Th`Ese De Doctorat Pour Obtenir Le Grade De Docteur De L'université De

Total Page:16

File Type:pdf, Size:1020Kb

Th`Ese De Doctorat Pour Obtenir Le Grade De Docteur De L'université De Th`esede doctorat Pour obtenir le grade de Docteur de l'Universit´ede VALENCIENNES ET DU HAINAUT-CAMBRESIS´ MATHEMATIQUES´ PURES Pr´esent´eeet soutenue par Marilena, Moruz Le 03/04/2017, `aValenciennes Ecole doctorale : Sciences Pour l'Ing´enieur(SPI) Equipe de recherche, Laboratoire : Laboratoire de Math´ematiques et ses Applications de Valenciennes (LAMAV) Etude des sous-vari´et´esdans les vari´et´esk¨ahl´eriennes, presque k¨ahl´erienneset les vari´et´esproduit JURY Pr´esidentdu jury Opozda, Barbara. Professeur. Jagiellonian University, Krakow, Poland. Rapporteurs Leschke, Katrin. Professeur. University of Leicester, Leicester, UK. Voisin, Claire. Professeur. Coll`egede France, Paris. Examinateurs Birembaux, Olivier. Professeur. Universit´ede Valenciennes. El Kacimi, Aziz. Professeur. Universit´ede Valenciennes. Munteanu, Marian Ioan. Professeur. UAIC University of Ia¸si,Roumanie. Van der Veken, Joeri. Professor. KU Leuven, Belgium. Directeur de th`ese Vrancken, Luc. Professeur. Universit´ede Valenciennes. 2 Contents R´esum´e 3 Summary 12 1 Preliminaries 21 1.1 Affine, Riemannian and semi-Riemannian manifolds . 21 1.1.1 Affine manifolds . 22 1.1.2 Riemannian manifolds . 22 1.1.3 Semi-Riemannian manifolds . 24 1.2 Submanifolds . 26 1.2.1 On affine hypersurfaces . 28 3 1.2.2 On surfaces in E and Lorentzian space . 31 3 3 2 On the Nearly K¨ahler S × S 34 3 3 2.1 Properties of the nearly K¨ahler S × S as a Riemannian submersion . 39 3 3 3 2.1.1 The structure on S × S × S ....................... 39 3 3 2.1.2 The nearly K¨ahler S × S as a Riemannian submersion . 40 2.1.3 Properties of the application F1, F2 ................... 43 2.1.4 The role of the almost product structure P ............... 46 2.2 Lagrangian submanifolds with constant angle functions in the nearly K¨ahler 3 3 S × S ....................................... 48 3 3 2.3 Lagrangian submanifolds of the nearly K¨ahler S × S from minimal surfaces 3 in S ......................................... 59 3 2.3.1 Elementary properties of orientable minimal surfaces in S . ....................................... 59 2.3.2 From the Lagrangian immersion to the minimal surface . 60 2.3.3 The reverse construction . 65 2.4 Conclusion . 81 3 A classification of isotropic affine hyperspheres 83 3.1 Possible dimensions and choice of frame . 86 3.2 Isotropic affine hyperspheres . 90 3.3 Affine hyperspheres of dimension 5 . 93 3.3.1 The form of L, dim U =1......................... 93 3.3.2 A canonical example . 94 3.4 Affine hyperspheres of dimension 8 . 96 3.4.1 The form of L, dim U =2......................... 96 1 3.4.2 Two canonical examples . 97 3.5 Affine hyperspheres of dimension 14 . 100 3.5.1 The form of L, dim U =4......................... 100 3.5.2 Two canonical examples . 102 3.6 Affine hyperspheres of dimension 26 . 106 3.6.1 The form of L, dim U =8......................... 106 3.6.2 Two canonical examples . 112 4 Translation and homothetical surfaces in Euclidean space with constant curvature 114 4.1 Proof of Theorem 49 . 118 4.1.1 Case K =0................................. 119 4.1.2 Case K 6=0................................. 119 4.2 Proof of Theorem 50 . 122 4.3 Proof of Theorem 51 . 123 4.3.1 Case K =0................................. 124 4.3.2 Case K 6=0................................. 124 4.4 The Lorentzian case . 126 R´esum´e Cette th`eseest constitu´eede quatre chapitres. Le premier contient les notions de base qui permettent d'aborder les divers th`emesqui y sont ´etudi´es. Le second est consacr´e`al'´etude 3 3 des sous-vari´et´eslagrangiennes d'une vari´et´epresque k¨ahl´erienne S × S . Une vari´et´epresque k¨ahl´erienneest une vari´et´epresque hermitienne munie d'une structure presque complexe J pour laquelle le tenseur (r~ J) est anti-sym´etrique,o`u r~ est la connexion 3 3 de Levi-Civita. Je m'int´eresse`ades sous-vari´et´eslagrangiennes de S × S non totalement 3 geod´esiquesdont la projection sur le premier facteur S n'est nulle part de rang maximal. J'exprime cette propri´et´e`al'aide des fonctions d'angle et j'´etudieplus particuli`erement la 3 relation entre ces sous-vari´et´eset les surfaces minimales dans S . Dans ce chapitre, je d´emontre 3 3 que les sous-vari´et´eslagrangiennes de S × S dont les fonctions d'angle sont constantes sont totalement g´eod´esiquesou ont leur courbure sectionnelle constante. Puis je donne une classification compl`etede ces sous-vari´et´eslagrangiennes. Les r´esultatspr´esent´esici ont ´et´e obtenus en collaboration avec Burcu Bekta¸s,Joeri Van der Veken et Luc Vrancken (voir [3] et [4]). Dans le troisi`emechapitre, je m'int´eresse`aun probl`emede g´eom´etrie diff´erentielle affine et donne une classification des hypersph`eresaffines qui sont isotropiques. Ce r´esultat a ´et´e obtenu en collaboration avec Luc Vrancken (voir [41]). Et enfin dans le dernier, je pr´esente quelques r´esultatssur les surfaces de translation et les surfaces homoth´etiques.Ce travail a ´et´er´ealis´eavec Rafael L´opez ([35]). Courte pr´esentation des r´esultatsobtenus 3 3 x L'´etudedes sous-vari´et´eslagrangiennes de la vari´et´epresque k¨ahl´erienne S ×S L'´etudedes vari´et´espresque k¨ahl´eriennesd´ebutedans les ann´ees1970 avec A. Gray. Des th´eor`emesde structure, traitant le cas tr`essp´ecialde la dimension 6, ont ´et´eobtenus par P.-A. Nagy dans les ann´ees2000. Plus r´ecemment, il a ´et´ed´emontr´epar J.-B. Butruille que 6 les seuls espaces presque k¨ahl´erienshomog`enesde dimension 6 sont la sph`ere S (avec la 7 3 3 structure presque complexe introduite par le produit vectoriel sur R ), l'espace S × S (mais pas ´equip´ede la m´etriquecanonique et muni d'une structure presque complexe introduite en 3 utilisant les quaternions), l'espace projectif CP (avec une m´etriqueet une structure presque complexe non canoniques) et la vari´et´edes drapeaux SU(3)=U(1) × U(1). Tous ces espaces sont compacts et 3-sym´etriques. En 2014 V. Cort´esand J. J. V´asquezont d´ecouvert les premi´eresstructures non homog`enes(mais locallement homog`enes)presque K¨ahlerdans [14]. 3 Les premi`eresstructures non homog`enescompl`etesdes espaces presque k¨ahl´eriensont ´et´e d´ecouvertes seulement en 2015 par L. Foscolo et M. Haskins (voir [23]). Il existe deux types de sous-vari´et´esdes espaces presque k¨ahl´eriens(ou plus g´en´eralement, presque hermitiens), `asavoir les sous-vari´et´espresque complexes et les sous-vari´et´estotalement r´eelles.Les sous- vari´et´espresque complexes sont des sous-vari´et´esdont les espaces tangents sont invariants par l'op´erateur J. Pour les sous-vari´et´estotalement r´eelles,les vecteurs tangents sont envoy´essur les vecteurs normaux par la structure presque complexe J. Dans ce dernier cas, si en plus la dimension de la sous-vari´et´eest la moiti´ede la dimension de l'espace ambiant, alors la sous- vari´et´eest appel´eelagrangienne. On notera que les sous-vari´et´eslagrangiennes des vari´et´es presque k¨ahl´eriennessont particuli`erement int´eressantes car elles sont toujours minimales et 6 orientables (voir [21] pour S et [27] ou [52] pour le cas g´en´eral). Les sous-vari´et´es lagrangiennes ont ´et´e´etudi´ees par de nombreux auteurs dans le pass´e. Par contre pour les autres espaces, jusqu’`apr´esent, il existe tr`espeu de r´esultats. Dans le 3 3 cas de S × S les premiers exemples ont ´et´eobtenus respectivement par Sch¨aferet Smoczyk (2010) et par Moroianu et Semmelmann (2014). Un exemple de tore plat et la classification de tous les exemples totalement g´eod´esiquesou avec courbure sectionelle constante ont ´et´e obtenus en 2014 par Dioos, Vrancken et Wang. Une phase fondamentale dans cette ´etudeest l'utilisation d'une structure presque produit 3 3 3 3 P sur S × S , qui est li´ee,mais est diff´erente de la structure produit canonique de S × S . La d´ecomposition de P en une partie tangentielle et une partie normale le long d'une sous- vari´et´elagrangienne permet alors d'introduire trois directions principales, E1, E2, E3, avec des fonctions angulaires correspondantes θ1, θ2, θ3. Les r´esultatsobtenus dans ce domaine sont pr´esent´esdans la suite. Theorem 1. Soit 3 3 f : M ! S × S x 7! f(x) = (p(x); q(x)) 3 une immersion Lagrangienne telle que la premi`ere projection p : M ! S est nulle part 3 une immersion (cela veut dire que p(M) est une surface dans R ). Alors une des fonctions π angulaires est constante et ´egale`a 3 . La r´eciproque est vraie aussi. Theorem 2. Soit 3 3 f : M ! S × S x 7! f(x) = (p(x); q(x)); 3 une immersion lagrangienne telle que la premi`ere projection p : M ! S est nulle part une 3 immersion. Alors p(M) est une surface minimale dans S . En distinguant plusieurs cas, nous avons aussi r´eussi`amontrer la r´eciproque, c’est-`a-dire 3 comment construire, `apartir d'une surface minimale dans S (qui est totalement g´eod´esiqueou qui correspond `aune solution de l'´equationde sinh-Gordon), une sous-vari´et´elagrangienne de dimension 3 de S3 × S3. Ici il faut remarquer que cette vari´et´elagrangienne n'est pas unique. En effet, pour chaque solution d'une ´equationdiff´erentielle suppl´ementaire il existe une telle vari´et´elagrangienne.
Recommended publications
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Arxiv:2006.12190V2 [Math.DG] 6 Oct 2020 5.2
    PLATEAU PROBLEMS FOR MAXIMAL SURFACES IN PSEUDO-HYPERBOLIC SPACES FRANÇOIS LABOURIE, JÉRÉMY TOULISSE, AND MICHAEL WOLF Abstract. We define and prove the existence of unique solutions of an asymptotic Plateau problem for spacelike maximal surfaces in the pseudo-hyperbolic space of signature (2; n): the boundary data is given by loops on the boundary at infinity of the pseudo-hyperbolic space which are limits of positive curves. We also discuss a compact Plateau problem. The required compactness arguments rely on an analysis of the pseudo-holomorphic curves defined by the Gauss lifts of the maximal surfaces. Contents 1. Introduction2 1.1. Structure of this article5 2. Pseudo-hyperbolic geometry5 2.1. The pseudo-hyperbolic space5 2.2. Pseudo-spheres and horospheres7 2.3. Grassmannians8 2.4. Einstein Universe9 2.5. Positivity 10 3. Graphs, curves and surfaces 14 3.1. Spacelike submanifolds in pseudo-hyperbolic spaces 14 3.2. Strongly positive curves 19 3.3. Maximal surfaces 22 3.4. Gauss lift and holomorphic curves 25 4. Uniqueness 27 4.1. Lower bound on the Hessian 27 4.2. A maximum principle 28 4.3. Proof of Theorem 4.1 29 5. Main compactness theorem 30 5.1. Structure of the proof 31 arXiv:2006.12190v2 [math.DG] 6 Oct 2020 5.2. Preliminary : constructing “good” neighborhoods 31 5.3. Local control 35 5.4. Global control 38 5.5. Bernstein type theorem 39 Date: October 7, 2020. F.L., J.T. and M.W. acknowledge support from U.S. National Science Foundation (NSF) grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric structures And Representation varieties” (the GEAR Network).
    [Show full text]
  • Principal Component Analysis for Functional Data on Riemannian Manifolds and Spheres
    Principal Component Analysis for Functional Data on Riemannian Manifolds and Spheres October 25, 2017 Short title: Functional Data on Riemannian Manifolds Xiongtao Dai Department of Statistics University of California, Davis Davis, CA 95616 U.S.A. Email: [email protected] Hans-Georg M¨uller Department of Statistics University of California, Davis Davis, CA 95616 U.S.A. Email: [email protected] arXiv:1705.06226v2 [math.ST] 24 Oct 2017 Research supported by NSF grants DMS-1407852 and DMS-1712864. We thank FlightAware for the permission to use the flight data in Section 5. ABSTRACT Functional data analysis on nonlinear manifolds has drawn recent interest. Sphere-valued functional data, which are encountered for example as movement trajectories on the surface of the earth, are an important special case. We consider an intrinsic principal component analysis for smooth Riemannian manifold-valued functional data and study its asymptotic properties. Riemannian functional principal component analysis (RFPCA) is carried out by first mapping the manifold-valued data through Riemannian logarithm maps to tangent spaces around the time-varying Fr´echet mean function, and then performing a classical multi- variate functional principal component analysis on the linear tangent spaces. Representations of the Riemannian manifold-valued functions and the eigenfunctions on the original manifold are then obtained with exponential maps. The tangent-space approximation through func- tional principal component analysis is shown to be well-behaved in terms of controlling the residual variation if the Riemannian manifold has nonnegative curvature. Specifically, we derive a central limit theorem for the mean function, as well as root-n uniform convergence rates for other model components, including the covariance function, eigenfunctions, and functional principal component scores.
    [Show full text]
  • Partial Differential Equations in Conformal Geometry (2008)
    Spring Lecture Series N.33 Partial Differential Equations in Conformal Geometry (2008) Principal Lecturer: Sun-Yung Alice Chang, Princeton University Public Lecture by Frank Morgan, Williams College, "Soap Bubbles and Mathematics" National Science Foundation support for the Spring Lecture Series DMS0751330, March 15, 2008-February 28, 2010, $72345. Luca Capogna [email protected] (Principal Investigator) and Loredana Lanzani (Co- Principal Investigator) Participants Invited Speakers: Ivana Alexandrova (East Carolina University) Title: Semi-Classical Resolvent Estimates at the Maximum of the Potential Abstract: We prove upper and lower bounds on the resolvent of the Schrodinger operator at an energy, which is the global non-degenerate maximum of the potential. Our upper bound improves the earlier bound of Nakamura '91 and our lower bound shows that our upper bound is near sharp. We next discuss an application of our upper resolvent estimate to proving an asymptotic expansion of the total scattering cross-section. Chiun-Chuan Chen (Academia Sinica, Taiwan) Title: Topological degree for a Liouville type equation with singular source Abstract: We consider a Liouville type equation in two dimension domains which arises from prescribing Gaussian curvature problem, the mean filed limit of vortices in Euler flows and limit cases of Chern-Simons models. The “total mass”, which equals the integral of the nonlinear term, plays a key role for this equation. The solutions can blow up when the total mass tends to some critical values. We will discuss how the delta functions in the source term affect the blowup behavior of the solutions and present a recently-discovered combinatorial formula of the Leray-Schauder degree for the problem.
    [Show full text]
  • Mémoires De La S
    MÉMOIRES DE LA S. M. F. SUHYOUNG CHOI The convex and concave decomposition of manifolds with real projective structures Mémoires de la S. M. F. 2e série, tome 78 (1999) <http://www.numdam.org/item?id=MSMF_1999_2_78__1_0> © Mémoires de la S. M. F., 1999, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ THE CONVEX AND CONCAVE DECOMPOSITION OF MANIFOLDS WITH REAL PROJECTIVE STRUCTURES Suhyoung Choi Abstract. — We try to understand the geometric properties of n-manifolds (n ^ 2) with geometric structures modeled on (IiPn,PGL(n + 1,R)), i.e., yi-manifolds with projectively flat torsion free affine connections. We define the notion of i-convexity of such manifolds due to Carriere for integers z, 1 < z ^ n — 1, which are generalization of convexity. Given a real projective n-manifold M, we show that the failure of an (n - l)-convexity of M implies an existence of a certain geometric object, n-crescent, in the completion M of the universal cover M of M. We show that this further implies the existence of a particular type of affine submanifold in M and give a natural decomposition of M into simpler real projective manifolds, some of which are (n - l)-convex and others are affine, more specifically concave affine.
    [Show full text]
  • Geometric Data Analysis Based on Manifold Learning with Applications for Image Understanding
    Geometric Data Analysis Based on Manifold Learning with Applications for Image Understanding Gastao˜ Florencioˆ Miranda Junior Carlos Eduardo Thomaz Gilson Antonio Giraldi Department of Mathematics Department of Electrical Engineering Depart. of Math. and Comput. Methods Federal University of Sergipe FEI National Laboratory for Aracaju, Brazil Sao˜ Bernardo do Campo, Brazil Scientific Computing (LNCC) Email: [email protected] Email: [email protected] Petropolis,´ Brazil Email: [email protected] Abstract—Nowadays, pattern recognition, computer vision, the classical principal component analysis (PCA), factor signal processing and medical image analysis, require the man- analysis (FA) [3], multidimensional scaling (MDS) [4], [5] aging of large amount of multidimensional image databases, and projection pursuit (PP) [3], [6]. Linear techniques seek possibly sampled from nonlinear manifolds. The complex tasks involved in the analysis of such massive data lead to a strong for new variables that obey some optimization criterium and demand for nonlinear methods for dimensionality reduction to can be expressed as linear combination of the original ones. achieve efficient representation for information extraction. In That’s why they fail if the input data has curved or nonlinear this avenue, manifold learning has been applied to embed non- structures. linear image data in lower dimensional spaces for subsequent Nonlinear dimensionality reduction methods include ker- analysis. The result allows a geometric interpretation of image spaces with relevant consequences for data topology, compu- nel approaches, like kernel PCA (KPCA), kernel LDA tation of image similarity, discriminant analysis/classification (KLDA) and kernel Fisher discriminant analysis (KFD). tasks and, more recently, for deep learning issues. In this These techniques map the original input data into a feature paper, we firstly review Riemannian manifolds that compose space by a (global) nonlinear mapping, where inner products the mathematical background in this field.
    [Show full text]
  • Actafutura Fax: +31 71 565 8018
    Acta Futura Issue 7 Relativistic Positioning Systems and their Scientific Applications Guest Editors: Andreja Gomboc, Martin Horvat and Uroš Kostić Advanced Concepts Team http://www.esa.int/act Publication: Acta Futura, Issue 7 (2013) Editor-in-chief: Duncan James Barker Associate editors: Dario Izzo Jose M. Llorens Montolio Pacôme Delva Francesco Biscani Camilla Pandolfi Guido de Croon Luís F. Simões Daniel Hennes Published and distributed by: Advanced Concepts Team ESTEC, PPC-PF 2201 AZ, Noordwijk e Netherlands www.esa.int/gsp/ACT/publications/ActaFutura Fax: +31 71 565 8018 Cover image by S. Carloni & A. Gomboc from http://rgnss.fmf.uni-lj.si/workshop. ISSN: 2309-1940 D.O.I.:10.2420/ACT-BOK-AF Copyright ©2013- ESA Advanced Concepts Team Typeset with X TE EX Workshop on Relativistic Positioning Systems and their Scientific Applications 19-21 September 2012 Brdo near Kranj, Slovenia Organised by the Faculty of Mathematics and Physics, University of Ljubljana (UL), ESA (Advanced Concepts Team) and Centre of Excellence SPACE-SI. Organising Committee: Andreja Gomboc (UL, CE SPACE-SI) Martin Horvat (UL) Uroš Kostić (UL) Scientific Committee: Bertram Arbesser-Rastburg (ESA) Sante Carloni (ESA) Pacôme Delva (SYRTE, UPMC, Paris Obs.) Clovis Jacinto de Matos (ESA) Rune Floberghagen (ESA) Uroš Kostić (UL) Leopold Summerer (ESA) Contents Foreword 9 Autonomous Spacecraft Navigation With Pulsars 11 W. Becker, M. G. Bernhardt, and A. Jessner Restricted Post-Newtonian two-body problem with spin and its applications 29 F. Biscani, and S. Carloni Relativistic positioning systems: perspectives and prospects 35 B. Coll From emission to inertial coordinates: observational rule and inertial splitting 49 B.
    [Show full text]
  • Geodesics in Semi–Riemannian Manifolds 3
    Geodesics in semi–Riemannian Manifolds: Geometric Properties and Variational Tools Anna Maria Candela∗, Miguel S´anchez† Abstract. Geodesics become an essential element of the geometry of a semi–Riemannian manifold. In fact, their differences and similarities with the (positive definite) Riemannian case, constitute the first step to understand semi–Riemannian Geometry. The progress in the last two decades has become impressive, being especially relevant the systematic introduction of (infinite–dimensional) variational methods. Our purpose is to give an overview, from refinements of classical results to updated variational settings. First, several properties (and especially completeness) of geodesics in some ambient spaces are studied. This includes heuristic constructions of compact incomplete examples, geodesics in warped, GRW or stationary spacetimes, properties in surfaces and spaceforms, or problems on stability of completeness. Then, we study the variational framework, and focus on two fundamental problems of this approach, which regards geodesic connectedness. The first one deals with a varia- tional principle for stationary manifolds, and its recent implementation inside Causality Theory. The second one concerns orthogonal splitting manifolds, and a reasonably self– contained development is provided, collecting some steps spread in the literature. Mathematics Subject Classification (2000). Primary 53C22, 58E10; Secondary 53C50, 53C80, 58E05. Keywords. Geodesic, semi–Riemannian manifold, geodesic completeness, Causality Theory, Clifton–Pohl torus, Misner’s cylinder, density of incompleteness in tori, homo- geneous manifold spaceform, stability of completeness, geodesic in surface, Generalized Robertson–Walker (GRW) spacetime, warped–completeness, singularity theorem, action functional, Palais–Smale condition, geodesic connectedness, static spacetime, station- ary spacetime, orthogonal splitting spacetime, globally hyperbolic spacetime, Ljusternik– Schnirelman Theory, Relative Category Theory.
    [Show full text]
  • Geodesic Convexity and Closed Nilpotent Similarity Manifolds
    Geodesic convexity and closed nilpotent similarity manifolds Raphaël V. ALEXANDRE* March 9, 2020 Abstract Some nilpotent Lie groups possess a transformation group analogous to the similarity group acting on the Euclidean space. We call such a pair a nilpotent similarity structure. It is notably the case for all Carnot groups and their dilatations. We generalize a theorem of Fried: closed manifolds with a nilpotent similarity structure are either complete or radiant and, in the latter case, complete for the structure of the space deprived of a point. The proof relies on a generalization of convexity arguments in a setting where, in the coordinates given by the Lie algebra, we study geodesic segments instead of linear segments. We show classic consequences for closed manifolds with a geometry modeled on the boundary of a rank one symmetric space. 1 Introduction Let Sim(Rn) be the group of similarities of Rn. That is to say, an element of Sim(Rn) is of the form x ¸P(x) c where ¸ 0 is a dilatation factor, P O(n) is a rotation and 7! Å È 2 c Rn describes a translation. Similarity manifolds are smooth manifolds equipped 2 with an atlas of charts with values in Rn and transition maps in Sim(Rn). More generally, a nilpotent similarity group of transformations, Sim(N ), acting on a nilpotent Lie group N , is described by the transformations of the form x ¸P(x) c, 7! ÅN where the addition is the group law of N , ¸ 0 is again a dilatation that can ÅN È be seen through a coordinate system of the nilpotent Lie algebra as ¸(x ,...,x ) 1 n Æ (¸d1 x ,...,¸dn x ) with d 1, P is a rotation for the choice of the Euclidean metric asso- 1 n i ¸ ciated to the coordinate system (x ,...,x ) and c N is again representing a translation.
    [Show full text]
  • Pseudo-Elliptic Geometry of a Class of Frobenius-Manifolds & Maurer
    PSEUDO-ELLIPTIC GEOMETRY OF A CLASS OF FROBENIUS-MANIFOLDS & MAURER–CARTAN STRUCTURES N. COMBE, PH. COMBE, AND H. NENCKA Abstract. The recently discovered fourth class of Frobenius manifolds by Combe–Manin in [11] opened and highlighted new geometric domains to ex- plore. The guiding mantra of this article is to show the existence of hidden geometric aspects of the fourth Frobenius manifold, which turns out to be re- lated to so-called causality conditions. Firstly, it is proved that the fourth class of Frobenius manifolds is a Pseudo-Elliptic one. Secondly, this manifold turns out to be a sub-manifold of a non-orientable Lorentzian projective manifold. Thirdly, Maurer–Cartan structures for this manifold and hidden geometrical properties for this manifold are unraveled. In fine, these investigations lead to the rather philosophical concept of causality condition, creating a bridge be- tween the notion of causality coming from Lorentzian manifolds (originated in special relativity theory) and the one arising in probability and statistics. Contents Introduction 2 1. Overview on the paracomplex geometry 5 2. FirstpartoftheproofofTheoremA 9 3. SecondpartoftheproofofTheoremA 13 4. Theorem B: the fourth Frobenius manifold is a Lorentzian manifold 16 5. SecondpartoftheproofofTheoremB 18 6. Conclusion 23 References 23 arXiv:2107.01985v1 [math.AG] 5 Jul 2021 Date: July 6, 2021. 2020 Mathematics Subject Classification. Primary: 17Cxx, 53B05, 53B10, 53B12; Sec- ondary:16W10, 53D45. Key words and phrases. Non-Euclidean geometry, Paracomplex geometry, Lorentzian mani- fold, Jordan algebras, Frobenius manifold. This research was supported by the Max Planck Society’s Minerva grant. The authors express their gratitude towards MPI MiS for excellent working conditions.
    [Show full text]
  • Geodesic Convexity and Closed Nilpotent Similarity Manifolds Raphaël Alexandre
    Geodesic convexity and closed nilpotent similarity manifolds Raphaël Alexandre To cite this version: Raphaël Alexandre. Geodesic convexity and closed nilpotent similarity manifolds. 2020. hal- 02500719 HAL Id: hal-02500719 https://hal.archives-ouvertes.fr/hal-02500719 Preprint submitted on 6 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geodesic convexity and closed nilpotent similarity manifolds Raphaël V. ALEXANDRE* March 6, 2020 Abstract Some nilpotent Lie groups possess a transformation group analogous to the similarity group acting on the Euclidean space. We call such a pair a nilpotent similarity structure. It is notably the case for all Carnot groups and their dilatations. We generalize a theorem of Fried: closed manifolds with a nilpotent similarity structure are either complete or radiant and, in the latter case, complete for the structure of the space deprived of a point. The proof relies on a generalization of convexity arguments in a setting where, in the coordinates given by the Lie algebra, we study geodesic segments instead of linear segments. We show classic consequences for closed manifolds with a geometry modeled on the boundary of a rank one symmetric space.
    [Show full text]
  • The World Is Not Always Flat Or Learning Curved Manifolds
    The World is not always Flat or Learning Curved Manifolds Evgeni Begelfor and Michael Werman Abstract Manifold learning and finding low-dimensional structure in the data is an important task. Most algorithms for the purpose embed the data in the Euclidean space, an approach which is destined to failure on non-flat data. This paper presents a non-iterative algebraic method for embed- ding the data into hyperbolic and spherical spaces. We argue that these spaces are often better than Euclidean space in capturing the geometry of the data. We also demonstrate the utility of these embeddings by show- ing how some of the standard data-handling algorithms translate to these curved manifolds. 1 Introduction and motivation Embedding data in low-dimensional space (also known as manifold learning) is important for many applications such as visualization, data manipulation (smoothing / noise reduc- tion etc.) and data exploration (clustering etc.). Most algorithms tackle the problem by ¡£¢ searching an embedding into a Euclidean space such that ¤ is as small as possible, yet the data maintain some of its geometry (either locally or globally). The main advantage of the Euclidean space is its being simple and well understood. However, many times the ¢ inherent geometry of the data isn't flat, thus any embedding in ¥ will nesecarily have a big distortion. For example, embedding a regular tree with the shortest path metric in the Euclidean space requires high dimension (Fig, 1). This is because the volume of a ball in ¡¦¢ grows only polynomially, thus not having ”enough space” for the tree. On the other hand, the volume in the hyperbolic space grows exponentially, allowing a good embedding.
    [Show full text]