Need to Know Insectivores

Total Page:16

File Type:pdf, Size:1020Kb

Need to Know Insectivores Family Macroscelididae Elephant Shrews: 4 genera, 15 species Genus to know: Petrodromus Petrodromus Diagnosis: Eyes large, zygomatic arch complete, dental formula 1-3/3, 1/1, 4/4, 2/2 -3; perforate palate Petrodromus Elephantulus Family Erinaceidae Hedgehogs and Moon Rats: 10 genera, 24 species Genus to know: Erinaceus Diagnosis: Incisors look like canines, dental formula 2-3/3, 1/1, 3-4/2-4, 3/3, auditory bullae incomplete Family Talpidae Moles: 17 genera, 42 species Genera to know: Condylura, Neurotrichus, Scalopus, Scapanus, Parascalops Parascalops Condylura Scalopus Neurotrichus Diagnosis: Auditory bullae and zygomatic arches present, molar crowns with dilambdodont pattern (W-shaped lophs), dental formula 2-3/1-3, 1/0-1, 3-4/3-4, 3/3 Scalopus Parascalops Neurotrichus See your lab handout for key characters that will help distinguish these genera. Remember, you will also get skins: star-nose is obvious; look for hairy tail on Parascalops (also, incomplete auditory bullae); use upper teeth to distinguish Scalopus (irregular sizes) from Scapanus (more even- sized teeth between front incisor and molars); Neurotrichus looks like a Blarina, but with bigger feet, longer tail, and mole-like skull Family Soricidae Shrews: 26 genera, 376 species Genera to know: Blarina, Sorex, Cryptotis Cryptotis Blarina Sorex Diagnosis: Skull long and narrow, no zygomatic arches or postorbital processes, no auditory bullae Again, refer to your lab handout for drawings of these skulls and key characters. You can go back and use your lab handout for Mammals of Illinois, too! There you will see how to use number and characteristics of the upper unicuspids (teeth between the front incisor and the molariform teeth) to distinguish these 3 genera. Relative tail length is also good: Blarina is a large black shrew with a short tail, only about 1-2 cm (small for body size); Sorex have tails more than 1/2 the body length(sometimes hard to tell on the stuffed ones); Cryptotis is intermediate, with tail about 1/3 body length. .
Recommended publications
  • Small Mammal Populations in Riparian Zones of Different-Aged Coniferous Forests
    SMALL MAMMAL POPULATIONS IN RIPARIAN ZONES OF DIFFERENT-AGED CONIFEROUS FORESTS R. G. ANTHONY, E. D. FORSMAN, G. A. GREEN, G. WITMER, AND S. K. NELSON ABSTRACT— Small mammals were trapped in riparian zones in young, mature, and old-growth coniferous forests during spring and summer of 1983. Peromyscus manicu- latus was the most abundant species and comprised 76% and 83% of the total captures during spring and summer, respectively. More species, but fewer individuals, were captured on the streamside transects in comparison to the riparian fringe transects, which were 15-20 m from the stream. Six species of Insectivora, including five species of Sorex, were captured in these riparian zones. No species was solely dependent on riparian zones in old-growth forests; however, additional studies are needed to define the specific habitat requirements of Sorex bendirii, Sorex palustris, Neurotrichus gibbsii, Phenacomys albipes, and Microtus richardsoni. Riparian zones recently have been recognized for their uniqueness and intrinsic value as wildlife habitat. To date, much attention has been focused on the most conspicuous riparian zones, such as those found in semiarid lands or along major rivers and streams (Johnson and Jones 1977, Thomas et al. 1979). Studies on wildlife populations in riparian zones dominated by coniferous forests are less numerous (Swanson et al. 1982), although riparian zones along low-order (second-, third-, and fourth-order streams at the head of watersheds) mountain streams are an integral part of the forest ecosystem (Swanson et al. 1982). Harvest of old-growth forests has become a major forestry-wildlife issue, because these forests provide unique wildlife habitat and they are rapidly being logged (Meslow et al.
    [Show full text]
  • Zootaxa, Checklist of Helminth Parasites of Soricomorpha
    Zootaxa 1969: 36–58 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Checklist of helminth parasites of Soricomorpha (= Insectivora) of North America north of Mexico JOHN M. KINSELLA1 & VASYL V. TKACH2 1HelmWest Laboratory, 2108 Hilda Avenue, Missoula, Montana 59801, USA. E-mail: [email protected] 2Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202, USA. E-mail: [email protected] Abstract A parasite-host and a host-parasite checklist of helminths found in Soricomorpha (= Insectivora) of North America north of Mexico are presented. The parasite-host checklist includes a total of 114 species of helminth parasites reported in the literature from 28 species of insectivores, totaling 349 records. These include 97 species from shrews (9 trematodes, 34 cestodes, 50 nematodes, 4 acanthocephalans) and 23 species from moles (3 trematodes, 4 cestodes, 10 nematodes, 6 acanthocephalans). Each helminth species is listed under its most current accepted taxon, with all known synonyms, dis- tribution by state/province, and references for each geographic location. The following new combinations are proposed: Lineolepis pribilofensis (Olson, 1969) n. comb. for Hymenolepis pribilofensis Olson, 1969; Monocercus soricis (Nei- land, 1953) n. comb. for Molluscotaenia soricis (Neiland, 1953) Spasskii & Andreiko, 1971; and Eucoleus blarinae (Ogren, 1953) n. comb. for Capillaria blarinae Ogren, 1953. The state of knowledge of helminths of insectivores in North America is briefly discussed. Key words: helminths; Soricomorpha; Insectivora; shrews; moles; North America Introduction Shrews and moles have traditionally been classified in the order Insectivora, but more recently have been placed in the order Soricomorpha (Wilson & Reeder 2005).
    [Show full text]
  • An Evolutionary View on the Japanese Talpids Based on Nucleotide Sequences
    Mammal Study 30: S19–S24 (2005) © the Mammalogical Society of Japan An evolutionary view on the Japanese talpids based on nucleotide sequences Akio Shinohara1,*, Kevin L. Campbell2 and Hitoshi Suzuki3 1 Department of Bio-resources, Division of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan 2 Department of Zoology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 3 Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan Abstract. Japanese talpid moles exhibit a remarkable degree of species richness and geographic complexity, and as such, have attracted much research interest by morphologists, cytogeneticists, and molecular phylogeneticists. However, a consensus hypothesis pertaining to the evolutionary history and biogeography of this group remains elusive. Recent phylogenetic studies utilizing nucleotide sequences have provided reasonably consistent branching patterns for Japanese talpids, but have generally suffered from a lack of closely related South-East Asian species for sound biogeographic interpretations. As an initial step in achieving this goal, we constructed phylogenetic trees using publicly accessible mitochondrial and nuclear sequences from seven Japanese taxa, and those of related insular and continental species for which nucleotide data is available. The resultant trees support the view that four lineages (Euroscaptor mizura, Mogera tokuade species group [M. tokudae and M. etigo], M. imaizumii, and M. wogura) migrated separately, and in this order, from the continental Asian mainland to Japan. The close relationship of M. tokudae and M. etigo suggests these lineages diverged recently through a vicariant event between Sado Island and Echigo plain. The origin of the two endemic lineages of Japanese shrew-moles, Urotrichus talpoides and Dymecodon pilirostris, remains ambiguous.
    [Show full text]
  • On the Original Description of the Sacred Shrew, Sorex Religiosa I. Geoffroy Saint-Hilaire, 1826 [Nec 1827] (Mammalia: Soricidae)
    Bionomina, 9: 50–53 (2015) ISSN 1179-7649 (print edition) www.mapress.com/bionomina/ Article BIONOMINA Copyright © 2015 • Magnolia Press ISSN 1179-7657 (online edition) http://dx.doi.org/10.11646/bionomina.9.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:790065A5-5351-4E9F-9BA6-6A4F9B10BEC0 On the original description of the Sacred Shrew, Sorex religiosa I. Geoffroy Saint-Hilaire, 1826 [nec 1827] (Mammalia: Soricidae) Neal WOODMAN USGS Patuxent Wildlife Research Center, MRC-111, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A. <[email protected]> Abstract The original description of the Egyptian Pygmy Shrew or Sacred Shrew, Sorex religiosus I. Geoffroy Saint-Hilaire (Mammalia: Soricidae: Crocidura religiosa), was based on mummies obtained by Joseph Passalacqua from the ancient Egyptian necropolis at Thebes, Egypt. The description and naming of this species is commonly credited to Geoffroy Saint-Hilaire’s (1827) compendium and review of shrews in the Mémoires du Muséum d’Histoire naturelle. However, this author also described this species in two earlier publications. The first was in a footnote to Passalacqua’s (1826) Catalogue raisonné et historique des antiquités découvertes en Égypte; the second in January 1827 in the 11th volume of the Dictionnaire classique d’Histoire naturelle. In each case, he explained what he considered to be the distinguishing characteristics of the species and presented its common and scientific names. Priority, therefore, goes to Geoffroy Saint- Hilaire’s description in Passalacqua’s (1826) Catalogue. Key words: Insectivora, Sorex, Crocidura, mummy, systematics, taxonomy Introduction The Egyptian Pygmy Shrew or Sacred Shrew, Sorex religiosus I.
    [Show full text]
  • Life History Account for Townsend's Mole
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group TOWNSEND'S MOLE Scapanus townsendii Family: TALPIDAE Order: INSECTIVORA Class: MAMMALIA M016 Written by: G. Hoefler, J. Harris Reviewed by: H. Shellhammer Edited by: S. Granholm DISTRIBUTION, ABUNDANCE, AND SEASONALITY Townsend's mole is found along the North Coast in Del Norte and Humboldt cos., from the Oregon border south through about two-thirds of Humboldt Co. Optimum habitats are annual grassland, wet meadow, and early seral stages of redwood, Douglas-fir, mixed conifer, and montane hardwood-conifer forests. Townsend's mole in California mainly is a species of lowland river bottoms. SPECIFIC HABITAT REQUIREMENTS Feeding: Earthworms comprise 55-86% of the diet, with the remainder insects, seeds, roots, leaves, slugs, snails, and small mammals (Wight 1928, Moore 1933, Pedersen 1963, Whitaker et al. 1979). Forages beneath the surface in light, base-rich soils. Cover: This mole is almost entirely subterranean, spending its time in underground burrow systems. Requires well-drained, friable soil for burrowing. Reproduction: Nests in a grass-lined cavity 15-20 cm (6-8 in) below the surface. Nests sometimes are placed under "fortresses" (large mounds of earth 75-125 cm (30-50 in) in diameter), or near the center of a cluster of several normal-sized mounds (Kuhn et al. 1966, Maser et al. 1981). Water: Water needs are met from the diet, especially from earthworms. Pattern: Prefers well-drained, friable soils. Avoids dense woods and thickets. Clearing, draining, and fertilizing of cropland and pasture may have increased numbers of Townsend's mole.
    [Show full text]
  • Evolution and Postglacial Colonization of Seewis Hantavirus with Sorex Araneus in Finland
    Infection, Genetics and Evolution 57 (2018) 88–97 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper Evolution and postglacial colonization of Seewis hantavirus with Sorex T araneus in Finland ⁎ Jiaxin Linga, , Teemu Smuraa, Daniel Tamaritb, Otso Huituc, Liina Voutilainena,d, Heikki Henttonend, Antti Vaheria, Olli Vapalahtia,e,f, Tarja Sironena,e a University of Helsinki, Medicum, Department of Virology, Helsinki, Finland b Uppsala University, Biomedical Centre, Science for Life Laboratory, Cell and Molecular Biology, Department of Molecular Evolution, Sweden c Forest and Animal Ecology, Natural Resources Institute Finland, Tampere, Finland d Forest and Animal Ecology, Natural Resources Institute Finland, Helsinki, Finland e University of Helsinki, Department of Veterinary Biosciences, Helsinki, Finland f Helsinki University Hospital, University of Helsinki, Helsinki, Finland ARTICLE INFO ABSTRACT Keywords: Hantaviruses have co-existed with their hosts for millions of years. Seewis virus (SWSV), a soricomorph-borne Hantavirus hantavirus, is widespread in Eurasia, ranging from Central Siberia to Western Europe. To gain insight into the Seewis phylogeography and evolutionary history of SWSV in Finland, lung tissue samples of 225 common shrews (Sorex Sorex araneus araneus) trapped from different parts of Finland were screened for the presence of SWSV RNA. Forty-two of the Evolution samples were positive. Partial small (S), medium (M) and large (L) segments of the virus were sequenced, and Phylogeography analyzed together with all SWSV sequences available in Genbank. The phylogenetic analysis of the partial S- segment sequences suggested that all Finnish SWSV strains shared their most recent common ancestor with the Eastern European strains, while the L-segment suggested multiple introductions.
    [Show full text]
  • The Terrestrial Mammals of Mozambique: Integrating Dispersed Biodiversity Data
    Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 23 Original Research The terrestrial mammals of Mozambique: Integrating dispersed biodiversity data Authors: Background: The most comprehensive synopsis of the mammal fauna of Mozambique was 1,2,3 Isabel Q. Neves published in 1976, listing 190 species of terrestrial mammals. Up-to-date knowledge of the Maria da Luz Mathias2,3 Cristiane Bastos-Silveira1 country’s biodiversity is crucial to establish the baseline information needed for conservation and management actions. Affiliations: 1Museu Nacional de História Objectives: The aim of this article was to present a list of terrestrial mammal species reported Natural e da Ciência, from Mozambique, based on primary occurrence data. Universidade de Lisboa, Portugal Method: We integrated existing knowledge, from dispersed sources of biodiversity data: the Global Biodiversity Information Facility portal, natural history collections, survey reports and 2Departamento de Biologia literature. Data were updated and manually curated. However, none of the specimens upon Animal, Faculdade de which occurrences are based was directly observed. To partly overcome this impediment, we Ciências da Universidade de Lisboa, Portugal developed a species selection process for specimen data. This process produced the country’s species checklist and an additional list of species with questionable occurrence in the country. 3Centre for Environmental and Marine Studies, Results: From the digital and non-digital sources, we compiled more than 17 000 records. The Faculdade de Ciências da data integrated resulted in a total of 217 mammal species (representing 14 orders, 39 families Universidade de Lisboa, and 133 genera) with supported occurrence in Mozambique and 23 species with questionable Portugal reported occurrence in the country.
    [Show full text]
  • Revision of Moles in the Genus Scapanus
    THERYA, 2021, Vol. 12(2):275-281 DOI:10.12933/therya-21-1174 ISSN 2007-3364 Revision of moles in the genus Scapanus SERGIO TICUL ÁLVAREZ-CASTAÑEDA1 *, AND PATRICIA CORTES-CALVA1 1 Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, CP. 23096. La Paz, Baja California Sur, México. Email: [email protected] (STA-C), [email protected] (PCC). *Corresponding author Scapanus latimanus is a species with many morphological differences among its populations. This variation is associated with multiple taxonomic changes at the species or subspecies level. This study incorporates genetic analyses and comparisons with previous morphological studies to propose a better understanding of the latimanus complex. Mitochondrial markers (cytochrome b; cytochrome c oxidase subunit I; and cytochrome c oxidase subunit III) were sequenced to construct a phylogeny for the subfamily Scalopinae in North America. Genetic dis- tances ranged from 2.49 to 10.50 % among geographic areas. Results identified three monophyletic clades with high bootstrap support values. Based on our phylogenetic analysis and previous morphological analyses, we confirm S. anthonyi from San Pedro Mártir as a valid species and propose that S. occultus from southern California and northern Baja California peninsula be considered as a species. Scapanus latimanus es una especie con muchas diferencias morfológicas entre sus poblaciones. Esta variación está asociada con múltiples cambios taxonómicos a nivel de especie o subespecie. Para proponer una mejor comprensión del complejo latimanus, en este estudio se in- corpora la información genética a los estudios previos de morfología. Se secuenciaron genes de origen mitocondrial (citocromo b; citocromo c oxidasa subunidad I y III) para construir la filogenia para la subfamilia Scalopinae en Norteamérica.
    [Show full text]
  • Zhuding Qiu & Gerhard Storch Contents Introduction Extensive
    China Zhuding Qiu & Gerhard Storch Qiu, Z.D. & Storch, G. China. In: Hoek Ostende, L.W. van den, Doukas, C.S. & Reumer, J.W.F. (eds), The Fossil Record of the Eurasian Neogene Insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I. Scripta Geologica Special Issue, 5: 37-50, Leiden, November 2005. Z. Qiu, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Academia Sinica, P.O. Box 643, Beijing 100044, China, ([email protected]); G. Storch, Forschungsinstitut Senckenberg, Senckenberg- Anlage 25, D-60325 Frankfurt am Main, Germany ([email protected]). Contents Introduction .............................................................................................................................................................. 37 Insectivore faunas in the Neogene of China ......................................................................................... 38 References .................................................................................................................................................................. 48 Introduction Extensive excavation activities by the Institute of Vertebrate Paleontology and Paleo- anthropology, Beijing (IVPP) over the last 20 years have increased our knowledge of the Neogene micromammals from China considerably. Yet, it is still rather fragmentary; we deal with a very vast country with a complex geological and faunal history and varied ecological conditions at all times. The fossil sites are not distributed evenly in time and space (Fig. 1), and among
    [Show full text]
  • Townsend's Mole
    COSEWIC Assessment and Update Status Report on the Townsend’s Mole Scapanus townsendii in Canada ENDANGERED 2003 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2003. COSEWIC assessment and update status report on Townsend’s mole Scapanus townsendi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 24 pp. Previous reports: Sheehan, S.T. and C. Galindo-Leal. 1996. COSEWIC status report on Townsend’s mole Scapanus townsendii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 50 pp. Production note: COSEWIC would like to acknowledge Valentin Shaefer for writing the status report on the Townsend’s mole Scapanus townsendii, prepared under contract with Environment Canada. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur la situation de la taupe de Townsend (Scapanus townsendii) au Canada – Mise à jour Cover illustration: Townsend’s Mole — Judie Shore, Richmond Hill, Ontario Her Majesty the Queen in Right of Canada, 2003 Catalogue No. CW69-14/15-2003E-IN ISBN 0-662-33588-0 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2003 Common name Townsend’s mole Scientific name Scapanus townsendii Status Endangered Reason for designation There are only about 450 mature individuals in a single Canadian population with a range of 13 km2, adjacent to a small area of occupied habitat in the USA.
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Northern Water Shrew (Sorex Palustris Albibarbis)
    Northern Water Shrew (Sorex palustris albibarbis) Pennsylvania Candidate Rare Speceis State Rank: S3 (vulnerable), Global Rank: G4T5 (apparently secure) Identification The northern water shrew (Sorex palustris albibarbis) is a relatively large member of the Sorex genus, reaching lengths of 130­170mm and weighting 10­16 grams. Water shrews are black to gray in color with a silvery­gray belly and a bicolored tail. Thin chin and throat of this species are whitish, noticeably more so than the belly. The large, partially webbed hind feet have hairs on the toes and sides and there are some hairs present on the fore feet. The northern water shrew (Sorex palustris albibarbis) can be distinguished from other water shrews by very specific physical characteristics such as dental and skull features. Habitat/Behavior Water shrews are solitary, short­lived species with an average life span of Photo source: Charlie Eichelberger (PNHP) 18 months. They breed from December to September and have 2­3 litters per year. They are active both day and night and spend their lives in and around water. Water shrews can be found along streams and lake edges, in boulders and sphagnum moss. They dive and swim into water when foraging for food and to avoid predators. Air trapped in the fur allows them to immediately come to the surface when they stop swimming. The fringe of hairs on the hind foot trap air and allow the shrews to walk on water. Easy access to food is essential to the survival of this species. Water shrews can only survive without food for up to three hours.
    [Show full text]