Applied Inovation SS.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Applied Inovation SS.Indd APPLIED INNOVATION INC. CUSTOMER SUCCESS STORY Applied Innovation Uses VMware Software for Efficient, High Performance Virtual IT Infrastructure VMware Workstation, ESX Server, P2V Assistant, VirtualCenter and VMotion provide cost savings, fast server deployment and resource optimization The Need for Server Consolidation Implementing VMware Workstation RESULTS to Reduce Costs and Administrative and VMware ESX Server Burden At about the same time, the company was evaluat- Applied Innovation Inc. (AI), provides network man- ing VMware Workstation™ for its engineers. The • Ease of implementation and use agement solutions that simplify and enhance the engineers were using multiple computers to • Consolidation ratio of 15:1 operation of distributed voice and data networks. develop on Red Hat Linux while accessing the Building on a deep knowledge of network archi- corporate information systems on Windows 2000 • Improved CPU utilization and tecture, elements and management, AI delivers Professional. AI engineers tested their environ- memory sharing unique hardware, software and service solutions ments on VMware Workstation, and after seeing the • Minimal downtime and high that provide greater connectivity, visibility and software in action, the company rolled it out to 40 availability of servers control of network elements and the systems that users. With VMware Workstation, engineers could do support them. Understanding the importance of all their work on one system, running the develop- • Reduced deployment times for creating a strong IT infrastructure, the IT department ment environment on the host Red Hat Linux oper- server deployment from days ating system and accessing corporate systems on a to hours was doubly determined to provide an efficient and flexible infrastructure to support the company’s Windows 2000 Professional guest operating system. • VMware ESX Server and the business. During the Workstation rollout in March 2003, Jarvis associated hardware paid for itself in less than 12 months When Intel-architecture server proliferation started and his team chose to evaluate ESX Server as a to become a maintenance burden, AI sought a server consolidation solution. ESX Server allows • Reduced maintenance and server server consolidation solution to lower maintenance, system administrators to isolate operating systems purchase costs administration and IT training costs. The company and applications in multiple virtual machines that • Lowered power consumption also wanted to reduce resource usage, including reside on a single piece of hardware. Using VMware space and power, and increase server CPU and ESX Server, the team set up a test environment for • Effective disaster recovery memory utilization. infrastructure servers – WINS, DNS and DHCP servers solution – on an IBM server and a Dell server. “We were AI first looked at VMware software for server consoli- pleased with the results. We were able to do every- dation in November 2002, when the company was thing in a virtual environment that we could do with evaluating storage area network (SAN) solutions. physical machines,” says Jarvis. One SAN vendor demonstrated its solution with VMware® ESX Server™ which intrigued AI IT Director About two months later, after the success of the Phil Jarvis and his team. “We took over the conversa- test phase, AI moved its backend infrastructure tion and started talking about VMware more than systems onto virtual machines. It kept some the SAN,” Jarvis says. “We were thinking about how it physical machines on the network for a period of could help us optimize our server management.” time, and then did a phased migration starting “VMware ESX Server is the underlying infrastructure within our company; everything is running on it and everyone uses it daily. We can set up test environments and scenarios much more quickly to resolve problems, and can roll out servers quickly. VMware VirtualCenter and VMotion also enable us to share resources in our server pool. The result is optimized administration and little or no downtime. ” Phil Jarvis IT Director, Applied Innovation Inc. APPLIED INNOVATION INC. CUSTOMER SUCCESS STORY with non-critical applications, followed by critical • Improved CPU and Memory Utilization. AI’s applications, and finally, deployed VMware Virtual servers were underused, at 10% CPU utilization SMP™ to migrate dual-processor applications. Virtual and 20% RAM utilization per physical server. “Now, VMWARE WORKSTATION, SMP allows a single virtual machine to span multiple with ESX Server and VirtualCenter, we can better ESX SERVER, physical processors. Allowing multiple processors utilize the CPUs and take advantage of memory VIRTUALCENTER to work in parallel while using only a single guest sharing,” Jarvis says. AND VMOTION AT operating system image makes Virtual SMP ideal for WORK the most resource-intensive applications. • Minimal Downtime. Using VMotion, AI can move servers around so that underlying hardware and • 175 people using applications In January 2004, AI selected VMware VirtualCenter™ storage can be serviced without disrupting user on ESX Server, 40 people using and VMotion™ to create a virtual infrastructure for sessions. “We have high availability with VMotion,” Workstation optimal server management. With the software, Jarvis explains. “It eliminates the need for down- • ESX Server running on three Dell AI can manage its servers from a central location, time for maintenance windows on the VMware PowerEdge 6600s, each with 4 including being able to instantly provision new ESX servers.” CPUs, 8 GB RAM. Two are 1.9 GHz servers and move virtual machines while they’re Pentium IV Xeons, one 2.4 GHz running in production to different physical servers • Reduced Development/Deployment Times for Pentium IV Xeon. Nine NICs on to manage resources most effectively. New Servers and Applications. “It’s significantly each, gigabit cards for internal net- faster to clone or create virtual machines than to work: 10/100 BaseT cards for DMZs Multiple Benefits From Using VMware provision new servers,” Jarvis says. “We can also and Console OS easily add disk to a machine. It’s helped us reduce AI uses VMware virtual machines in a wide variety wasted disk space on our SAN.” • Guest operating systems: Windows of roles, from production staging, including OS NT 4.0, Win2K Server, Win2K service packs and IT development projects, to • Lowered Costs. Jarvis says VMware and the Pofessional, Red Hat Linux 8.0 production deployment, including IT development associated hardware paid for itself in less than 12 • Applications in virtual machines projects. It also uses VMware software for test months by reducing or eliminating maintenance include domain controllers, DNS, and development. For example, AI will be using costs and server purchase costs. “We bought three DHCP, Web/FTP, HRIS, Payroll, EDI, VMware to test and plan its Active Directory migra- new servers to run ESX Server, but would have had ERP, e-mail, anti-virus, engineering tion and testing viruses. to buy many more otherwise, since it was time to source code control and IT devel- refresh our existing servers and we required addi- opment and network manage- Building a virtual infrastructure with VMware tional servers for new initiatives,” he says. ment servers software has resulted in many benefits, including: • Effective Disaster Recovery. AI is able to save • Ease of Use. “VMware ESX Server is awesome VMware snapshot images of the virtual machines – easy to install and easy to use, and it requires and the console OS in addition to traditionally minimal maintenance,” says Jarvis. backing up the guest OS file system in case of a disaster. • Server Consolidation. AI migrated everything from 37 physical servers onto virtual machines • Higher End, High Powered Servers. AI has more on three physical servers, and added extra test confidence using VMware ESX Server because it servers in virtual machines. Now, it has 45 virtual is able to host applications on higher end, high- machines on three physical servers for a 15:1 con- powered servers, instead of hosting them on a solidation ratio. larger number of smaller servers. “It was good tim- ing,” Jarvis says. “We were at the point where we had servers that were about to fall off their main- tenance contracts, and we’d have to refresh or purchase more servers. The new servers are higher- end, higher-powered. It saved us the pain of buy- ing servers, buying maintenance, and upgrading more servers. APPLIED INNOVATION INC. CUSTOMER SOLUTIONS • Better Use of Resources. With VMware software, “VMware ESX Server is the underlying infrastructure AI is able to use space and resources more effi- within our company; everything is running on it and ciently. For example, the software has lowered everyone uses it daily,” Jarvis says. “We can set up test power consumption and space requirements by environments and scenarios much more quickly to reducing the number of servers. ESX Server’s NIC resolve problems, and can roll out servers quickly. bonding feature also utilizes NIC cards more effi- VMware VirtualCenter and VMotion also enable us to ciently. share resources in our server pool. The result is opti- mized administration and little or no downtime.” • Increased Flexibility. With ESX Server, VirtualCenter and VMotion, Jarvis says it is easy Jarvis also said he recommends virtualization to change hardware configuration of virtual technology to other companies to simplify server machines. For example, he can adjust memory, management, cut costs and save
Recommended publications
  • What Is a Storage Area Network?
    8646_Barker_01_d.qxd 9/20/01 10:21 AM Page 3 CHAPTER1 What Storage Networking Is and What It Can Mean to You n this chapter we’ll learn more about: II What a storage area network is I What properties a storage area network must have, should have, and may have I The importance of software to storage area networks I Why information services professionals should be interested in storage networking I Information processing capabilities enabled by storage area networks I Some quirks in the vocabulary of storage networking What Is a Storage Area Network? According to the Storage Networking Industry Association (and who should know better?): A storage area network (SAN) is any high-performance network whose primary pur- pose is to enable storage devices to communicate with computer systems and with each other. We think that the most interesting things about this definition are what it doesn’t say: I It doesn’t say that a SAN’s only purpose is communication between computers and storage. Many organizations operate perfectly viable SANs that carry occa- sional administrative and other application traffic. I It doesn’t say that a SAN uses Fibre Channel or Ethernet or any other specific interconnect technology. A growing number of network technologies have archi- tectural and physical properties that make them suitable for use in SANs. 3 8646_Barker_01_d.qxd 9/20/01 10:21 AM Page 4 4 STORAGE AREA NETWORK ESSENTIALS I It doesn’t say what kind of storage devices are interconnected. Disk and tape drives, RAID subsystems, robotic libraries, and file servers are all being used pro- ductively in SAN environments today.
    [Show full text]
  • Fibre Channel Solution Guide
    Fibre Channel Solutions Guide 2019 fibrechannel.org FIBRE CHANNEL Powering the next generation private, public, and hybrid cloud storage networks ABOUT THE FCIA The Fibre Channel Industry Association (FCIA) is a non-profit international organization whose sole purpose is to be the independent technology and marketing voice of the Fibre Channel industry. We are committed to helping member organizations promote and position Fibre Channel, and to providing a focal point for Fibre Channel information, standards advocacy, and education. CONTACT THE FCIA For more information: www.fibrechannel.org • [email protected] TABLE OF CONTENTS Foreword .........................................................................................3 FCIA President Introduction.............................................................4 The State of Fibre Channel by Storage Switzerland .......................6 Fibre Channel New Technologies: FC-NVMe-2 ............................... 7 The 2019 Fibre Channel Roadmap ................................................. 8 Fibre Channel’s Future is Bright in Media and Entertainment ......10 Securing Fibre Channel SANs with End-to-End Encryption ..........12 FOREWORD By Rupin Mohan, FCIA Marketing Chairman; Director R&D and CTO, Hewlett-Packard Enterprise It’s 2019, and Fibre Channel continues to remain the premier storage fabric connectivity protocol in today’s data centers. Fibre Channel is deployed by thousands of customers in their data centers around the world and 80–90% of all All-Flash storage arrays are connected to servers via Fibre Channel. Customers have recently made a considerable investment in Gen 6 (32GFC), and given the 4-5-year depreciation cycle, this equipment will continue to run critical business applications requiring reliable, fast and scalable storage infrastructure. The NVMe over Fibre Channel (FC-NVMe) standard is published, and we see products being announced and released in the market across the board.
    [Show full text]
  • Infiniband Technology Overview
    InfiniBand Technology Overview Dror Goldenberg, Mellanox Technologies SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced without modification The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. InfiniBand Technology Overview 2 © 2008 Storage Networking Industry Association. All Rights Reserved. Abstract InfiniBand Technology Overview The InfiniBand architecture brings fabric consolidation to the data center. Storage networking can concurrently run with clustering, communication and management fabrics over the same infrastructure, preserving the behavior of multiple fabrics. The tutorial provides an overview of the InfiniBand architecture including discussion of High Speed – Low Latency, Channel I/O, QoS scheduling, partitioning, high availability and protocol offload. InfiniBand based storage protocols, iSER (iSCSI RDMA Protocol), NFS over RDMA and SCSI RDMA Protocol (SRP), are introduced and compared with alternative storage protocols, such as iSCSI and FCP. The tutorial further enumerates value-add features that the InfiniBand brings to clustered storage, such as atomic operations and end to end data integrity. Learning Objectives: Understand the InfiniBand architecture and feature set. Understand the benefits of InfiniBand for networked storage. Understand the standard InfiniBand storage protocols. InfiniBand Technology Overview 3 © 2008 Storage Networking Industry Association. All Rights Reserved. Agenda Motivation and General Overview Protocol Stack Layers Storage Protocols over InfiniBand Benefits InfiniBand Technology Overview 4 © 2008 Storage Networking Industry Association.
    [Show full text]
  • Effective Data Backup System Using Storage Area Network Solution
    Effective Data Backup System Using Storage Area Network Solution Ume, L.E. Department of Computer Science, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria Correspondence e-mail: [email protected] Abstract One of the most crucial benefits of the computer system is its ability to manage data send to it for processing. An aspect of data management that all other aspects hinge upon is data storage and retrieval. Data loss has rendered many firms bankrupt. The primary cause of data loss is lack or non- existent of data backup. Storage Area Network Solution (SANS) is internet-based software which will collect clients data and host them in several locations to forestall data loss in case of disaster in one location. The researcher used adobe Dreamweaver (CSC3) embedded with PHP incorporated with MySQL database technology to develop the application. The objectives of the research were realized. Keywords: Backup, Storage area network, Data, Effective and Data loss 1.0 Introduction Storage Area Network (SAN) is a high- (NAS) systems. SAN evolved from the speed sub-network of shared storage concept of taking storage devices and devices. A storage device is a machine that therefore storage traffic, off the LAN and contains nothing but a disk or disks for creating a separate back-end network storing data. A SAN’s architecture works in designed specifically for data. This is a a way that makes all storage devices contrast to the use of a traditional LAN for available to all servers on a LAN or WAN. providing a connection for server-storage, a As more storage devices are added to a strategy that limits overall network SAN, they too will be accessible from any bandwidth.
    [Show full text]
  • Storage Area Network (SAN) Security and Performance
    MASTER THESIS Evaluation of Storage Area Network (SAN) Security and Performance Master Thesis in Computer Network Engineering November 2013 Author: Siavash Hajirostam Supervisor: Tony Larsson Examiner: Tony Larsson __________________________________ School of Information Science, Computer and Electrical Engineering Halmstad University PO Box 823, SE-301 18 HALMSTAD Sweden Evaluation of Storage Area Network (SAN) Security and Performance Siavash Hajirostam © Copyright Siavash Hajirostam, 2013. All rights reserved. Master thesis report IDE 1325 School of Information Science, Computer and Electrical Engineering Halmstad University Preface I would like to express my appreciation to my supervisor, Professor Tony Larsson, for the many useful discussions, comments and suggestions on this thesis and also my thanks go to the staff of Halmstad University for giving me the opportunity to study in the computer network engineering program. Finally, my special thanks to my family for their encouragement and support during my stud ies. Siavash Hajirostam Halmstad, November 2013 i Abstract Due to growing the number of Information Technology (IT) users all around the world, consequently the amount of data that needs to be stored is increasing day by day. Single attached disks and old storage technologies cannot manage the storing these amounts of data. Storage Area Network (SAN) is a distributed storage technology to manage the data from several nodes in centralize place and secure. This thesis investigates how SAN works, the file system and protocols that are used in implementation of SAN. The thesis also investigate about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) to figure out the advantages and disadvantages of SAN , The main focus of the thesis project is on identifying the security vulnerabilities in SAN such as possible attacks in different SAN protocols.
    [Show full text]
  • Study On-Comparison Between IP SAN and FC SAN Komal A
    International Journal of Computer Science Trends and Technology (IJCS T) – Volume 4 Issue 4, Jul - Aug 2016 RESEARCH ARTICLE OPEN ACCESS Study On-Comparison between IP SAN and FC SAN Komal A. Dhabale Department of Computer Science and Engineering Bharati Vidyapeeth Deemed University Pune -India ABSTRACT This study paper provides a brief explanation of storage networking and the requirements of storage networking. Internet Protocol (IP) SAN and Fibre Channel (FC) SAN these are two types of Storage Area Network (SAN). In this paper, we discuss the IP SAN and FC SAN, and the comparison between the IP SAN and FC SAN. Keywords:- Internet Protocol (IP) Storage Area Network (SAN), Fibre Channel (FC) Storage Area Network, Internet Protocol (IP) Storage Area Network (SAN) vs. Fibre Channel (FC) Storage Area Network (SAN). I. INTRODUCTION accessed to a high-performance storage data for required the To transfer the data between computer systems is the Direct Attached Storage (DAS) or a Fibre Channel (FC) Storage Area Network (SAN). IP Storage has grown to primary purpose of Storage Area Network (SAN) which is viewed it is extremely cost effective, easier to manage and it defined by Storage Networking Industry Association (SNIA). Storage Area Network is a network which provides the access gets less complex storage solution to compare Direct Attached Storage (DAS) or Fibre Channel Storage Area Network(FC- for combining the two networks to each other. In the Storage SAN). Area Network (SAN) the data transfer is secure and robust because it consists of management layer, which establishes a In IP SAN the Internet Small Computer System Interface (iSCSI) can transfer the traditional high performance connection between the storage element and computer system.
    [Show full text]
  • Copyrighted Material
    3 1 Introduction to Network Routing 1.1 Introduction to Networks, 3 1.2 Network Architecture and Standards, 6 1.3 Glimpse at the Network Layer, 13 1.4 Addressing in TCP/IP Networks, 16 1.5 Overview of Routing, 20 1.6 Delivery, Forwarding, Routing, and Switching, 21 1.7 Routing Taxonomy, 23 1.8 Host Mobility and Routing, 26 References, 27 Abbreviations/Terminologies, 28 Questions, 30 Exercises, 32 1.1 ­Introduction to Networks A computer network supports data communication between two or more devices over a transmission medium. The transmission medium can either be wired or wireless. The network is established and data is transmitted over it with the support of networking hard- ware and the software running on the hardware. Network hardware comprises equipment that generates the signal at the source, transmits the signal over the transmission medium, and receives and processes the signal at the destination. The software comprises protocols, standards, instructions, and algorithms that support transmission services over the net- work. The essentiality of networks has increased over time, along with advancement in network hardware, software, and support applications. There are huge variations in the size of a network in use; there can be small networks confined to an office or home, and at the same time there areCOPYRIGHTED networks spread across cities and MATERIAL countries. The spread of the network can be described in various terms, such as distance covered and the number of computers and other resources connected to the network. A local area network confined to a building may connect thousands of computers, such as in a software development center, a call center, or a stock exchange.
    [Show full text]
  • Introduction to Storage Area Networks
    SG24-5470- Introduction to Storage Area Networks Jon Tate Pall Beck Hector Hugo Ibarra Shanmuganathan Kumaravel Libor Miklas Redbooks International Technical Support Organization Introduction to Storage Area Networks December 2017 SG24-5470-08 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. Ninth Edition (December 2017) This edition applies to the products in the IBM Storage Area Networks (SAN) portfolio. © Copyright International Business Machines Corporation 2017. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . .x Preface . xi Authors. xii Now you can become a published author, too! . xiv Comments welcome. xiv Stay connected to IBM Redbooks . xiv Summary of changes. .xv December 2017, Ninth Edition . .xv Chapter 1. Introduction. 1 1.1 Networks . 2 1.1.1 The importance of communication . 2 1.2 Interconnection models . 2 1.2.1 The open systems interconnection model. 2 1.2.2 Translating the OSI model to the physical world. 4 1.3 Storage . 5 1.3.1 Storing data. 5 1.3.2 Redundant Array of Independent Disks . 6 1.4 Storage area networks . 11 1.5 Storage area network components . 13 1.5.1 Storage area network connectivity . 14 1.5.2 Storage area network storage. 14 1.5.3 Storage area network servers. 14 1.6 The importance of standards or models . 14 Chapter 2. Storage area networks . 17 2.1 Storage area networks . 18 2.1.1 The problem . 18 2.1.2 Requirements .
    [Show full text]
  • The Storage Area Network
    Chapter 1 The Storage Area Network In This Chapter ▶ Understanding storage area networks (SANs) ▶ Determining whether a SAN is right for you ▶ Looking at SAN layers and protocols ▶ Figuring out which operating systems benefit from SANs ▶ Discovering which applications can use or require SANs his chapter is dedicated to helping you get a handle on what a storage Tarea network (SAN) is, the basics of how one works, and whether one is right for your needs. You’ll discover all the parts that make up a SAN, the things that make one run, and who actually makes all the different parts that you can buy. Putting a SAN together is somewhat like putting together one of those high-end stereo systems; you have many components and many differ- ent manufacturers to choose from. This chapter helps you choose the ones that suit your needs and create something that you can be proud of. These days, becoming proficient with SANs can mean a major boost to your career. Perhaps you’re bored to death in your current position and would like a change of pace. SAN administration is one of the highest-paying jobs in Information Technology (IT) today. If you add storage area networking to your résumé, you may find your phone ringing off the hook as headhunters vie to offer you a six-figure income (hey, might as well dream big). COPYRIGHTED MATERIAL Defining a SAN First, the basics. In today’s terms, the technical description of a SAN (Storage Area Network) is a collection of computers and storage devices, connected over a high-speed optical network and dedicated to the task of storing and protecting data.
    [Show full text]
  • An Introduction to Iscsi: the Protocol for IP/Ethernet-Based Storage Area Networking - Studio Network Solutions
    An Introduction to iSCSI: The Protocol for IP/Ethernet-Based Storage Area Networking - Studio Network Solutions There has been much discussion (and a good dose of confusion) about the term “iSCSI” over ACRONYM DICTIONARY the last year. This relatively new protocol for storage technology offers many compelling bene- fits, including solid performance and the ability to inexpensively create a Storage Area CHAP: Challenge-Handshake Authentication Network (SAN) using standard Ethernet components. Protocol - iSCSI’s primary method of authenti- cating an initiator to a target. The authentica- tion occurs at the time of login and at various But what exactly is iSCSI? Perhaps it is helpful to first touch briefly on what iSCSI is not. [See times throughout the iSCSI session. The sidebar for more details.] It is not NAS. It does not require SCSI disks. It is not a file sharing authentication values on either end consist of protocol like those used by Mac and Windows servers. It is not iFCP, which is a protocol used user name, target secret and initiator secret. to connect FC SAN islands across long distances. Nor is it FCIP. iSCSI is extremely close to the The credentials are hashed and transferred Fibre Channel protocol. For those already familiar with Fibre Channel, iSCSI can be very surreptitiously over the iSCSI network. loosely generalized as “Fibre Channel over Ethernet.” DAS: Direct Attached Storage - The most common storage method, DAS is any storage By definition, iSCSI (Internet SCSI or “SCSI over IP”) is a storage networking standard that device (Disk drive, CD/DVD drive, Tape drive) enables the transport of block I/O data over an IP network.
    [Show full text]
  • Annual Report 2005
    ISSN 1334-854X design skala Ruđer Bošković Institute Annual Report 2005 Ruđer Bošković Institute Annual Report 2005 Zagreb, 2006. Editorial Board: Editor: Nela Pivac Members: Stjepko Fazinić Bogumil Obelić Karolj Skala David Smith Kata Majerski Jadranka Stojanovski Mladen Žinić Technical Support: Photographer: Josip Uhrl Graphic Design and Technical Processing: Faculty of Graphic Arts, University of Zagreb Print run of 850 copies Web edition: http://www.irb.hr/en/geninfo/reports/ Address: Ruđer Bošković Institute Bijenička cesta 54, P.O.Box 180 HR-10002 Zagreb, Croatia Contact: URL: http://www.irb.hr e-mail: [email protected] tel: +385 1 45 61 111 fax: +385 1 46 80 084 Copyright © 2006 by RBI ISSN 1334-854X Contents Introduction ..........................................................................................1 Theoretical Physics Division .............................................................11 Division of Experimental Physics ......................................................15 Division of Materials Physics .............................................................23 Division of Laser and Atomic Research and Development ...............29 Division of Electronics .......................................................................33 Division of Physical Chemistry ..........................................................37 Division of Organic Chemistry and Biochemistry ..............................43 Division of Materials Chemistry .........................................................49 Division of Molecular
    [Show full text]
  • Flash Or SSD: Why and When to Use IBM Flashsystem
    Redpaper Megan Gilge Karen Orlando Flash or SSD: Why and When to Use IBM FlashSystem Overview This IBM® Redpaper™ publication explains how to select an IBM FlashSystem™ or solid-state drive (SSD) solution. It describes why and when to use FlashSystem products, and reviews total cost of ownership (TCO), economics, performance, scalability, power, and cooling. Read this guide for information about selecting the correct solution (SSD or flash technology). This paper also reviews examples of FlashSystem storage bundled with solutions such as hybrid arrays and IBM System Storage® SAN Volume Controller (SVC). Furthermore, it compares FlashSystem storage to other storage such as PCIe Express (PCIe) products and hard disk drives (HDDs). Business value of FlashSystem products FlashSystem storage systems deliver high performance, efficiency, and reliability for shared enterprise storage environments, which can help you address performance issues with your most important applications and infrastructure. FlashSystem products also provide capability for big data and cloud environments. These storage systems can either complement or replace traditional hard disk arrays in many business-critical applications: Online transaction processing (OLTP) Business intelligence (BI) Online analytical processing (OLAP) Virtual desktop infrastructures (VDI) High-performance computing (HPC) Content delivery solutions (such as cloud storage and video-on-demand) As standard shared primary data storage devices, FlashSystem storage delivers performance exponentially beyond that of most traditional arrays, even those arrays that incorporate SSDs or other flash technology. These storage systems can also be used as the top tier of storage © Copyright IBM Corp. 2013. All rights reserved. ibm.com/redbooks 1 alongside traditional arrays in tiered storage architectures such as the IBM Easy Tier® functionality available in the System Storage SVC storage virtualization platform.
    [Show full text]