non-pollen palynomorphs obtained along with pollen spectra. The aim of this study was to examine the diversity in Hydrodictyaceae obtained from modern and ancient Siberian lake sediments following a molecular genetic approach. Environmental samples were obtained from lakes across the arctic-boreal tree line in Siberia. Modern sedimentary DNA (sedDNA) was isolated from the samples and a selected fragment of the rbcL gene, encoding the large subunit of the enzyme RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), was amplified via polymerase chain reaction (PCR). The respective primer pairs were specifically developed beforehand and optimized for the desired target fragment in Hydrodictyaceae. Four primer combinations were tested on two modern sediment samples and the most suitable primer combination was selected and applied to additional modern and core samples. The PCR products were cloned and sequenced by Sanger sequencing; the sequences were aligned and verified and taxonomic identification was conducted based on BLAST nucleotide search. 71.2 % of the obtained sequences were assigned to Hydrodictyaceae in ten out of eleven samples and 28.8 % to unknown algae strains in nine out of eleven samples. In total, thirteen different rbcL lineages were detected, among them twelve lineages of Pediastrum and Pseudopediastrum in modern sediments and six in ancient core sediments, including a single Stauridium lineage in one core sample. Five different lineages were detected in both sample types. One sample did not yield any Hydrodictyaceae lineage. Although the preliminary results of this study indicated that the distribution of lineages was fairly heterogeneous, we recognized a general tendency in terms of sample type (surface/core) and vegetation type (tundra/forest tundra/forest), but could not identify distinct preferences of single lineages. Phylogenetic inferences of the lineages indicated that a resolution down to species and strain level is not possible for most of the examined lineages. 6 Bachelor thesis Zusammenfassung However, this study showed that Pediastrum DNA was reliably amplified from modern lake sediments and from core depths of up to 62 cm, the latter of which yielded ancient DNA (aDNA) with an age of approximately 3000 years. Possibly further studies covering larger datasets and additional genetic markers will give better resolution in terms of quantification, taxonomic coverage and identification. Zusammenfassung Pediastrum und andere in Süßwasser-Ökosystemen verbreitete Vertreter der Familie Hydrodictyaceae (Grünalgen, Chlorophyta) sind potentielle Bioindikatoren
Recommended publications
  • Pediastrum Species (Hydrodictyaceae, Sphaeropleales) in Phytoplankton of Sumin Lake (£Êczna-W£Odawa Lakeland)
    Vol. 73, No. 1: 39-46, 2004 ACTA SOCIETATIS BOTANICORUM POLONIAE 39 PEDIASTRUM SPECIES (HYDRODICTYACEAE, SPHAEROPLEALES) IN PHYTOPLANKTON OF SUMIN LAKE (£ÊCZNA-W£ODAWA LAKELAND) AGNIESZKA PASZTALENIEC, MA£GORZATA PONIEWOZIK Department of Botany and Hydrobiology, Catholic University of Lublin C.K. Norwida 4, 20-061 Lublin, Poland e-mail: [email protected] (Received: April 7, 2003. Accepted: July 18, 2003) ABSTRACT During studies of phytoplankton in Sumin Lake (£êczna-W³odawa Lakeland), conducted from May till Sep- tember 2001 and 2002, 15 taxa of the genus Pediastrum (Hydrodictyaceae, Sphaeropleales) were found. Among them there were common species as Pediastrum boryanum, P. duplex, P. tetras and P. simplex, but also rare spe- cies as P. integrum or P. kawraiskyi. An especially interesting species was P. orientale, the taxon that until now has not been noted in phytoplankton of Polish water bodies. The paper gives descriptions of the genus Pediastrum coenobia and physico-chemical conditions of the habitat. The original documentation of Pediastrum taxa is added. KEY WORDS: Pediastrum taxa, Chlorophyta, phytoplankton, £êczna-W³odawa Lakeland. INRTODUCTION rved in palynological preparations (Jankovská and Komá- rek 2000, Komárek and Jankovská 2001; Nielsen and Lakes of £êczna-W³odawa Lakeland are the only group Sørensen 1992). in Poland located beyond the limits of a continental glacier The taxonomical research of the genus Pediastrum was of the last glaciation. The genesis of lakes is still disputa- not conducted in phytoplankton of £êczna-W³odawa Lake- ble, but the most of them have a termo-karst origin (Hara- land lakes. Only some information on occurrence of this simiuk and Wojtanowicz 1998).
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • 50 Annual Meeting of the Phycological Society of America
    50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Taxonomy and Diversity of Genus Pediastrum Meyen (Chlorophyceae, Algae) in East Nepal
    S.K. Rai and P.K.Our NatureMisra / (2012) Our Nature 10: 16 (2012)7-175 10: 167-175 Taxonomy and Diversity of Genus Pediastrum Meyen (Chlorophyceae, Algae) in East Nepal S.K. Rai1* and P.K. Misra2 1Department of Botany, Post Graduate Campus, T.U., Biratnagar, Nepal 2Phycology Research Laboratory, Department of Botany, University of Lucknow, India *E-mail: [email protected] Abstract Pediastrum Meyen is a green algae occurs frequently in lentic environment like pond, puddles, lakes etc. mostly in warm and humid terai region. Twenty taxa of Pediasturm have been reported from Nepal, mostly from central and western part of the country, hitherto. Among them, in the present study, ten taxa of Pediastrum are enumerated also from east Nepal. Taxonomy and diversity of each taxa have been described with photomicrography. Key words: Algae, Chlorophyceae, Pediastrum, Taxonomy, Nepal Introduction Green algae are aquatic plants and act as the combined with silicon oxide which makes pioneer photosynthetic organism or them high resistance to decay. Therefore, producer in the World of ecosystem. The they remain preserved well in lake genus Pediastrum Mayen (Chlorophyceae, sediments as fossil record for palynological Sphaeropleales) is a free floating, coenobial, studies (Komárek and Jankovská, 2001). green algae occurs commonly in natural Thus, the knowledge of Pediastrum can be freshwater lentic environments like ponds, useful for the determination of trophocity or lakes, reservoirs etc. Their occurrence in salinity of water at present and past brackish and salty waters is rare (Parra, (Pasztaleniec and Poniewozik, 2004). 1979). At present, only 24 species of Study on algal flora of Nepal is Pediastrum have been described from the incomplete and sporadic.
    [Show full text]
  • Biodiversity of Microscopic Green Algae from Desert Soil Crusts
    Digital Commons @ Assumption University Honors Theses Honors Program 2020 Biodiversity of Microscopic Green Algae from Desert Soil Crusts Victoria Williamson Assumption College Follow this and additional works at: https://digitalcommons.assumption.edu/honorstheses Part of the Life Sciences Commons Recommended Citation Williamson, Victoria, "Biodiversity of Microscopic Green Algae from Desert Soil Crusts" (2020). Honors Theses. 69. https://digitalcommons.assumption.edu/honorstheses/69 This Honors Thesis is brought to you for free and open access by the Honors Program at Digital Commons @ Assumption University. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Assumption University. For more information, please contact [email protected]. BIODIVERSITY OF MICROSCOPIC GREEN ALGAE FROM DESERT SOIL CRUSTS Victoria Williamson Faculty Supervisor: Karolina Fučíková Natural Science Department A Thesis Submitted to Fulfill the Requirements of the Honors Program at Assumption College Spring 2020 Williamson 1 Abstract In the desert ecosystem, the ground is covered with soil crusts. Several organisms exist here, such as cyanobacteria, lichens, mosses, fungi, bacteria, and green algae. This most superficial layer of the soil contains several primary producers of the food web in this ecosystem, which stabilize the soil, facilitate plant growth, protect from water and wind erosion, and provide water filtration and nitrogen fixation. Researching the biodiversity of green algae in the soil crusts can provide more context about the importance of the soil crusts. Little is known about the species of green algae that live there, and through DNA-based phylogeny and microscopy, more can be understood. In this study, DNA was extracted from algal cultures newly isolated from desert soil crusts in New Mexico and California.
    [Show full text]
  • El Fitoplancton De Un Canal De Xochimilco Y La Importancia De Estudiar Ecosistemas Acuáticos Urbanos Tip Revista Especializada En Ciencias Químico-Biológicas, Vol
    Tip Revista Especializada en Ciencias Químico-Biológicas ISSN: 1405-888X [email protected] Universidad Nacional Autónoma de México México López-Mendoza, Zitlali; Tavera, Rosaluz; Novelo, Eberto El fitoplancton de un canal de Xochimilco y la importancia de estudiar ecosistemas acuáticos urbanos Tip Revista Especializada en Ciencias Químico-Biológicas, vol. 18, núm. 1, 2015, pp. 13-28 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=43238076002 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ARTÍCULO ORIGINAL D.R. © TIP Revista Especializada en Ciencias Químico-Biológicas, 18(1):13-28, 2015 EL FITOPLANCTON DE UN CANAL DE XOCHIMILCO Y LA IMPORTANCIA DE ESTUDIAR ECOSISTEMAS ACUÁTICOS URBANOS Zitlali López-Mendoza1, Rosaluz Tavera2* y Eberto Novelo3** 1Licenciatura en Biología, 2Departamento de Ecología y Recursos Naturales, 3Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Deleg. Coyoacán, C.P. 04510, México, D.F. E-mails: *[email protected], **[email protected] RESUMEN El fitoplancton del canal El Bordo en Xochimilco se estudió durante la época de lluvias de 2008 y la época seca de 2009. El objetivo fue conocer la estabilidad de la flora de una zona que requiere medidas de remediación. Los resultados de este estudio mostraron una composición diversa del fitoplancton, en la que destacó el registro de varias especies no observadas previamente en México y concretamente en Xochimilco.
    [Show full text]
  • Table of Contents
    Table of Contents General Program………………………………………….. 2 – 5 Poster Presentation Summary……………………………. 6 – 8 Abstracts (in order of presentation)………………………. 9 – 41 Brief Biography, Dr. Dennis Hanisak …………………… 42 1 General Program: 46th Northeast Algal Symposium Friday, April 20, 2007 5:00 – 7:00pm Registration Saturday, April 21, 2007 7:00 – 8:30am Continental Breakfast & Registration 8:30 – 8:45am Welcome and Opening Remarks – Morgan Vis SESSION 1 Student Presentations Moderator: Don Cheney 8:45 – 9:00am Wilce Award Candidate FUSION, DUPLICATION, AND DELETION: EVOLUTION OF EUGLENA GRACILIS LHC POLYPROTEIN-CODING GENES. Adam G. Koziol and Dion G. Durnford. (Abstract p. 9) 9:00 – 9:15am Wilce Award Candidate UTILIZING AN INTEGRATIVE TAXONOMIC APPROACH OF MOLECULAR AND MORPHOLOGICAL CHARACTERS TO DELIMIT SPECIES IN THE RED ALGAL FAMILY KALLYMENIACEAE (RHODOPHYTA). Bridgette Clarkston and Gary W. Saunders. (Abstract p. 9) 9:15 – 9:30am Wilce Award Candidate AFFINITIES OF SOME ANOMALOUS MEMBERS OF THE ACROCHAETIALES. Susan Clayden and Gary W. Saunders. (Abstract p. 10) 9:30 – 9:45am Wilce Award Candidate BARCODING BROWN ALGAE: HOW DNA BARCODING IS CHANGING OUR VIEW OF THE PHAEOPHYCEAE IN CANADA. Daniel McDevit and Gary W. Saunders. (Abstract p. 10) 9:45 – 10:00am Wilce Award Candidate CCMP622 UNID. SP.—A CHLORARACHNIOPHTYE ALGA WITH A ‘LARGE’ NUCLEOMORPH GENOME. Tia D. Silver and John M. Archibald. (Abstract p. 11) 10:00 – 10:15am Wilce Award Candidate PRELIMINARY INVESTIGATION OF THE NUCLEOMORPH GENOME OF THE SECONDARILY NON-PHOTOSYNTHETIC CRYPTOMONAD CRYPTOMONAS PARAMECIUM CCAP977/2A. Natalie Donaher, Christopher Lane and John Archibald. (Abstract p. 11) 10:15 – 10:45am Break 2 SESSION 2 Student Presentations Moderator: Hilary McManus 10:45 – 11:00am Wilce Award Candidate IMPACTS OF HABITAT-MODIFYING INVASIVE MACROALGAE ON EPIPHYTIC ALGAL COMMUNTIES.
    [Show full text]
  • Evolutionary Relationships Between the Varieties of Green Algae Pediastrum Boryanum and P
    170 Fottea, Olomouc, 18(2): 170–188, 2018 DOI: 10.5507/fot.2018.004 Evolutionary relationships between the varieties of green algae Pediastrum boryanum and P. duplex s.l. (Chlorophyceae, Hydrodictyaceae) Joanna Lenarczyk* & Marta Saługa W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31–512 Kraków, Poland; *Corresponding author e–mail: [email protected] Abstract: The infraspecific relationships of the two most variable species,Pediastrum boryanum and P. duplex s.l. identified on the basis of morphological criteria, have been poorly studied so far. The present study focused on 12 original strains isolated from Polish water bodies and 29 strains from the GenBank database, which represent P. boryanum, P. duplex s.l. varieties and other morphologically similar taxa, against the background of 14 other strains of the family Hydrodictyaceae. In order to estimate the level of congruence between the phylogeny and the classical taxonomic system based on morphological criteria, the strains of P. boryanum and P. duplex s.l., and other morphologically similar taxa were subjected to parallel phylogenetic analyses applying Bayesian and Maximum Likelihood methods to combined molecular data (26S rDNA and rbcL cpDNA) and morphological analyses based on light and scanning electron microscopy, and iconographic documentation of almost all strains published elsewhere. The gene topologies revealed many discrepancies in the morphological features used to delimit the analysed taxa. The polyphyly of both P. boryanum and P. duplex s.l. was confirmed. Pseudopediastrum boryanum var. cornutum (formerly P. boryanum var. cornutum) formed a well supported monophyletic clade, whereas other varieties, including var. boryanum, brevicorne and longicorne, proved to be complex taxa.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • 1 L'hydrodictye Réticulée Hydrodictyon Reticulatum (Linnaeus)
    1 L'hydrodictye réticulée Hydrodictyon reticulatum (Linnaeus) Bory de Saint-Vincent 1824 Citation de cette fiche : Couté A., Noël P., 2016. L'hydrodictye réticulée Hydrodictyon reticulatum (Linnaeus) Bory de Saint-Vincent 1824. in Muséum national d'Histoire naturelle [Ed.], 6 septembre 2016. Inventaire national du Patrimoine naturel, pp. 1-9, site web http://inpn.mnhn.fr Contact des auteurs : Alain Couté, Muséum national d'Histoire naturelle, Département RDDM, UMR 7245 CNRS/MNHN, éq. Cyanobactéries, Cyanotoxines et Environnement, 57 rue Cuvier (CP 39), 75231 Paris cedex 05 ; e-mail [email protected] ; Pierre Noël, Muséum, SPN et DMPA, 43 rue Buffon (CP 48), 75231 Paris cedex 05 ; e-mail [email protected] Résumé Hydrodictyon reticulatum est une algue verte organisée en réseau dont les cellules, allongées et cylindriques, ont un chloroplaste pariétal réticulé avec de nombreux pyrénoïdes au stade âgé. Jeunes, elles ne possèdent qu’un noyau tandis qu’elles en ont un nombre important en vieillissant. Les cellules, qui mesurent jusqu’à 1,5cm de longueur, sont disposées en un réseau à mailles polyédriques en forme de sac. La taille du maillage augmente avec l’âge et les individus les plus anciens peuvent mesurer jusqu’à 20cm de longueur. Cette micro-algue est libre sur le sédiment ou flotte à la surface de l’eau. Elle prolifère en période estivale et peut subsister assez tard dans l’année grâce à une multiplication et une reproduction complexes faisant intervenir des cellules mobiles à deux flagelles égaux. Cette espèce ubiquiste se rencontre en faciès lentique dans divers types de plans d’eau naturels et artificialisés (mares, rizières…).
    [Show full text]
  • Organellar Phylogenomics Inform Systematics in the Green Algal
    Digital Commons @ Assumption University Biological and Physical Sciences Department Faculty Works Biological and Physical Sciences Department 2018 Organellar Phylogenomics Inform Systematics in the Green Algal Family Hydrodictyaceae (Chlorophyceae) and Provide Clues to the Complex Evolutionary History of Plastid Genomes in the Green Algal Tree of Life Hilary A. McManus Le Moyne College Karolina Fučíková Assumption College, [email protected] Paul O. Lewis University of Connecticut Louise A. Lewis University of Connecticut Kenneth G. Karol New York Botanical Garden Follow this and additional works at: https://digitalcommons.assumption.edu/sciences-faculty Part of the Life Sciences Commons Recommended Citation McManus, H. A.; Fučíková, K.; Lewis, P. O. ; Lewis, L. A. ; and Karol, K. G. (2018). Organellar Phylogenomics Inform Systematics in the Green Algal Family Hydrodictyaceae (Chlorophyceae) and Provide Clues to the Complex Evolutionary History of Plastid Genomes in the Green Algal Tree of Life. American Journal of Botany 105(3): 315-329. https://doi.org/10.1002/ajb2.1066 This Article is brought to you for free and open access by the Biological and Physical Sciences Department at Digital Commons @ Assumption University. It has been accepted for inclusion in Biological and Physical Sciences Department Faculty Works by an authorized administrator of Digital Commons @ Assumption University. For more information, please contact [email protected]. RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life Hilary A.
    [Show full text]