Calculus in 3D Geometry, Vectors, and Multivariate Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Center of Mass and Centroids
Center of Mass and Centroids Center of Mass A body of mass m in equilibrium under the action of tension in the cord, and resultant W of the gravitational forces acting on all particles of the body. -The resultant is collinear with the cord Suspend the body at different points -Dotted lines show lines of action of the resultant force in each case. -These lines of action will be concurrent at a single point G As long as dimensions of the body are smaller compared with those of the earth. - we assume uniform and parallel force field due to the gravitational attraction of the earth. The unique Point G is called the Center of Gravity of the body (CG) ME101 - Division III Kaustubh Dasgupta 1 Center of Mass and Centroids Determination of CG - Apply Principle of Moments Moment of resultant gravitational force W about any axis equals sum of the moments about the same axis of the gravitational forces dW acting on all particles treated as infinitesimal elements. Weight of the body W = ∫dW Moment of weight of an element (dW) @ x-axis = ydW Sum of moments for all elements of body = ∫ydW From Principle of Moments: ∫ydW = ӯ W Moment of dW @ z axis??? xdW ydW zdW x y z = 0 or, 0 W W W Numerator of these expressions represents the sum of the moments; Product of W and corresponding coordinate of G represents the moment of the sum Moment Principle. ME101 - Division III Kaustubh Dasgupta 2 Center of Mass and Centroids xdW ydW zdW x y z Determination of CG W W W Substituting W = mg and dW = gdm xdm ydm zdm x y z m m m In vector notations: -
Dynamics of Urban Centre and Concepts of Symmetry: Centroid and Weighted Mean
Jong-Jin Park Research École Polytechnique Fédérale de Dynamics of Urban Centre and Lausanne (EPFL) Laboratoire de projet urbain, Concepts of Symmetry: territorial et architectural (UTA) Centroid and Weighted Mean BP 4137, Station 16 CH-1015 Lausanne Presented at Nexus 2010: Relationships Between Architecture SWITZERLAND and Mathematics, Porto, 13-15 June 2010. [email protected] Abstract. The city is a kind of complex system being capable Keywords: evolving structure, of auto-organization of its programs and adapts a principle of urban system, programmatic economy in its form generating process. A new concept of moving centre, centroid, dynamic centre in urban system, called “the programmatic weighted mean, symmetric moving centre”, can be used to represent the successive optimization, successive appearances of various programs based on collective facilities equilibrium and their potential values. The absolute central point is substituted by a magnetic field composed of several interactions among the collective facilities and also by the changing value of programs through time. The center moves continually into this interactive field. Consequently, we introduce mathematical methods of analysis such as “the centroid” and “the weighted mean” to calculate and visualize the dynamics of the urban centre. These methods heavily depend upon symmetry. We will describe and establish the moving centre from a point of view of symmetric optimization that answers the question of the evolution and successive equilibrium of the city. In order to explain and represent dynamic transformations in urban area, we tested this programmatic moving center in unstable and new urban environments such as agglomeration areas around Lausanne in Switzerland. -
Chapter 5 –3 Center and Centroids
ENGR 0135 Chapter 5 –3 Center and centroids Department of Mechanical Engineering Centers and Centroids Center of gravity Center of mass Centroid of volume Centroid of area Centroid of line Department of Mechanical Engineering Center of Gravity A point where all of the weight could be concentrated without changing the external effects of the body To determine the location of the center, we may consider the weight system as a 3D parallel force system Department of Mechanical Engineering Center of Gravity – discrete bodies The total weight isWW i The location of the center can be found using the total moments 1 M Wx W x xW x yz G i i G W i i 1 M Wy W y yW y zx G i i G W i i 1 M Wz W z z W z xy G i i G W i i Department of Mechanical Engineering Center of Gravity – continuous bodies The total weight Wis dW The location of the center can be found using the total moments 1 M Wx xdW x xdW yz G G W 1 M Wy ydW y ydW zx G G W 1 M Wz zdW z zdW xy G G W Department of Mechanical Engineering Center of Mass A point where all of the mass could be concentrated It is the same as the center of gravity when the body is assumed to have uniform gravitational force Mass of particles 1 n 1 n 1 n n xC xi m i C y yi m i C z z mi i m i m m i m i m i i Continuous mass 1 1 1 x x dm yy dmz z dm m dm G m G m G m Department of Mechanical Engineering Example:Example: CenterCenter ofof discretediscrete massmass List the masses and the coordinates of their centroids in a table Compute the first moment of each mass (relative -
Direct Derivation of Liénard–Wiechert Potentials, Maxwell's
Direct derivation of Li´enard{Wiechert potentials, Maxwell's equations and Lorentz force from Coulomb's law Hrvoje Dodig∗ University of Split, Rudera Boˇskovi´ca37, 21000 Split, Croatia Abstract In 19th century Maxwell derived famous Maxwell equations from the knowledge of three experimental physical laws: the electrostatic Coulomb's law, Ampere's force law and Faraday's law of induction. However, theoretical basis for Ampere's force law and Fara- day's law remains unknown to this day. Furthermore, the Lorentz force is considered as summary of experimental phenomena, the theoretical foundation that explains genera- tion of this force is still unknown. To answer these fundamental theoretical questions, in this paper we derive relativisti- cally correct Li´enard{ Wiechert potentials, Maxwell's equations and Lorentz force from two simple postulates: (a) when all charges are at rest the Coulomb's force acts between the charges, and (b) that disturbances caused by charge in motion propagate away from the source with finite velocity. The special relativity was not used in our derivations nor the Lorentz transformation. In effect, it was shown in this paper that all the electrody- namic laws, including the Lorentz force, can be derived from Coulomb's law and time retardation. This was accomplished by analysis of hypothetical experiment where test charge is at rest and where previously moving source charge stops at some time in the past. Then the generalized Helmholtz decomposition theorem, also derived in this paper, was applied to reformulate Coulomb's force acting at present time as the function of positions of source charge at previous time when the source charge was moving. -
Centroids by Composite Areas.Pptx
Centroids Method of Composite Areas A small boy swallowed some coins and was taken to a hospital. When his grandmother telephoned to ask how he was a nurse said 'No change yet'. Centroids ¢ Previously, we developed a general formulation for finding the centroid for a series of n areas n xA ∑ ii i=1 x = n A ∑ i i=1 2 Centroids by Composite Areas Monday, November 12, 2012 1 Centroids ¢ xi was the distance from the y-axis to the local centroid of the area Ai n xA ∑ ii i=1 x = n A ∑ i i=1 3 Centroids by Composite Areas Monday, November 12, 2012 Centroids ¢ If we can break up a shape into a series of smaller shapes that have predefined local centroid locations, we can use this formula to locate the centroid of the composite shape n xA ∑ ii i=1 x = n A ∑ i 4 Centroids by Composite Areas i=1 Monday, November 12, 2012 2 Centroid by Composite Bodies ¢ There is a table in the back cover of your book that gives you the location of local centroids for a select group of shapes ¢ The point labeled C is the location of the centroid of that shape. 5 Centroids by Composite Areas Monday, November 12, 2012 Centroid by Composite Bodies ¢ Please note that these are local centroids, they are given in reference to the x and y axes as shown in the table. 6 Centroids by Composite Areas Monday, November 12, 2012 3 Centroid by Composite Bodies ¢ For example, the centroid location of the semicircular area has the y-axis through the center of the area and the x-axis at the bottom of the area ¢ The x-centroid would be located at 0 and the y-centroid would be located -
The Helmholtz Decomposition of Decreasing and Weakly Increasing Vector Fields
The Helmholtz’ decomposition of decreasing and weakly increasing vector fields D. Petrascheck and R. Folk Institute for Theoretical Physics University Linz Altenbergerstr. 69, Linz, Austria Abstract Helmholtz’ decomposition theorem for vector fields is presented usually with too strong restric- tions on the fields. Based on the work of Blumenthal of 1905 it is shown that the decomposition of vector fields is not only possible for asymptotically weakly decreasing vector fields, but even for vector fields, which asymptotically increase sublinearly. Use is made of a regularization of the Green’s function and the mathematics of the proof is formulated as simply as possible. We also show a few examples for the decomposition of vector fields including the electric dipole radiation. Keywords: Helmholtz theorem, vector field, electromagnetic radiation arXiv:1506.00235v2 [physics.class-ph] 14 Oct 2015 1 I. INTRODUCTION According to the Helmholtz’ theorem one can decompose a given vector field ~v(~x) into a sum of two vector fields ~vl(~x) and ~vt(~x) where ~vl is irrotational (curl-free) and ~vt solenoidal (divergence-free), if the vector field fulfills certain conditions on continuity and asymptotic decrease (r ). Here ~x is the position vector in three-dimensional space and r = ~x its →∞ | | absolute value. The two parts of the vector field can be expressed as gradient of a scalar potential and curl of a vector potential, respectively. Concerning the validity, the uniqueness of the decomposition and the existence of the respective potentials one finds different conditions. The fundamental theorem for vector fields is historically based on Helmholtz’ work on vortices1,2 and therefore also known as Helmholtz’ decomposition theorem. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
From Singularities to Graphs
FROM SINGULARITIES TO GRAPHS PATRICK POPESCU-PAMPU Abstract. In this paper I analyze the problems which led to the introduction of graphs as tools for studying surface singularities. I explain how such graphs were initially only described using words, but that several questions made it necessary to draw them, leading to the elaboration of a special calculus with graphs. This is a non-technical paper intended to be readable both by mathematicians and philosophers or historians of mathematics. Contents 1. Introduction 1 2. What is the meaning of those graphs?3 3. What does it mean to resolve a surface singularity?4 4. Representations of surface singularities around 19008 5. Du Val's singularities, Coxeter's diagrams and the birth of dual graphs 10 6. Mumford's paper on the links of surface singularities 14 7. Waldhausen's graph manifolds and Neumann's calculus on graphs 17 8. Conclusion 19 References 20 1. Introduction Nowadays, graphs are common tools in singularity theory. They mainly serve to represent morpholog- ical aspects of surface singularities. Three examples of such graphs may be seen in Figures1,2,3. They are extracted from the papers [57], [61] and [14], respectively. Comparing those figures we see that the vertices are diversely depicted by small stars or by little circles, which are either full or empty. These drawing conventions are not important. What matters is that all vertices are decorated with numbers. We will explain their meaning later. My aim in this paper is to understand which kinds of problems forced mathematicians to associate graphs to surface singularities. -
NOTES Centroids Constructed Graphically
NOTES CentroidsConstructed Graphically TOM M. APOSTOL MAMIKON A. MNATSAKANIAN Project MATHEMATICS! California Instituteof Technology Pasadena, CA 91125-0001 [email protected] [email protected] The centroid of a finite set of points Archimedes (287-212 BC), regarded as the greatest mathematician and scientist of ancient times, introduced the concept of center of gravity. He used it in many of his works, including the stability of floating bodies, ship design, and in his discovery that the volume of a sphere is two-thirds that of its cir- cumscribing cylinder. It was also used by Pappus of Alexandria in the 3rd century AD in formulating his famous theorems for calculating volume and surface area of solids of revolution. Today a more general concept, center of mass, plays an important role in Newtonian mechanics. Physicists often treat a large body, such as a planet or sun, as a single point (the center of mass) where all the mass is concentrated. In uniform symmetric bodies it is identified with the center of symmetry. This note treats the center of mass of a finite number of points, defined as follows. Given n points rl, r2, ..., rn, regarded as position vectors in Euclidean m-space, rela- tive to some origin 0, let wl, w2, ..., Wnbe n positive numbers regarded as weights attached to these points. The center of mass is the position vector c defined to be the weighted average given by 1 n C=- wkrk, (1) n k=1 where Wnis the sum of the weights, n Wn= wk. (2) k=l When all weights are equal, the center of mass c is called the centroid. -
Barycentric Coordinates in Triangles
Computational Geometry Lab: BARYCENTRIC COORDINATES IN TRIANGLES John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/∼jburkardt/presentations/cg lab barycentric triangles.pdf August 28, 2018 1 Introduction to this Lab In this lab we investigate a natural coordinate system for triangles called the barycentric coordinate system. The barycentric coordinate system gives us a kind of standard chart, which applies to all triangles, and allows us to determine the positions of points independently of the particular geometry of a given triangle. Our path to this coordinate system will identify a special reference triangle for which the standard (x; y) coordinate system is essentially identical to the barycentric coordinate system. We begin with some simple geometric questions, including determining whether a point lies to the left or right of a line. If we can answer that question, we can also determine if a point lies inside or outside a triangle. Once we are comfortable determining the (signed) distances of a point from each side of the triangle, we will discover that the relative distances can be used to form the barycentric coordinate system. This barycentric coordinate system, in turn, will provide the correspondence or mapping that allows us to establish a 1-1 and onto relationship between two triangles. The barycentric coordinate system is useful when defining the basis functions used in the finite element method, which is the subject of a separate lab. 2 Signed Distance From a Line In order to understand the geometry of triangles, we are going to need to take a small detour into the simple world of points and lines. -
Helmholtz-Hodge Decompositions in the Nonlocal Framework. Well-Posedness Analysis and Applications
Helmholtz-Hodge decompositions in the nonlocal framework { Well-posedness analysis and applications M. D'Elia Sandia National Laboratories, Albuquerque, NM, [email protected] C. Flores, California State University Channel Islands, Camarillo, CA, [email protected] X. Li, University of North Carolina-Charlotte, NC, [email protected] P. Radu, University of Nebraska-Lincoln, NE, [email protected] Y. Yu, Lehigh University, Bethlehem, PA, [email protected] Abstract. Nonlocal operators that have appeared in a variety of physical models satisfy identities and enjoy a range of properties similar to their classical counterparts. In this paper we obtain Helmholtz-Hodge type decompositions for two-point vector fields in three components that have zero nonlocal curls, zero nonlocal divergence, and a third component which is (nonlocally) curl-free and divergence-free. The results obtained incorporate different nonlocal boundary conditions, thus being applicable in a variety of settings. Keywords. Nonlocal operators, nonlocal calculus, Helmholtz-Hodge decompositions. AMS subject classifications. 35R09, 45A05, 45P05, 35J05, 74B99. 1 Introduction and motivation Important applications in diffusion, elasticity, fracture propagation, image processing, subsurface transport, molecular dynamics have benefited from the introduction of nonlocal models. Phenomena, materials, and behaviors that are discontinuous in nature have been ideal candidates for the introduc- tion of this framework which allows solutions with no smoothness, or even continuity properties. This advantage is counterbalanced by the facts that the theory of nonlocal calculus is still being developed and that the numerical solution of these problems can be prohibitively expensive. In [8] the authors introduce a nonlocal framework with divergence, gradient, and curl versions of nonlocal operators for which they identify duality relationships via L2 inner product topology.