UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Convergence and Divergence from Populations to Species: Phenotypic Evolution of Caribbean Anolis Lizards Permalink https://escholarship.org/uc/item/3dz4s7m7 Author Yuan, Michael Lihan Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Convergence and Divergence from Populations to Species: Phenotypic Evolution of Caribbean Anolis Lizards By Michael Lihan Yuan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee: Professor Ian J. Wang, Chair Professor Marvalee H. Wake Professor Erica Bree Rosenblum Spring 2021 Abstract Convergence and Divergence from Populations to Species: Phenotypic Evolution of Caribbean Anolis Lizards by Michael Lihan Yuan Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Ian J. Wang, Chair This dissertation is primarily focused on understanding the generation and maintenance of phenotypic diversity through ecological selection. Natural selection acts on the phenotype because the phenotype lies at the interface between an organisms genotype and its environment. Thus, the study of phenotypic diversity is central to our understanding of evolution. I have primary addressed questions of phenotypic evolution using the radiations of Caribbean Anolis lizards. Chapter I of my dissertation examines if claw and toepad morphology formed an integrated phenotype correlated with microhabitat partitioning in Greater Antillean anoles. The Greater Antilles forms an exceptional system to study convergent evolution due to the repeated evolution of structural microhabitat specialist ‘ecomorphs’. As locomotor traits associated with clinging performance, claw and toepad traits are likely highly relevant to partitioning of vertical arboreal habitat. I found that correlative selection did drive the evolution of claw and toepads as an integrated phenotype to optimize performance on specific microhabitats. Additionally, rates of evolution were coupled between claws and toepads across most species, except twig specialists which experienced a dramatic reduction in claw structure. Thus, this study provides a convincing case study for correlative selection facilitating ecological divergence between species. Chapter II studies claw and toepad integration in the context of the species depauperate Lesser Antillean anole fauna. These anoles represent broad habitat generalists with only one or two species per island. Broadly, claw and toepad morphology correlated with overall island habitat availability on one species islands, but not two species islands. Here, I found that Anolis bimaculatus series anoles closely-related to the Greater Antillean adaptive radiations followed predictable patterns of divergence on two species islands in that they partitioned vertical habitat space and showed associated phenotypic integration between claws and toepads. However, the distantly-related A. roquet series anoles did not show predictable patterns of divergence on two species islands and a decoupling of claw and toepad traits. These results suggest that phylogenetic history may influence the capacity for adaptive divergence. 1 Chapter III tests for parallel intraspecific patterns of divergence across environmental gradients in nine species of A. bimaculatus series anoles inhabiting the northern Lesser Antilles. Species within the A. bimaculatus series are broadly generalist and occur widely throughout their native islands. Thus, each encounters a wide range of environmental variation ranging from xeric coastal scrub to montane rainforests. I found that patterns of morphological divergence across these environmental gradients were idiosyncratic. It is possible that due to many-to-one mapping of form to function, adaptation to environmental gradients can be achieved through different ecologically-relevant traits. However, strong patterns of convergence did emerge for some traits, notably dorsal coloration. Chapter IV examines the phenomenon of species richness-genetic diversity in the context of island biogeography and extends this framework to include phenotype diversity. Specifically, I examined the relative roles of island size, distance from mainland, environmental variance, and topographic complexity across the Lesser Antilles. I partitioned biogeographical effects across species, phenotypic, and genetic diversity using both native and introduced herpetofauna. I found that island size correlates with both species richness and genetic diversity in all contexts. Secondary island characteristic effects on species and genetic diversity differed between groups likely due to differences in their natural history. Phenotypic diversity was not correlated with tested island variables in all cases suggesting that macroecological forces which shape species and genetic diversity are decoupled from phenotypic diversity. 2 For my family and friends who got me through this. i TABLE OF CONTENTS Acknowledgements iii Preface iv Chapter I Abstract 1 Introduction 2 Methods 4 Results 7 Discussion 9 Conclusion 12 Figures and Tables 14 Chapter II Abstract 23 Introduction 24 Methods 26 Results 29 Discussion 30 Conclusion 33 Figures 35 Chapter III Abstract 41 Introduction 42 Methods 44 Results 46 Discussion 48 Conclusion 50 Figures and Tables 51 Chapter IV Abstract 58 Introduction 59 Methods 60 Results 62 Discussion 63 Conclusion 65 Figures and Tables 67 References 74 Appendix I 88 Appendix II 90 Appendix III 92 Appendix IV 96 ii ACKNOWLEDGEMENTS I am grateful to numerous individuals and institutions for facilitating the work presented in the following pages. I wish to thank my mentors and committee members Ian Wang, Marvalee Wake, Bree Rosenblum, Rayna Bell, and Kevin de Queiroz for their guidance. Members of both the Wang and Bell labs provided invaluable feedback throughout my dissertation progress. This research would not have been possible without access to natural history collections from the Museum of Vertebrate zoology (University of California, Berkeley, California), the California Academy of Sciences (San Francisco, California), the Museum of Comparative Zoology (Harvard University, Cambridge, Massachusetts), and the National Museum of Natural History (Smithsonian Institution, Washington, District of Columbia). I am particularly grateful to the curators and staff of these institutions for aiding in loan of materials and allowing use of their facilities including, but not limited to, Addison Wynn, Robert Wilson, Esther Langan, Kenneth Tighe, Jose Rosado, Lauren Scheinberg, Erica Ely, and Carol Spencer. For being a wonderful collaborator and friend, I thank Jeffrey Frederick. For helping me survive graduate school in numerous ways, I thank Natalie Graham. Catherine Jung was an invaluable undergraduate mentee who helped with many aspects of data collection. For help in the field, I thank Calvin Fenton, Sharon Veira, Livius Bozga, Melanie Meijer zu Schlochtern, the St. Kitts Department of Forestry Rangers, and the STENAPA staff and interns. For donating field supplies, I thank Dr. Pompei Bulfa and Candita Chapman at Ross University School of Veterinary Medicine and Heldder Renjifo at American University of the Caribbean School of Medicine. Work on St. Kitts and Nevis was conducted with permission from the Department of Environment under an access and benefit-sharing agreement with the Ministry of Agriculture, Marine Resources, Cooperatives, Environment and Human Settlement. I collected samples on Sint Eustatius under permits from the Sint Eustatius National Parks Foundation, on Sint Maarten under permits from the Nature Foundation Sint Maarten, on Montserrat under permits from the Department of Environment, and on Dominica under permits from the Department of Forestry. For permits, I thank Clarisse Buma, Melanie Meijer zu Schlochtern, Ernestine Corbett, Stephen Durand, Eavin Parry, and Dr. Tracey Challenger. For help in the lab, I am thankful to Guin Wogan and Lydia Smith. Sequencing facilities were provided by the Museum of Vertebrate Zoology’s Evolutionary Genetics Laboratory. Peter Ruzevich of the Steinhart Aquarium at the California Academy of Sciences provided x-ray facilities. Funding for the work presented in this dissertation was provided by the Museum of Vertebrate Zoology, Sigma Xi, the Lewis and Clark Fund for Exploration and Field Research from the American Philosophical Society, a Student Research Award from the American Society of Naturalists, and a Rosemary Grant Award from the Society for the Study of Evolution. I was supported by a Smithsonian Institution Graduate Fellowship, a Smithsonian Institution Predoctoral Fellowship, a Philomathia Fellowship in the Environmental Sciences from UC Berkeley, and a Junea W. Kelly Graduate Fellowship from the Museum of Vertebrate Zoology. Additional funding support was provided by the Department of Environmental Science, Policy, and Management at UC Berkeley. Finally, I thank the anoles because without them this dissertation would not exist. iii PREFACE Phenotypic variation represents a fundamental axis of biological diversity. It is the phenotype upon which natural selection directly acts and, thus, the phenotype which lies at the interface between an organism’s genetics and its environment. In short, without heritable
Recommended publications
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • MARTHA MONICA MUÑOZ 926 West Campus Drive Virginia Tech Blacksburg, VA 24060 Email: [email protected]; Phone: (540) 232-8468; Website
    December 2018 CURRICULUM VITAE MARTHA MONICA MUÑOZ 926 West Campus Drive Virginia Tech Blacksburg, VA 24060 email: [email protected]; phone: (540) 232-8468; website: www.munozlab.biol.vt.edu EDUCATION: 2014 Ph.D. Organismic and Evolutionary Biology, Harvard University 2007 B.A. Biology, summa cum laude, Boston University (with Distinction) APPOINTMENTS: 2017- Assistant Professor Department of Biological Sciences, Virginia Tech 2015-2017 Post-doctoral Researcher Department of Biology, Duke University 2014-2015 Post-doctoral Researcher Research School of Biology, The Australian National University 2007-2008 Fulbright Research Scholar National Museum of Natural Sciences, Madrid FELLOWSHIPS: 2017 Foerster-Bernstein Postdoctoral Fellowship, Duke University (declined) 2014 National Science Foundation, Postdoctoral Research Fellowship (declined) 2013 John Parker Merit Fellowship, Harvard University 2012 Robert A. Chapman Memorial Fellowship, Harvard University 2010 National Science Foundation, Graduate Research Fellowship 2008 Herchel Smith Graduate Fellowship, Harvard University 2007 William J. Fulbright Research Fellowship, Spain GRANTS AND AWARDS: 2018 National Science Foundation, Rules of Life:FELS Conference grant, $21,868 Global Change Center Seed Grant, Virginia Tech, $19,810 2017 Young Investigator Award, American Society of Naturalists 2014 Raymond B. Huey Best Student Talk Award, Division of Ecology and Evolution, Society for Integrative and Comparative Biology 2012 National Science Foundation, Doctoral Dissertation Improvement Grant, $14,999 2012 Sigma Xi Grant-In-Aid 2012 David Rockefeller Center for Latin American Studies Grant, Harvard University 2010 George Putnam Expedition Grant, Harvard University 2008 Ken B. Miyata Expedition Grant, Harvard University 2006 Phi Beta Kappa Honor Society, Boston University (early induction) 2006 College of Arts and Sciences Merit Award, Boston University 2006 Harold C.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • Positieve Lijst Reptielen Vlaanderen 2019.Pdf
    HAGEDISSEN Orde Suborde Infraorde/SuperfamilieFamilie Subfamilie Soort Squamata Sauria Scincomorpha Lacertidae - Anatololacerta pelasgiana Squamata Sauria Scincomorpha Lacertidae - Archaeolacerta bedriagae Squamata Sauria Scincomorpha Lacertidae - Dalmatolacerta oxycephala Squamata Sauria Scincomorpha Lacertidae - Eremias przewalskii Squamata Sauria Scincomorpha Lacertidae - Gastropholis prasina Squamata Sauria Scincomorpha Lacertidae - Holaspis guentheri Squamata Sauria Scincomorpha Lacertidae - Lacerta bilineata Squamata Sauria Scincomorpha Lacertidae - Lacerta media Squamata Sauria Scincomorpha Lacertidae - Lacerta pamphylica Squamata Sauria Scincomorpha Lacertidae - Lacerta schreiberi Squamata Sauria Scincomorpha Lacertidae - Lacerta strigata Squamata Sauria Scincomorpha Lacertidae - Lacerta trilineata Squamata Sauria Scincomorpha Lacertidae - Lacerta viridis Squamata Sauria Scincomorpha Lacertidae - Podarcis pityusensis Squamata Sauria Scincomorpha Lacertidae - Podarcis siculus Squamata Sauria Scincomorpha Lacertidae - Takydromus sexlineatus Squamata Sauria Scincomorpha Lacertidae - Takydromus smaragdinus Squamata Sauria Scincomorpha Lacertidae - Timon lepidus Squamata Sauria Scincomorpha Lacertidae - Timon nevadensis Squamata Sauria Scincomorpha Lacertidae - Timon pater Squamata Sauria Scincomorpha Lacertidae - Timon tangitanus Squamata Sauria Scincomorpha Lacertidae Gallotiinae Gallotia galloti Squamata Sauria Scincomorpha Lacertidae Gallotiinae Psammodromus algirus Squamata Sauria Scincomorpha Lacertidae - Lacerta agilis Squamata
    [Show full text]
  • The Amphibians and Reptiles of the UK Overseas Territories, Crown Dependencies and Sovereign Base Areas
    The Amphibians and Reptiles Of the UK Overseas Territories, Crown Dependencies and Sovereign Base Areas Species Inventory and Overview of Conservation and Research Priorities Paul Edgar July 2010 The Amphibians and Reptiles of the UK Overseas Territories Acknowledgements Amphibian and Reptile Conservation wishes to acknowledge the financial support of the Joint Nature Conservation Committee in the production of this report. The following people provided comments, advice and other assistance: John Baker: Amphibian and Reptile Conservation, Bournemouth Gerald Benjamin: Senior Fisheries Officer, St. Helena David Bird: British Herpetological Society, London Oliver Cheesman: UK Overseas Territories Conservation Forum Andrew Darlow: Invasive Species Project Officer, St. Helena Ian Davidson-Watts: Defence Estates, Episkopi Garrison, Akrotiri Sovereign Base Area, Cyprus Ian Dispain: Cyprus Sovereign Base Areas Shayla Ellick: Joint Nature Conservation Committee, Peterborough Tony Gent: Amphibian and Reptile Conservation, Bournemouth Matthias Goetz: Durrell Wildlife Conservation Trust, Jersey Robert Henderson: Milwaukee Public Museum, Milwaukee, USA Lisa Kitson: Bermuda Tara Pelembe: Joint Nature Conservation Committee, Peterborough Angela Reynolds: Amphibian and Reptile Conservation, Bournemouth Sarah Sanders: RSPB, Sandy Peter Stafford: Natural History Museum, London Edward Thorpe: St. Helena David Wege: BirdLife International John Wilkinson: Amphibian and Reptile Conservation, Bournemouth Helen Wraight: Amphibian and Reptile Conservation, Bournemouth
    [Show full text]
  • Anolis Newsletter VI
    Anolis Newsletter VI Edited by D. Luke Mahler Anthony Herrel Jonathan B. Losos i June 2, 2010 The Museum of Comparative Zoology Harvard University 26 Oxford St. Cambridge, MA 02138 USA All rights reserved. Names or nomenclatural acts in this work are disclaimed for nomenclatural purposes under ICZN 8.3. Front cover: The enigmatic, rostrally-endowed Anolis proboscis, from Ecuador. Reprinted with permission from Williams (1979; Breviora 449:1-19). Illustration by Laszlo Meszoly. ii In Memory of A. Stanley Rand (1932-2005) Stan Rand (left) with his former graduate advisor, Ernest Williams (right) at Soroa, Cuba in 1983. iii Preface On the first weekend of October in 2009, 125 anole biologists traveled from eight countries to Harvard University’s Museum of Comparative Zoology to attend the 6th Anolis Symposium. It had been 10 years since the previous symposium, and a reunion was long past due. In 2008, as we began to consider how to proceed with such an endeavor, a fortunate thing happened: the Herpetology Department at the MCZ renovated its library and teaching space – the famous lair of the late pater anolis, Ernest Williams. The library needed a namesake, and Ernest was under strong consideration (after all, he had been instrumental in filling its shelves!). After a brief period of friendly deliberation, it was decided that the library would be dedicated to Williams, and that the occasion would be the commencement of the 6th Anolis Symposium, held at the Museum of Comparative Zoology. Anole biology has changed considerably in the last decade, and it’s been for the better! First and foremost, the field has grown explosively.
    [Show full text]
  • ANNEXE. Liste Des Reptiles Qui Peuvent Être Détenus. Lézards
    ANNEXE. Liste des reptiles qui peuvent être détenus. Lézards (Ordre Squamata, Sous-ordre Sauria) Infra-ordre/ Super-famille Famille Sub-famille Espèce Scincomorpha Lacertidae - Anatololacerta pelasgiana Scincomorpha Lacertidae - Archaeolacerta bedriagae Scincomorpha Lacertidae - Dalmatolacerta oxycephala Scincomorpha Lacertidae - Eremias przewalskii Scincomorpha Lacertidae - Gastropholis prasina Scincomorpha Lacertidae - Holaspis guentheri Scincomorpha Lacertidae - Lacerta bilineata Scincomorpha Lacertidae - Lacerta media Scincomorpha Lacertidae - Lacerta pamphylica Scincomorpha Lacertidae - Lacerta schreiberi Scincomorpha Lacertidae - Lacerta strigata Scincomorpha Lacertidae - Lacerta trilineata Scincomorpha Lacertidae - Lacerta viridis Scincomorpha Lacertidae - Podarcis pityusensis Scincomorpha Lacertidae - Podarcis siculus Scincomorpha Lacertidae - Takydromus sexlineatus Scincomorpha Lacertidae - Takydromus smaragdinus Scincomorpha Lacertidae - Timon lepidus Scincomorpha Lacertidae - Timon nevadensis Scincomorpha Lacertidae - Timon pater Scincomorpha Lacertidae - Timon tangitanus Scincomorpha Lacertidae Gallotiinae Gallotia galloti Scincomorpha Lacertidae Gallotiinae Psammodromus algirus Scincomorpha Lacertidae - Lacerta agilis Scincomorpha Scincidae Egerniinae Corucia zebrata Scincomorpha Scincidae Egerniinae Cyclodomorphus gerrardii Scincomorpha Scincidae Egerniinae Tiliqua gigas Scincomorpha Scincidae Egerniinae Tiliqua rugosa Scincomorpha Scincidae Egerniinae Tiliqua scincoides Scincomorpha Scincidae Lygosominae Lepidothyris fernandi
    [Show full text]
  • Sex-Related Morphological Differences in the Dentition of Anolis Oculatus
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1989 Sex-Related Morphological Differences in the Dentition of Anolis oculatus Kevin William Grierson College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Morphology Commons Recommended Citation Grierson, Kevin William, "Sex-Related Morphological Differences in the Dentition of Anolis oculatus" (1989). Dissertations, Theses, and Masters Projects. Paper 1539625506. https://dx.doi.org/doi:10.21220/s2-6cpm-q120 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. SEX-RELATED MORPHOLOGICAL DIFFERENCES IN THE DENTITION OF ANOLIS OCULATUS (SAURIA: IGUANIDAE) A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts by Kevin W. Grierson 1989 APPROVAL SHEET This thesis is submitted in partial fulfillment the requirements for the degree of Master of Arts Auth Approved, August 1989. Garnett R. Brooks )A Gregory/ M.dapelli T DEDICATION This master's thesis is dedicated to the memory of Laura Jean Grierson. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.......................................... v LIST
    [Show full text]
  • Anolis Tandai, a New Dietary Record for the Amazon Ringed Snake, Rhinobothryum Lentiginosum (Scopoli, 1785) (Squamata: Colubridae)
    Herpetology Notes, volume 13: 981-987 (2020) (published online on 26 November 2020) Anolis tandai, a new dietary record for the Amazon ringed snake, Rhinobothryum lentiginosum (Scopoli, 1785) (Squamata: Colubridae) Luis A. García–Ayachi1,2,3,*, Mallory Wittwer3, and Christopher Kirkby3 The Amazon banded snake is a rare, infrequently because they observed these snakes on the ground observed species of squamate with only a few (Martins and Oliveira, 1998; Doan and Arriaga, 2000; specimens stored in biological collections, despite its Duellman, 2005; Ribeiro Duarte, 2010; Avila–Pires et widespread distribution (Cunha and Nascimento, 1978). al., 2010). However, dietary information suggests that R. This snake lives in the lowland Amazonian forests of lentiginosum is a lizard specialist that feeds on a variety Brazil, Venezuela, Guyana, Suriname, French Guiana, of terrestrial and arboreal species that range in size from Colombia, Ecuador, Paraguay, Bolivia, and Peru (Peters small species, such as Gonatodes spp. to the larger and Orejas–Miranda, 1970; Miranda et al., 2009; Iguana iguana (Table 1). Rhinobothryum lentiginosum Reynolds and MacCulloch, 2012; Uetz et al., 2020). likely forages in tree and bushes, and possibly preys Although it has been recorded in primary forest (Cunha on night–sleeping lizards (Oliveira and Martins, 1998; and Nascimento, 1978; Cunha et al., 1985; Martins Martins and Oliveira, 1998; Vitt et al., 2000; Duellman, and Oliveira, 1998; Fraga et al., 2014), some records 2005; Ribeiro Duarte, 2010), and occasionally on frogs, demonstrate that R. lentiginosum also inhabits secondary small birds and mammals (Zimmerman and Rodrigues, forest (Venegas and Couceiro, 2017), and more open, 1990; Avila–Pires et al., 2010).
    [Show full text]
  • Anolis Newsletter VI
    Anolis Newsletter VI Edited by D. Luke Mahler Anthony Herrel Jonathan B. Losos i June 2, 2010 The Museum of Comparative Zoology Harvard University 26 Oxford St. Cambridge, MA 02138 USA All rights reserved. Names or nomenclatural acts in this work are disclaimed for nomenclatural purposes under ICZN 8.3. Front cover: The enigmatic, rostrally-endowed Anolis proboscis, from Ecuador. Reprinted with permission from Williams (1979; Breviora 449:1-19). Illustration by Laszlo Meszoly. ii In Memory of A. Stanley Rand (1932-2005) Stan Rand (left) with his former graduate advisor, Ernest Williams (right) at Soroa, Cuba in 1983. iii Preface On the first weekend of October in 2009, 125 anole biologists traveled from eight countries to Harvard University’s Museum of Comparative Zoology to attend the 6th Anolis Symposium. It had been 10 years since the previous symposium, and a reunion was long past due. In 2008, as we began to consider how to proceed with such an endeavor, a fortunate thing happened: the Herpetology Department at the MCZ renovated its library and teaching space – the famous lair of the late pater anolis, Ernest Williams. The library needed a namesake, and Ernest was under strong consideration (after all, he had been instrumental in filling its shelves!). After a brief period of friendly deliberation, it was decided that the library would be dedicated to Williams, and that the occasion would be the commencement of the 6th Anolis Symposium, held at the Museum of Comparative Zoology. Anole biology has changed considerably in the last decade, and it’s been for the better! First and foremost, the field has grown explosively.
    [Show full text]
  • 9 Temperature-Dependent Sex Determination
    N. Valenzuela 9 Temperature-dependent sex determination N. Valenzuela Reptiles posses two main mechanisms of sex determination. In some species the sex of the individual is determined at conception by sex factors contained in sex chromosomes (termed genotypic sex determination or GSD). However, in other species sex is determined after conception by the environmental temperature during incubation and cannot be predicted by zygotic genotype (Bull, 1983; Valenzuela et al., 2003). This peculiar mechanism, termed ‘temperature-dependent sex determination’ (TSD) is one of several existing types of environmental sex determination among animals but the only one so far described reliably for reptiles. TSD has persisted for millions of years although it is still not known whether TSD is ancestral to reptiles. Sex ratios under TSD can be biased and the prevalence of this mechanism over time is somewhat surprising given the drastic environmental changes in temperatures that the earth has undergone. In this chapter how the incubation environment affects sex determination in reptiles from a thermal and molecular standpoint is reviewed, and the evolution of TSD is briefly considered. Sex determining systems Sex chromosomes in GSD species can differ morphologically from each other (heteromorphic) or not (homomorphic). In some species exhibiting the XX/XY sex chromosomes males are heterogametic (XY), while in other species with the ZZ/ZW system females are heterogametic (Bull 1983). Some reptiles exhibit heteromorphic sex chromosomes while others possess homomorphic sex chromosomes (reviewed in Solari 1994). Primary sex ratios are usually balanced (1:1) in heterogametic systems due to the Mendelian segregation of sex chromosomes. However, environmental factors may override sex chromosomes and distort primary sex ratios (Valenzuela et al., 2003).
    [Show full text]