The Role of Organizers in Patterning the Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Organizers in Patterning the Nervous System NE35CH17-Lumsden ARI 14 May 2012 14:25 The Role of Organizers in Patterning the Nervous System Clemens Kiecker and Andrew Lumsden Medical Research Council (MRC) Center for Developmental Neurobiology, King’s College, London SE1 1UL, United Kingdom; email: [email protected], [email protected] Annu. Rev. Neurosci. 2012. 35:347–67 Keywords First published online as a Review in Advance on morphogen signaling, gradients, Spemann, competence, neural tube, March 29, 2012 cell lineage restriction boundaries The Annual Review of Neuroscience is online at neuro.annualreviews.org Abstract This article’s doi: The foundation for the anatomical and functional complexity of the 10.1146/annurev-neuro-062111–150543 by University of Minnesota - Twin Cities on 03/25/13. For personal use only. vertebrate central nervous system is laid during embryogenesis. After Copyright c 2012 by Annual Reviews. Annu. Rev. Neurosci. 2012.35:347-367. Downloaded from www.annualreviews.org Spemann’s organizer and its derivatives have endowed the neural plate All rights reserved with a coarse pattern along its anteroposterior and mediolateral axes, 0147-006X/12/0721-0347$20.00 this basis is progressively refined by the activity of secondary organizers within the neuroepithelium that function by releasing diffusible sig- naling factors. Dorsoventral patterning is mediated by two organizer regions that extend along the dorsal and ventral midlines of the entire neuraxis, whereas anteroposterior patterning is controlled by several discrete organizers. Here we review how these secondary organizers are established and how they exert their signaling functions. Organizer signals come from a surprisingly limited set of signaling factor families, indicating that the competence of target cells to respond to those signals plays an important part in neural patterning. 347 NE35CH17-Lumsden ARI 14 May 2012 14:25 Contents The Zona Limitans INTRODUCTION................. 348 Intrathalamica................. 356 SPEMANN’S ORGANIZER RhombomereBoundaries......... 357 AND EARLY NEURAL COMMON FEATURES OF PATTERNING................. 348 NEUROEPITHELIAL DORSOVENTRAL ORGANIZERS.................. 357 PATTERNING................. 349 Organizers Form Along Cell TheNotochord.................. 351 Lineage Restriction Boundaries 357 The Floor Plate . 351 Positive Feedback Maintains Ventral Neural Patterning by Organizers.................... 357 Shh: A Paradigm for Intrinsic Factors Regulate Morphogen Signaling . 352 Differential Responses to Ventral Patterning in the Organizer Signals . 358 Hindbrain and Midbrain . 352 Hes Genes Prevent Neurogenesis Organizers of Ventral Forebrain in Organizer Regions . 358 Development . 353 NEUROEPITHELIAL TheRoofPlate................... 353 ORGANIZERS ALSO Dorsal Patterning in the Anterior REGULATE Hindbrain.................... 354 PROLIFERATION, TheCorticalHem................ 354 NEUROGENESIS, AND ANTEROPOSTERIOR AXONGUIDANCE............. 358 PATTERNING................. 355 NEUROEPITHELIAL The Midbrain-Hindbrain ORGANIZERS IN Boundary..................... 355 EVOLUTION................... 359 The Anterior Neural CONCLUSIONS................... 360 Boundary/Commissural Plate . 356 INTRODUCTION SPEMANN’S ORGANIZER AND Although it remains astounding, even to the EARLY NEURAL PATTERNING experienced neurobiologist, that a structure as In 1935 Hans Spemann received the Nobel complex as the human brain can arise from a Prize in Medicine for his work with Hilde Man- by University of Minnesota - Twin Cities on 03/25/13. For personal use only. single cell, work in different vertebrate model gold showing that transplantation of a small Annu. Rev. Neurosci. 2012.35:347-367. Downloaded from www.annualreviews.org organisms has started to reveal a network of group of cells from the dorsal blastopore lip tissue and genetic interactions that engineer of a donor embryo to the ventral side of a this extraordinary feat. During embryogenesis, host embryo is sufficient to induce a secondary Dorsal blastopore the primordial neuroepithelium progressively body axis (reviewed in De Robertis & Kuroda lip: a group of dorsal subdivides into distinct regions in a patterning 2004, Niehrs 2004, Stern 2001). Differently mesodermal cells of process governed by small groups of cells pigmented salamander embryos were used as the amphibian embryo that regulate cell fate in surrounding tissues donors and hosts, allowing for an easy distinc- where the involution of mesoderm and by releasing signaling factors. These local tion between cells of graft and host origin. Sur- endoderm starts, signaling centers are called organizers to prisingly, most tissues in the induced second marking the onset reflect their ability to confer identity on axis were derived from the host, suggesting that of gastrulation neighboring tissues in a nonautonomous the graft had induced surrounding tissue to fashion. form axial structures. Thus, Spemann named 348 Kiecker · Lumsden NE35CH17-Lumsden ARI 14 May 2012 14:25 the dorsal blastopore lip the organizer, and tis- fates in a dose-dependent manner such that sues with comparable inductive activity have forebrain, midbrain, hindbrain, and spinal cord since been identified in all vertebrate model or- form at increasing levels of this transformer AP: anteroposterior ganisms and more recently also in some nonver- (Stern 2001). FGFs (Mason 2007), retinoic tebrates (Darras et al. 2011, Meinhardt 2006, acid (Maden 2007), and Wnts all posteriorize DV: dorsoventral Nakamoto et al. 2011). Nowadays the term or- neuroectoderm dose-dependently, but Wnts Bone morphogenetic ganizer is used more widely to describe groups appear to be the best candidates to fulfill this protein (BMP): subfamily of the of cells that can determine the fate of neigh- role in a manner consistent with Nieuwkoop’s transforming growth boring cell populations by emitting molecular model (Kiecker & Niehrs 2001a). Spemann’s factor β superfamily signals. organizer also secretes inhibitors of Wnts, in of secreted signaling The ectopic twin induced in Spemann’s addition to BMP antagonists, and these factors factors; initially experiment contained a complete CNS that remain expressed in the anterior AME but identified by their promotion of bone and was properly patterned along its anteropos- are absent from the posterior AME during cartilage formation terior (AP, head-to-tail) and dorsoventral gastrulation (Kiecker & Niehrs 2001b). Thus, Fibroblast growth (DV, back-to-belly) axes, indicating that the the Spemann-Mangold model of regionally factor (FGF): organizer harbors both neural-inducing and specific inductions and Nieuwkoop’s gradient- secreted signaling neural-patterning activities. More recently, a based model turn out to be two sides of the molecules that signal large number of factors that are expressed in same coin: The anterior AME induces the via tyrosine kinase Spemann’s organizer have been identified, and forebrain by acting as a sink for posteriorizing receptors several were found to be secreted inhibitors Wnts. Wnts: secreted of bone morphogenetic proteins (BMPs). In lipid-modified glycoproteins that combination with other findings in frog and regulate multiple fish embryos, this led to a model whereby aspects of Spemann’s organizer induces the neural plate DORSOVENTRAL PATTERNING embryogenesis and in the dorsal ectoderm by inhibiting BMPs, The ectoderm that surrounds the neural plate adult homeostasis by whereas the ventral ectoderm forms epidermis expresses BMPs while Spemann’s organizer and activating several different signaling because it remains exposed to BMPs (De the extending AME express BMP inhibitors. pathways Robertis & Kuroda 2004, Munoz-Sanju˜ an´ Experiments in zebrafish embryos have sug- AME: axial & Brivanlou 2002). Experiments in chick gested that this generates a gradient of BMP ac- mesendoderm embryos have since added complexity to tivity that defines mediolateral positions within this default model for neural induction by the neural plate (Barth et al. 1999). Hence, a implicating other signaling proteins such as Cartesian coordinate system of two orthogonal fibroblast growth factors (FGFs) and Wnts as gradients is established—a Wnt gradient along additional neural inducers (Stern 2006). the AP axis and a BMP gradient along the medi- by University of Minnesota - Twin Cities on 03/25/13. For personal use only. During gastrulation, the organizer re- olateral axis—and the AME defines the origin Annu. Rev. Neurosci. 2012.35:347-367. Downloaded from www.annualreviews.org gion stretches out and gives rise to the axial of this system by secreting BMP and Wnt an- mesendoderm (AME), which comes to under- tagonists (Figure 1a) (Meinhardt 2006, Niehrs lie the midline of the neural plate along its 2010). It is clear that such global mechanisms AP axis. Otto Mangold found that different can establish only a crude initial pattern, and AP regions of the AME induced different we argue below that this pattern is increasingly parts of the embryonic axis when grafted refined through the establishment of local (or into host embryos, leading to the idea of secondary) organizers in the neuroepithelium. regionally specific inductions by the organizer Gastrulation is followed by neurulation dur- (Niehrs 2004). This model was challenged in ing which the lateral folds of the neural plate the 1950s when Nieuwkoop and others pro- roll up and fuse to form the neural tube posed that the CNS is patterned by a gradient (Figure 1b,c). Thus, the initial mediolateral of a transformer that travels within the plane pattern
Recommended publications
  • Induction of Motor Neurons by Sonic Hedgehog Is Independent of Floor Plate Differentiation Yasuto Tanabe, Henk Roelink and Thomas M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation Yasuto Tanabe, Henk Roelink and Thomas M. Jessell Howard Hughes Medical Institute, Deptartment of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York, New York 10032, USA. Background: The differentiation of floor plate cells and transfected with Shh induced both floor plate cells and motor neurons in the vertebrate neural tube appears to be motor neurons when grown in contact with neural plate induced by signals from the notochord. The secreted pro- explants, whereas only motor neurons were induced when tein encoded by the Sonic hedgehog (Shh) gene is expressed the explants were grown at a distance from Shh-trans- by axial midline cells and can induce floor plate cells in fected COS cells. Direct transfection of neural plate cells vivo and in vitro. Motor neurons can also be induced in with an Shh-expression construct induced both floor plate vitro by cells that synthesize Sonic hedgehog protein cells and motor neurons, with motor neuron differentia- (Shh). It remains unclear, however, if the motor-neuron- tion occurring prior to, or coincidentally with, floor plate inducing activity of Shh depends on the synthesis of a dis- differentiation. The induction of motor neurons appears, tinct signaling molecule by floor plate cells. To resolve therefore, not to depend on floor plate differentiation. this issue, we have developed an in vitro assay which Conclusions: The induction of motor neurons by uncouples the notochord-mediated induction of motor Shh does not depend on distinct floor-plate-derived neurons from floor plate differentiation, and have used signaling molecules.
    [Show full text]
  • Oligodendrocytes in Development, Myelin Generation and Beyond
    cells Review Oligodendrocytes in Development, Myelin Generation and Beyond Sarah Kuhn y, Laura Gritti y, Daniel Crooks and Yvonne Dombrowski * Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (S.K.); [email protected] (L.G.); [email protected] (D.C.) * Correspondence: [email protected]; Tel.: +0044-28-9097-6127 These authors contributed equally. y Received: 15 October 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
    [Show full text]
  • Sonic Hedgehog Induces the Lateral Floor Plate
    Development 129, 4785-4796 (2002) 4785 Printed in Great Britain © The Company of Biologists Limited 2002 DEV2912 Dual origin of the floor plate in the avian embryo Jean-Baptiste Charrier, Françoise Lapointe, Nicole M. Le Douarin and Marie-Aimée Teillet* Institut d’Embryologie Cellulaire et Moléculaire, CNRS and Collège de France, UMR 7128, 49bis Avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France *Author for correspondence (e-mail: [email protected]) Accepted 30 July 2002 SUMMARY Molecular analysis carried out on quail-chick chimeras, in development, one can experimentally obtain a complete which quail Hensen’s node was substituted for its chick floor plate in the neural epithelium by the inductive action counterpart at the five- to six-somite stage (ss), showed that of either a notochord or a MFP. The competence of the the floor plate of the avian neural tube is composed of neuroepithelium to respond to notochord or MFP signals is distinct areas: (1) a median one (medial floor plate or MFP) restricted to a short time window, as only the posterior-most derived from Hensen’s node and characterised by the same region of the neural plate of embryos younger than 15 ss is gene expression pattern as the node cells (i.e. expression of able to differentiate a complete floor plate comprising MFP HNF3β and Shh to the exclusion of genes early expressed and LFP. Moreover, MFP differentiation requires between in the neural ectoderm such as CSox1); and (2) lateral 4 and 5 days of exposure to the inducing tissues.
    [Show full text]
  • Induction of Floor Plate Differentiation by Contact-Dependent
    Development 117, 205-218 (1993) 205 Printed in Great Britain © The Company of Biologists Limited 1993 Induction of floor plate differentiation by contact-dependent, homeogenetic signals Marysia Placzek1, Thomas M. Jessell2 and Jane Dodd1,* 1Department of Physiology and Cellular Biophysics, 2Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, and 1,2Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA *Author for correspondence SUMMARY The floor plate is located at the ventral midline of the derive from medial floor plate cells. The response of neural tube and has been implicated in neural cell pat- neural plate cells to inductive signals declines with terning and axon guidance. To address the cellular embryonic age, suggesting that the mediolateral extent mechanisms involved in floor plate differentiation, we of the floor plate is limited by a loss of competence of have used an assay that monitors the expression of floor- neural cells. The rostral boundary of the floor plate at plate-specific antigens in neural plate explants cultured the midbrain-forebrain junction appears to result from in the presence of inducing tissues. Contact-mediated the lack of inducing activity in prechordal mesoderm signals from both the notochord and the floor plate act and the inability of rostral neural plate cells to respond directly on neural plate cells to induce floor plate differ- to inductive signals. entiation. Floor plate induction is initiated medially by a signal from the notochord, but appears to be propa- gated to more lateral cells by homeogenetic signals that Key words: floor plate, notochord, neural plate, induction.
    [Show full text]
  • Deficits in Early Neural Tube Identity Found in CHARGE Syndrome
    INSIGHT elife.elifesciences.org CEREBELLAR MALFORMATION Deficits in early neural tube identity found in CHARGE syndrome Long predicted from studies of model vertebrates, the first human example of abnormal patterning of the early neural tube leading to underdevelopment of the cerebellum has been demonstrated. PARTHIV HALDIPUR AND KATHLEEN J MILLEN work by Yu et al. shows that loss of CHD7 also Related research article Yu T, Meiners LC, disrupts the development of the early neural tube, Danielsen K, Wong MTY, Bowler T, which is the forerunner of the central nervous sys- Reinberg D, Scambler PJ, van Ravenswaaij- tem. This results in underdevelopment (hypoplasia) of the cerebellar vermis. This finding is extremely Arts CMA, Basson MA. 2013. Deregulated exciting as it represents the very first example of FGF and homeotic gene expression this particular class of neural birth defect to be underlies cerebellar vermis hypoplasia in observed in humans. CHARGE syndrome. eLife 2:e01305. One of the first steps in the development of the central nervous system is the establishment of doi: 10.7554/eLife.01305 gene expression domains that segment the neural Image MRI scan of a patient with CHARGE tube into the regions that become the forebrain, syndrome the midbrain, the hindbrain and the spinal cord. Subsequently, signalling centres establish the boundaries between these regions and secrete HARGE syndrome is a genetic condition growth factors which pattern the adjacent nervous that involves multiple malformations in tissue (Kiecker and Lumsden, 2012). The best Cnewly born children. The acronym stands understood signalling centre is the Isthmic for coloboma (a hole in the eye), heart defects, Organizer, which forms at the boundary of the choanal atresia (a blockage of the nasal pas- midbrain and the hindbrain.
    [Show full text]
  • Wnt Signal Specifies the Intrathalamic Limit and Its Organizer Properties by Regulating Shh Induction in the Alar Plate
    The Journal of Neuroscience, February 27, 2013 • 33(9):3967–3980 • 3967 Development/Plasticity/Repair Wnt Signal Specifies the Intrathalamic Limit and Its Organizer Properties by Regulating Shh Induction in the Alar Plate Almudena Martinez-Ferre,* Maria Navarro-Garberi,* Carlos Bueno, and Salvador Martinez Institute of Neurosciences, Miguel Herna´ndez University–Spanish National Research Council, 03550 San Juan, Alicante, Spain The structural complexity of the brain depends on precise molecular and cellular regulatory mechanisms orchestrated by regional morphogenetic organizers. The thalamic organizer is the zona limitans intrathalamica (ZLI), a transverse linear neuroepithelial domain in the alar plate of the diencephalon. Because of its production of Sonic hedgehog, ZLI acts as a morphogenetic signaling center. Shh is expressed early on in the prosencephalic basal plate and is then gradually activated dorsally within the ZLI. The anteroposterior posi- tioning and the mechanism inducing Shh expression in ZLI cells are still partly unknown, being a subject of controversial interpretations. For instance, separate experimental results have suggested that juxtaposition of prechordal (rostral) and epichordal (caudal) neuroep- ithelium, anteroposterior encroachment of alar lunatic fringe (L-fng) expression, and/or basal Shh signaling is required for ZLI specifi- cation. Here we investigated a key role of Wnt signaling in the molecular regulation of ZLI positioning and Shh expression, using experimental embryology in ovo in the chick. Early Wnt expression in the ZLI regulates Gli3 and L-fng to generate a permissive territory in which Shh is progressively induced by planar signals of the basal plate. Introduction Vieira et al., 2005; Guinazu et al., 2007). However, Six3 is not The zona limitans intrathalamica (ZLI) is a neuroepithelial do- required for the formation of the mammalian ZLI (Lavado et al., main intercalated between the prethalamus and the thalamus in 2008).
    [Show full text]
  • EZH2 Is Essential for Fate Determination in the Mammalian Isthmic Area
    bioRxiv preprint doi: https://doi.org/10.1101/442111; this version posted October 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. EZH2 is essential for fate determination in the mammalian Isthmic area Iris Wever1, Cindy M.R.J. Wagemans1 and Marten P. Smidt1 1Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands bioRxiv preprint doi: https://doi.org/10.1101/442111; this version posted October 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The polycomb group proteins (PcGs) are a group of epigenetic factors associated with gene silencing. They are found in several families of multiprotein complexes, including Polycomb Repressive Complex (PRC) 2. EZH2, EED and SUZ12 form the core components of the PRC2 complex, which is responsible for the mono, di- and trimethylation of lysine 27 of histone 3 (H3K27Me3), the chromatin mark associated with gene silencing. Loss-of-function studies of Ezh2, the catalytic subunit of PRC2, have shown that PRC2 plays a role in regulating developmental transitions of neuronal progenitor cells; from self-renewal to differentiation and the neurogenic-to-gliogenic fate switch. To further address the function of EZH2 and H3K27me3 during neuronal development we generated a conditional mutant in which Ezh2 was removed in the mammalian isthmic (mid-hindbrain) region from E10.5 onward. Loss of Ezh2 changed the molecular coding of the anterior ventral hindbrain leading to a fate switch and the appearance of ectopic dopaminergic neurons.
    [Show full text]
  • Experimental Study of MAP Kinase Phosphatase-3 (Mkp3) Expression in the Chick Neural Tube in Relation to Fgf8 Activity
    Brain Research Reviews 49 (2005) 158–166 www.elsevier.com/locate/brainresrev Review Experimental study of MAP kinase phosphatase-3 (Mkp3) expression in the chick neural tube in relation to Fgf8 activity Claudia Vieira, Salvador MartinezT Neuroscience Institute UMH-CSIC, University Miguel Hernandez, N-332, Km 87, E-03550 San Juan de Alicante, Spain Accepted 8 December 2004 Available online 7 April 2005 Abstract Mitogen-activated protein kinase (MAPK) pathways are well known to be involved in signal transduction from extracellular to intracellular compartments in all eukaryotes. The activation of this cascade will have an effect on cell proliferation, differentiation, and apoptosis. In this study, we describe the cloning of the chick Mkp3 gene that is highly homologous to the mammalian gene and are both expressed in several embryo regions with demonstrated morphogenetic activity. In early developmental stages, Mkp3 and Fgf8 have similar expression patterns. Differences in the activation of Mkp3 transcription in the isthmus and the repression with FGF receptor inhibition suggest that Fgf8 protein controls Mkp3 transcription. Ectopically, expression of Fgf8 protein induces Mkp3 in a short period of time in the diencephalon, indicating a positive regulation of Mkp3 by Fgf8. Moreover, we show a distinct tissue competence to express Mkp3 rostrally and caudally to the zona limitans intrathalamica (ZLI). D 2005 Elsevier B.V. All rights reserved. Theme: Development and regeneration Topic: Pattern formation, compartments, and boundaries Keywords: Mid–hindbrain boundary; Isthmic organizer; Zona limitans intrathalamica; Mkp3; Fgf8; MAPK Contents 1. Introduction........................................................... 159 2. Materials and methods ..................................................... 159 2.1. Cloning of a chick homologue of Mkp3 .......................................
    [Show full text]
  • Ectoderm: Neurulation, Neural Tube, Neural Crest
    4. ECTODERM: NEURULATION, NEURAL TUBE, NEURAL CREST Dr. Taube P. Rothman P&S 12-520 [email protected] 212-305-7930 Recommended Reading: Larsen Human Embryology, 3rd Edition, pp. 85-102, 126-130 Summary: In this lecture, we will first consider the induction of the neural plate and the formation of the neural tube, the rudiment of the central nervous system (CNS). The anterior portion of the neural tube gives rise to the brain, the more caudal portion gives rise to the spinal cord. We will see how the requisite numbers of neural progenitors are generated in the CNS and when these cells become post mitotic. The molecular signals required for their survival and further development will also be discussed. We will then turn our attention to the neural crest, a transient structure that develops at the site where the neural tube and future epidermis meet. After delaminating from the neuraxis, the crest cells migrate via specific pathways to distant targets in an embryo where they express appropriate target-related phenotypes. The progressive restriction of the developmental potential of crest-derived cells will then be considered. Additional topics include formation of the fundamental subdivisions of the CNS and PNS, as well as molecular factors that regulate neural induction and regional distinctions in the nervous system. Learning Objectives: At the conclusion of the lecture you should be able to: 1. Discuss the tissue, cellular, and molecular basis for neural induction and neural tube formation. Be able to provide some examples of neural tube defects caused by perturbation of neural tube closure.
    [Show full text]
  • A Revised Model of Xenopus Dorsal Midline Development: Differential and Separable Requirements for Notch and Shh Signaling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 352 (2011) 254–266 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology A revised model of Xenopus dorsal midline development: Differential and separable requirements for Notch and Shh signaling Sara M. Peyrot a,b,1, John B. Wallingford a,b,c, Richard M. Harland a,⁎ a Dept. of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA b Dept. of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA c Howard Hughes Medical Institute, USA article info abstract Article history: The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of Received for publication 8 November 2010 classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Revised 18 January 2011 Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, Accepted 19 January 2011 respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal Available online 27 January 2011 midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to Keywords: fi fl Floor plate previous reports in frog, we nd that Shh signaling is not required for oor plate vs.
    [Show full text]
  • Induction of the Oligodendrocyte Lineage by Ventral Midline Cells and Sonic Hedgehog
    DEVELOPMENTAL BIOLOGY 177, 30±42 (1996) ARTICLE NO. 0142 Determination of Neuroepithelial Cell Fate: Induction of the Oligodendrocyte Lineage by Ventral Midline Cells and Sonic Hedgehog Nigel P. Pringle,1 Wei-Ping Yu,1,2 Sarah Guthrie,* Henk Roelink,² Andrew Lumsden,* Alan C. Peterson,³ and William D. Richardson3 MRC Laboratory for Molecular Cell Biology and Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; *Division of Anatomy and Cell Biology, United Medical and Dental Schools, Guy's Hospital Campus, St. Thomas Street, London Bridge, London SE1 9RT, United Kingdom; ³Molecular Oncology Group, Royal Victoria Hospital, McGill University, Hershey Pavilion (H5), 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada; and ²Department of Biological Structures, University of Washington School of Medicine, P.O. Box 537420 Seattle, Washington 98195 Near the ¯oor plate of the embryonic neural tube there is a group of neuroepithelial precursor cells that are specialized for production of the oligodendrocyte lineage. We performed experiments to test whether speci®cation of these neuroepithelial oligodendrocyte precursors, like other ventral neural cell types, depends on signals from the notochord and/or ¯oor plate. We analyzed heterozygous Danforth's short tail (Sd//) mutant mice, which lack a notochord and ¯oor plate in caudal regions of the neural tube, and found that oligodendrocyte precursors did not appear at the ventricular surface where there was no ¯oor plate. Moreover, oligodendrocytes did not develop in explant cultures of Sd// spinal cord in the absence of a ¯oor plate. When a second notochord was grafted into an ectopic position dorsolateral to the endogenous notochord of a chicken embryo, an additional ¯oor plate was induced along with an ectopic focus of oligodendrocyte precursors at the ventricular surface.
    [Show full text]
  • Her6 Regulates the Neurogenetic Gradient and Neuronal Identity in the Thalamus
    Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus Steffen Scholppa,b,1, Alessio Delogua, Jonathan Gilthorpea,2, Daniela Peukerta,b, Simone Schindlerb, and Andrew Lumsdena aMRC Centre for Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, United Kingdom; and bInstitute of Toxicology and Genetics, Institute of Technology Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany Communicated by Thomas M. Jessell, Columbia University College of Physicians and Surgeons, New York, NY, September 30, 2009 (received for review June 10, 2009) During vertebrate brain development, the onset of neuronal dif- expression of Ascl1 in the dorsal forebrain induces ectopic ferentiation is under strict temporal control. In the mammalian differentiation of GABAergic neurons (15). thalamus and other brain regions, neurogenesis is regulated also Another subfamily of bHLH proteins, the hairy-related Hes/ in a spatially progressive manner referred to as a neurogenetic Her proteins, generally function as DNA-binding transcriptional gradient, the underlying mechanism of which is unknown. Here we repressors and antagonize proneural gene function (16, 17). describe the existence of a neurogenetic gradient in the zebrafish Hairy-related proteins form homodimers through the bHLH thalamus and show that the progression of neurogenesis is con- region and have a conserved WRPW domain at the carboxyl (C) trolled by dynamic expression of the bHLH repressor her6. Mem- terminus, which functions as a repression domain by recruiting bers of the Hes/Her family are known to regulate proneural genes, co-repressors of the Groucho family (18). Some of these hairy- such as Neurogenin and Ascl.
    [Show full text]